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Nonuniqueness of the Lorentx-Dirac equation with the free-particle asymptotic condition
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I show the nonuniqueness of the Lorentz-Dirac equation with the asymptotic condition of vanishing
acceleration at the distant future, by studying the one-dimensional nonrelativistic motion of a charge in

the presence of a potential step. As a minor result, I also show that, for position-dependent forces, the
fact that the trajectory of the charge crosses a point in which the force diverges does not prevent the
Lorentz-Dirac equation from having physical solutions.

PACS number(s}: 03.50.De

I. INTRODUCTION

The great majority of physicists agree that the motion
of a classical elementary charged particle (say an elec-
tron) in the presence of its own radiation field is governed
by the Lorentz-Dirac equation (LDE) [1,2]. Nevertheless
some controversy persists nowadays due to the well-
known strange features of this equation, namely, runa-
ways and preacceleration.

The main characteristic of the LDE is the fact that it is
a third-order differential equation for the position of the
particle. If only initial position and velocity are fixed,
this non-Newtonian character of the LDE introduces an
indetermination which is overcome by imposing an addi-
tional condition. As one is obviously interested in physi-
cal solutions, the most accepted condition in a collision
problem requires the motion of the particle to evolve to a
free-particle motion as time goes to infinity [2]. And this
asymptotic condition just makes it extremely dificult to
obtain explicitly the trajectory of the charge in the pres-
ence of a given force field, both analytically [2—6] and nu-
merically [7—9].

In particular it has been shown [8,9] that the problem
of two unlike charges in a head-on collision has no physi-
cal solution. This is not very important in itself because
the two charges will in fact collide with a non-null (al-
though very small) impact parameter and people think
that in this case a solution exists. The reason is that, as it
has been argued [5,8 —10], a problem arises due to the
preacceleration if the particle "knows" that it is going to
cross a point where the force diverges, which will not
happen if the impact parameter does not exactly vanish.

In the present article I am going to analyze a relatively
simple problem, namely, the one-dimensional motion of a
nonrelativistic charge in the presence of a potential step.
I shall consider both an ideal abrupt potential step and a
more realistic smooth one. The results I want to point
out are the two following. In the first place, we shall see
that, in the abrupt case, the existence of a point in the ac-
tual trajectory of the charge where the force diverges
does not preclude the existence of a physical solution,
contrary to what was indicated above. That is, another
particular feature of the Coulomb force, not shared by
the potential step, is responsible for the nonexistence of

physical trajectories. Second, and this is the most impor-
tant result of the paper, the equation can admit more
than one solution, which means that the prescription of
vanishing acceleration at the distant future is not
sufIIicient to determine the actual trajectory of the charge
(this fact has already been reported on in Refs. [11,12]).

Before going on to the calculations I want to make
some remarks. The asymptotic condition is added to the
LDE in order to avoid the runaway behavior of the solu-
tion. Yet such a prescription gives rise to the preac-
celeration phenomenon. From a purely classical point of
view this is unacceptable and the equation should be dis-
carded. The reason the equation is accepted lies in the
fact that the preacceleration a6'ects time intervals of the
order of r =2e /(3mc ), a very tiny quantity even for an
electron (r,i„„,„=6.26633X10 s). And this time in-
terval, it is argued [2], involves microscopic processes
that are to be explained by a quantum theory and not by
a classical one.

The problem I am putting forward in this paper bears
the same characteristic: its observation involves micro-
scopic quantities and consequently does not pose any
trouble if we are studying a situation in which a classical
theory can be applied.

However, this situation poses a dilemma: either the
classical electrodynamics is self-contradictory or the
LDE is not the correct equation. And this has nothing to
do with saying that classical electrodynamics does not fit
the microscopic dynamics. In my opinion the first alter-
native of the dilemma has not been strictly proved and
consequently I think we should seek another equation of
motion for the charge. From my point of view, the regu-
lar publication of papers dealing with all these problems
is evidence of the dissatisfaction existing with the LDE.

As I said above I am going to study the one-
dimensional motion of a charge in the presence of a po-
tential step. The equation of motion is the nonrelativistic
version of the LDE, the so-called Abraham-Lorentz
equation (ALE),

a =f +ra, f= — y(x)
d

dx

where a is the acceleration, f =I'/m, I' being the force
acting on the particle, and m its mass. I will consider
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first, in Sec. II, an abrupt potential step in the form
T

yo)0 if x)0
+( '= 0 ifx &0, (2)

aoe' ' if t &0
a(t)= '

be'~ if t) 0, (8)

which leads to

f(x)= —A&05(x) . (3)

Here one must impose happ«c for the nonrelativistic
equation to be valid.

Next, in Sec. III I will study a smooth potential step
r

ifx)l

f'o

vo
+ca =0, (9)

with ao and b constants. The asymptotic condition,
a ( oo ) =0, imposes b =0.

Now, writing 5(x)—=5(x(t))=5(t)/~v(0)~ and integrat-
ing the ALE (1) over an infinitesimal neighborhood of
t =0 I get

q&(x)= ' if 0&x &1, fox
l

0 ifx&0

(4)

where v o
= v (0). The solution is meaningful only if

vp )0. The velocity is given by

v;„+apse' if t &0

leading to
v(t)= '

vp=v' +apv if t )0 (10)

0 ifx)l
f(x)= ' — if 0&x &1

0'o

l

0 if x&0.

Equation (9) may therefore be written

qro+aorv;„+(aor) =0 .

This equation admits rea1 solutions if

(12)

A. Nonradiative solution

Energy conservation gives the following well-known
solution.

(1) IfE;„—:—,
' v;„&q&o the particle crosses the origin and

v;„ if t &0
v (t)=

2+o if t )0
(2) If E;„&yo the particle cannot cross the origin and

v;„ if t &0
v(t)= ' —v;„ if t)0 . (7)

B. Radiative solution

Let me first study the case in which the particle crosses
the origin. For tAO, a =ra and then

T»s more realistic case will require 1 »cr (see at the
end of Sec. V). However, I shall admit smaller values of 1
in order to attain the situation of (2) by means of the limit
1~0, fo —+ ~, and fol =go=const, and thus to compare
with the abrupt case, which is undertaken in Sec. IV. For
the sake of clarity I also make a comparison with the
nonradiative solutions. Finally, the nonuniqueness of the
LDE, which is the main result of this paper, is analyzed
in Sec. V. A brief discussion is presented in Sec. VI and a
number of technical points are relegated to the Appen-
dixes.

In the following the particle is considered to come
from the left with an asymptotic velocity v( —~ )=v;„.
For the sake of simplicity I wi11 assume that it reaches
the pointx =Oat t =0.

II. THE ABRUPT POTENTIAL STEP

Consequently, the particle crosses the origin if its ini-
tial energy is at least twice the potential step height, that
is, twice the nonradiative threshold. If this is the case
Eq. (11)has two solutions,

—v;„+(v;„+4qo)'
ao&=

2

giving

(13)

ill +)( p 4 )]/2
p (14)

Both values of vo are positive, which means that the
two solutions are valid. This shows the nonuniqueness of
the LDE with the asymptotic prescription, a deeper
analysis of which is relegated to a forthcoming section.
As concerns the threshold energy for the particle to cross
the origin, the fact that it has a larger va1ue than in the
nonradiative case is essentially due to the preacceleration
phenomenon. Since the acceleration is continuous and
the particle has to reach the origin with a negative ac-
celeration, the deceleration must begin at earlier times.
As a consequence, the particle arrives at the origin with a
smaller velocity than it had at t = —~, that is, v;„. It is
then reasonable to find that, in order to cross the origin,
the particle needs to "begin" its motion with a larger ve-

locity than in the nonradiative case.
If E;„&2yo, Eq. (11) has no solution. This means that

the charge cannot cross the origin and then must return.
Taking into account that the velocity is a continuous
function of time, the only way this is possible is arriving
at x =0 with zero velocity. Consequently, in this case,
vo=0 and ap~= —v;„. This result will be obtained more
convincingly as the limit case of a smooth potential step.
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III. THE SMOOTH POTENTIAL STEP

In this section I study the motion of the charge in the
presence of the potential given by Eq. (4). Again the case
in which the charge reaches the region x ) l, that is,
v ( ~ ) & 0, and the case in which the charge is repelled by
the force, v ( ao ) (0, have to be considered separately. In
both cases I will denote t, the time at which the charge
reaches x = l or x =0, respectively. [The case
v(x =l) =0 should be studied by using a smoothed force
law, which is not undertaken in the present paper. ]

A. Nonradiative solution

The motion is very well known. There are two cases.

and

1t, = [v;„—(v;„—2&p0)'i ]
0

(17)

U(tl ) = V I =Vi~ f0tl =(U;~ 2+0)

giving the same velocity for t & t& as in the abrupt case.

2. E; &yo

0=v;„ti —
2 f0t i (19)

Equation (16) has no real solutions and the particle is
compelled to return before arriving at x =/. Now tj is
the time at which the charge passes back through x =0,

1. E; &go

The charge enters the region x = l and

I thus obtain

2vin
(20)

0 if t&0
a(t)= . f0 if t F—[O, t, ]

0 if t&t»
(15a) '

and

v1 = vin (21)

v;„ if t &0

v(t) = ~ v;„f0t if—t & [0,t, ]

v;„f0t( =—v) if t—& t)

v;„t if t&0

(15b)

(15c)

The final velocity is equal to the initial one but in the
opposite direction.

B. Radiative solution

It will be convenient for the last part of this paper to
integrate Eq. (1) in each time interval, by making use of
the following expression:

fb

a(tb)=a(t, )e ' —(e /r) I f(s)e '~'ds, (22)

In these expressions the time t, is determined by the con-
dition

v;„t, ——,'f0t, =l, (16)

which has two solutions, the largest one corresponding to
the time at which the charge would pass back through
x = I if the force did not vanish for x & l. Consequently,

and then imposing the continuity of x, v, and a at t =0
and t =t, . I denote v(0)=U0 and v(t, )=v, . For the
sake of simplicity I introduce from the beginning the
asymptotic condition a(~)=0, which means a(t)=0
9t ~ t &. Again two cases have to be considered.

1. The charge reaches the region x &1

The solution of the motion is given by

aoe' ' if t &0

a (t) = (a0+f0)e' ' f0 if t E [O, t&]—
0 if t&t, ,

(23a)

v;„+ao~e' if t &0

v(t)= U0 f0t+(a0+ f0)r(e'~'——1) if t E [0,t, ]

v& if t&t, ,

(23b)

u;„t+a (e0r'~' —1) if t (0
x(t)= [v0 —(f0+a0)r]t —

—,'f0t +(a +f00)r (e' '—1) if tE[O, t, ] (23c)
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The boundary conditions yield 1.2 1.2

a(t, )=0=(ao+fo)e ' —fo,
v(0)—:vo=u;„+aors,

tl /v
v(tl )=—u& =uo fot&—+(ao+fo)r(e ' —1),
x(t, ) =l= [uo (ao+ fo)r]t, ——' fo

(24a)

(24b)

(24c)
0.6

0.8

0.6

+(ao+fo)r (e ' —1) . (24d)

One must solve for ao, v p v I, and t I . The simplest way
to do it is to express everything in terms of t„

0.4

0.2

— O.4

0.2

—tl /~ao= —fo(1 —e ' ),
—tI /7

uo =v;„for( I ——e ' ),
ul viq fo

l =(v;„for)t, ———'fot&+for (1—e '
) .

(25a)

(25b)

(25c)

(25d)

0
0 0.5 1 1.5 2 2.5

(/q

FIG. 1. As(g tt)/g vs g'/g, for three values of 5:
——,5= (x); and —-, 6= 1,g = 1.

3.5

, 6=0;

71=
0'0

Now Eq. (25d) can be written as

(26)

Note that the expression for v, is just the same as in
the nonradiative case [Eq. (15b)]. However, the corre-
sponding numerical values are different since t, takes
different values in the two cases.

Now the problem reduces to finding a positive solution
for t t from Eq. (25d) in such a way that vo and v, are also
positive. The nonexistence of such a solution would
mean that the particle stops down before reaching x =I
and then is compelled to reverse its run, a situation that
will be treated below.

My first aim is to study the solutions of this equation in
terms of l in order to compare with the abrupt case
(l~0, fo~ oo, and fol—:go=const). To do this let me
introduce the following parameters:

1 =As („)(g (5,h(g) ); rl ) . (31)

Now, if 5) 5,h(g) I get a solution and if 5(5,h(g) the
charge is compelled to return. Recall that I have fixed
the potential height, which amounts to fo being smaller
for larger values of l. One can see that 5,h is a decreasing
function of g. Differentiating in Eq. (31) with respect to
g I get

I =0.
(2) If rl/2(1 ~rt a solution exists only if 5 is larger

than a certain value 5,h(g). In particular, there is no
solution for 6=0.

(3) If g ( 1 no solution exists in any case and the parti-
cle returns. This corresponds to E;„&yo, the nonradia-
tive condition for the particle to be repelled.

In case (2) the value 5,h(g) is given by the value of 5 at
which I=maxAs. Denoting by g (5) the position of the
maximum, I can write

1=As(g;g):—g
—

g I I+h(5$)],1 2

4g

where

(27) 0= BAs d5,„BAs BAs Bg' d5,„+ +
a5 d& a& ag a5

(32)

h( )
u+e "—1

Q

t,
u =5$=—

7
(28) and, as ( BAs/Bg) ~ g

=0,

I show in Appendix A that A&(g;g) are functions sirni-
lar to but different from a parabola, and lying between Ao
and A, these being

d5,h

d'g

BAs/Bg 1+h (5g )

aA, /a5 ~=~- (33)

Ao(C n)=k'1 2

2n

A„(gg)=g— 1 2

4g

(29)

(30)

where I have made use of properties (b) and (c) of h (u)
explained in Appendix A.

The validity of the foregoing analysis still requires that
v(0) and v(t, ) be positive. To show that this is the case,
note first that

Moreover, as a function of 5, As decreases for each g
from A„ to Ao (see Fig. 1). A first result concerning the
existence of solutions can already be stated as follows.

(1) If 1 ~ rl/2 there is a solution of (27) for every value
of 6, and then for every value of l. This situation corre-
sponds to E;„&2yo, which is the condition obtained for

vo
—u, =for(u —1+e "))0, (34)

which says that the velocity is always smaller at x =l
than at x =0. As regards v„ it can be seen in Fig. 1 that
if Eq. (27) has solutions, at least one of them (note there
might be two) fulfills g(2g=u;„/fol. Therefore, I have
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OI
vl =vin fotl =vin g)0

vin
(35)

1.05 1.05

and the analysis presented above is valid. However, an in-
spection of Fig. 1 indicates that for some values of q one
can find not just one but two solutions fulfilling /&2',
(that is, v i )0). Due to its importance, this point will be
analyzed in a specific section.

0.95

0.9

2. The charge is repelled 0.85 0.85

x(t)=vi(t —ti ), t ) ti

x (t, ) =0= [vo —(ao+fo )r]t, —,' fot, —

+(ao+fo)~ (e ' —1),
and finally Eq. (27) reads

0=As(g;g) .

(36a)

(36b)

(37)

Obviously this equation has two solutions (see Fig. 1),
go=0 and g, )0, corresponding to the two times at which
the charge passes through the origin. Note that g, )2il
and so v

&
&0. The LDE has one and only one solution in

this case.

IV. THE LIMIT OF ABRUPT POTENTIAL STEP

This situation is attained by taking the limit I~O
while keeping yo =fol constant. In particular we have to
take the limit 5~0 in Eq. (27), which means that the
values of g satisfy Ao(g;g) = 1. I obtain the following.

(i) If 1 & tl/2, that is, E;„)2yo, there are two difFerent
solutions,

g+ = i)+(g —2g)'~ (38)

from which, with the aid of Eqs. (25) and (26), one can
reproduce the results of Sec. II B, Eqs. (13) and (14) (note
that l ~0 leads to t, ~0).

(ii) If 1 )g/2, that is, E;„&2yo, there are no solutions
of Eq. (27), which means that the particle returns towards
the left. Consequently, g is now the solution of Eq. (37),
that is, /=2'. Finally I get, from Eqs. (25) and (26),
vo=v, =0 and aov. = —v;„, reproducing again the results
obtained for the abrupt case in Sec. II B.

V. NONUNIQUENESS OF SOLUTIONS

It has been seen that in the case I~0 two solutions ap-
pear that are physically acceptable. Let me analyze this
for an arbitrary value of I. The problem arises when
studying the solutions of Eq. (25d) or Eq. (27) in the case
where the particle penetrates the x ) I region. The point
is that v i is non-negative for any value of g smaller than
2g, as one can easily deduce from Eqs. (25c) and (26).
And one observe in Fig. 1 that for any finite 6 the max-

In the situation denoted above as (3) the charge is be-
ing acted upon by the force until it reaches back to the
origin. The equations are the same as before, (23a) —(23c)
and (24a) —(24c), except for the expressions concerning
x (t) at t ) t, . These are written now

0.8
1 1.5 2.5 3.5 4

0.8

FIG. 2. As(g;t)) vs g for t)=1.6 and 5=1 showing the ex-
istence of two physical solutions (g'&2g=3. 2) of (=A~(g;q):
g& =1.84 and gz=2. 75.

imum of As(g;g) lies on the left of 2'. Consequently, if g
and 5 are such that 1 lies between As(2';g) and maxA&,
then there are two values of g fulfilling Eq. (27) and giv-
ing v, )0 (see Fig. 2). Moreover, whatever the solution
is, the particle cannot have passed x =l at a prior time
for this would require negative velocities at some time in-
terval before t, . And. this is inconsistent with v, being
positive, since the acceleration is never positive, as can be
seen from Eqs. (23a) and (25a).

Now the question arises as to the origin of this double
solution. The answer is easy: the asymptotic prescrip-
tion of vanishing acceleration at remote future does not
serve to completely determine the physical solution. In
other words, there can be more than one solution of the
third-order differential equation (1) for which the ac-
celeration goes to zero as t ~ ~. To see this clearly I am
going to analyze how the acceleration at t, depends on
the various parameters of the problem. Note that the
asymptotic condition amounts in this case to imposing
a(t, ) =0 because for t ) t, the solution is given by
a (t)=a (t, ) epx[(t —ti )lr]. Equation (24a) yields

l —(v;„for)t, + —,
' fo—t,

ao+fo=
H(e ' —1)

and then

(40)

a(t, )=fo
b. (v 1)u + —,

' u —1+e— —
1 —e

=fop(u), (41)

where I have set

(42)

Recall that the largest allowed value of t, for the parti-

a(t, ) =(ao+ fo)e ' fo . —

Now I should have to express t
&

in terms of ao. Howev-
er, it is easier to use t, as the independent variable and to
write ao in terms of it. By using Eqs. (24b) and (24d) I
obtain
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cle not to be repelled is u;„/f o, which is written in terms
of the new parameters as 0.8

1

0.8
O~u ~v. (43) 0.6 0.6

I want to know how p(u) behaves for u H [O, v]. A de-
tailed analysis of this can be found in Appendix B. In the
following I present the results.

In any case p behaves as u /2 as u ~~. For 6=0 it
is strictly increasing if v(2 and presents one unique
minimum if v&2. It cuts the u axis at a point on the
right of u =v and its derivative at u =v is positive. For
6%0 p behaves like 5/u as u ~0, but if b, is small
enough, for u &0 p is very similar to its value for 6=0,
although slightly larger.

Now the behavior of p can be understood in terms of
two functions b, +(v) and 5 (v) defined in Appendix B
[see Eqs. (B14), (B15a), and (B15b)] and shown in Fig. 3.
If, for given v, b H(O, b, (v)) p has only one zero on the
left of v. The other zero lies on its right. When

(v) from below this second zero approaches v. If
&&(b (v), b+(v)) the two zeros lie within the interval
(O, v). For 5 going to 6+(v) from below the two zeros
tend to collapse in a single one. This zero coincides with
the minimum of p. If b, )6+(v) p has no zeros.

Finally, recalling that the physical solutions are the
solutions for which p =0, one can conclude the following:
if the pair (v, b, ) lies, region I of the plane v-6 in Fig. 3,
there exists just one physical solution; if (v, h) lies in re-
gion III the charge cannot reach the point x = I and is re-
pelled; and finally, if (v, 5) lies in region II there exist two
physical solutions, which is the main result of this paper.

In Fig. 4 I present the five typical situations, 5 & 6
A=6, , b, H(h, b, +), 5=A+, and 6) 6+, for v=1,

and 6+ being 6 —=0. 132 12 and 6+ —=0.272 03.
In particular, if v=1 and 6=0.2, the two solutions
for u are u"'-=0.269 65 and u' '-=0. 875 70. The acceler-
ation at t =0 can be calculated from Eq. (39) or (40)
giving aors

i =——0.23636fo and ao ' —= —0.58343fo. The
velocities at t =0 and t ] take the values v 0"
—=0.763 64for, u('P =-0.416 57fOr, u',"=0.730 34for,
and uI ' —=0. 12429for. In Fig. 5 the time evolution of
the acceleration, the velocity, and the position for both
solutions are shown along with the nonradiative ones.

0.4 0.4

0.2 0.2

-0.2

04
-0.6

-0.2

-0.4
I I I I I I l 0

FIG. 4. Five typical situations of p(u) showing the zeros that
represent physical solutions of the LDE. v= 1 and the values of
6 are ——— 0.08' —. . —,0.13212=5; - - -, 0.2;
0.27203=4+, and —-, 0.4.

I )) 1
Vln~

To end this section I am going to ana1yze the order of
magnitude of the separation between the two solutions.
As can be seen in Eq. (14) the two solutions of the abrupt
case can be quite different, depending on the initial ener-
gy. However, in macroscopic and even mesoscopic situa-
tions, having such an abrupt potentia1 step is not possible
and we should impose some restrictions on the possible
values of the various parameters. As we shall see, if this
is done, the two solutions will be too close to each other
so as to be distinguished at a nonmicroscopic level. The
reason is the astonishing smallness of ~ as compared to
any time scale occurring in the classical world
(v=6. 266 33 X 10 s). We can therefore think that the
time intervals taking place in our system should be much
larger than r, in particular, u =t, /r)) 1. Moreover, the
length of the barrier, l, should be large as compared to
the classical radius cr (=1.87851 F) and a fortiori,
l &)v,„~. Also the distance the particle travels due to the
action of the force in a time of the order of ~ will be very
small with respect to l. We arrive at the following rela-
tions:

u )&1, (44a)

»I,I
(44b)

fo

1.2

0.8

0.6

0 2

1.2

0.8

0.6

0.4

0.2

Note that, whereas b, ))v, in general v /b, =2i) can be
arbitrary.

The first point is to see that, in the case where the par-
ticle penetrates the x ) I region, condition (44a) is a
consequence of (44b). If we write Eq. (25d) with the pa-
rameters defined in (42) we get

A=(v —1)u —
—,'u +1—e "=%'(u) . (45)

Now, I wi11 write the same equation for the nonradiative
case. The nonradiative variables are denoted with an
overbar):

0 0.4 0.8 1.2 1.6

FIG. 3. 6+ ( ———) and 6 ( ) delimiting the region
of existence of two solutions of the LDE.

b, =vu —
—,'u —=V(u ) . (46)

Since for u )0, 4( u ) (V(u ), and considering for the mo-
ment the solution of (47) with positive slope, we deduce
from Eq. (46) that u ) u, b. (vu, and finally,
u ) u ) b, /v)) 1. Obviously, the other solution (the
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1.5 1.5

u

u u —1+ev= —+
2

u)—
2 ' (48)

0.5

p

-0.5

-1 I I I I I I I I I I I I I i I I I I I I

0.5

-0.5

which proves the assertion.
In conclusion, one has the following restrictions:

u ))1, u ))1, 6))v, v))1 . (49)

To become aware of the relative order of magnitude of
the various quantities corresponding to the two solutions
it su%ces to calculate the width of region II in Fig. 3
when conditions (49) hold. From Eqs. (814) and (823) I
have

1.2

0.8

-1 -0.5 0 0.5 1 1.5
t/z

-(b)
1.2

0.8

b+(v) —b, (v) =
—,'+O(e ) . (50)

Therefore the interval 6l of values of l for which there
exist two solutions is smaller than for /2. Thus, taking
into account the nonrelativistic condition for «c, I get

5I & ,'f,H« —,'c—r, (51)

0.6—

0.4

0.2

0.6

0.4

0.2

which is an extremely tiny quantity.
The same analysis can be made for the values of the in-

itial velocity U;„. I must solve for v in terms of 6 for each
curve b.+(v) and b, (v). Let v+(b, ) and v (b, ) be the
corresponding expressions. From Eqs. (814) and (823) I
get

p

0.1

-0.5 0 0.5
t/z

0.1

-0.1 -0.1

-0.3 -0.3

~O -0.5 -0.5

-0.7 -0.7

-0.9 -0.9

I l I i I I I I I

-0.5
I s & & c

0.5

t/z
FIG. 5. The two solutions of the LDE vs t/~, along with the

nonradiative solution, for v = 1 and 6=0.2:
ao ' =——0.23636fo; — —,ao ' —= —0.583 43fo; ——, nonradia-
tive solution; (a) position, (b) velocity, and (c) acceleration.

6U;„ V+ V «1. (52)U;„v 4A

This can be achieved by neglecting the e dependence
in Eqs. (814) and (823), and then obtaining v as a func-
tion of 6+ and 6, respectively.

Finally it remains to study the difference between the
values of the time t, at which each solution arrives at
x =l'. The largest interval length of values of u corre-
sponds to the difference between v, the upper limit value
of u rsee (43)], and the other value of u at which the curve
%(u) |see Eq. (45)] attains the same value as it takes at
u =v. Taking into account that both values are close to v
I can in first approximation neglect the e " term in Eq.
(45) and then get two approximate solutions for u. I ob-
tain 6u =2 and so

6t, =2~ . (53)

Consequently, one can see that, if conditions stated in
(49) hold, the two solutions, when existing, are very close
to one another, and one might attribute the nonunique-
ness of the LDE to the necessity of resorting to quantum
physics whenever such small time and length intervals
are involved.

0=(v—1)u —
—,'u +1—e

Solving for v,

(47)

value of u with negative slope), if it exists, is even greater.
Moreover, if Eq. (45) has a solution, so does Eq. (46) and
then b, (max(vu —u /2) =v /2. One thus concludes
that v2 & 25 ))1.

If the particle is made to turn back, it is evident that
the value of b. (which has to be larger than a certain
threshold value) does not infiuence the other parameters.
In this case u »1 implies v&)1. To see it I will write
the equation for u,

VI. SUMMARY AND DISCUSSION

As the main result of the paper, I have shown that, in
the one-dimensional motion of a radiating charged parti-
cle in the presence of a potential step (whether abrupt or
smooth), and for certain values of the parameters in-
volved, two different trajectories with a vanishing ac-
celeration at the distant future fulfill the ALE (the nonre-
lativistic version of the LDE). This means that in gen-
eral, the LDE, complemented with the asymptotic condi-
tion, does not have a unique solution, or, in other words,
does not predict the actual motion of the charge. And
my opinion is that overcoming this trouble is not simply
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a matter of selecting one out of the various possible solu-
tions.

Accordingly, I conclude that the LDE, along with the
asymptotic condition, does not constitute an appropriate
fundamental equation for the motion of charged particles
in classical electrodynamics. Once one arrives at this
conclusion, two attitudes can be adopted: either classical
electrodynamics is inconsistent because the LDE is an
inevitable consequence of the theory, or it is a well-
behaved theory and simply the correct equation govern-
ing the motion of charged particles has not yet been
found. In fact, a number of alternative equations has
been proposed during this century, although none of
them was found to be satisfactory [13].

At this point I should like to bring to the reader's at-
tention the already well-known difficulties of the LDE.
This equation by itself admits an infinity of solutions be-
cause of its third-order differential equation character. If
one allows the acceleration to be zero before the force
sets in, two difficulties arise: (i) the charge runs away
when the force stops acting upon it, and (ii) if the force
has a constant direction, the acceleration goes in the op-
posite direction [14].

These two problems can be overcome by imposing the
asymptotic condition I have referred to above. But now
another difficultly arises, namely, the well-known preac-
celeration. I might say that this is in some sense the
smallest problem one can attain with the LDE. It is in
fact a very tiny one, since it affects times of the order of
10 s, which involves processes at the level of subatom-
ic particles (see a discussion on this point in Ref. [9]).

The situation with the nonuniqueness of the equation is
similar, since the two solutions found in this paper are
very close to each other, to the extent that the separation
between them takes on microscopic values, at least for a
realistic potential. This situation supports the first alter-
native referred to above in the sense that classical electro-
dynamics governs correctly the dynamics of charged par-
ticles in the presence of electromagnetic radiation but
only if microscopic processes are not involved; otherwise
it would be necessary to make use of a quantum theory.

This attitude seems to be correct. However, a new
question arises: is it really impossible to find in classical
electrodynamics an equation of motion devoid of concep-
tual difficulties? Note that I do not mean an equation of
motion capable of explaining the actual dynamics of
charges, but simply a completely well-behaved equation
of motion. Were the answer yes, one should admit self-
inconsistency of classical electrodynamics, but in my
opinion this is still an open question, which needs to be
clarified.

Finally, as a minor result, I have obtained a physical
solution (two in fact) of the LDE in the presence of a
divergent force (abrupt case). This is in contrast with a
claim made in Refs. [5—9] that the presence of such a
divergence would prevent the existence of physical solu-
tions in the case of head-on collisions of unlike charges.

APPENDIX A

h(u)&l Vu)0.
Now, let me introduce

(A2)

D($, 5) =As(g;g) —Ao(g;g) = [1—h (g')] . (A3)
7l

D is an increasing function of its two variables since

[1—h (g)]— 6h'(g) &0
Bg 2' 4' (A4)

BD h'(g) &0,
95 4g

(A5)

where I have made use of properties (Al), (A2), and (c).
Consequently, A& describes a family of curves lying be-
tween Ao and A in such a way that the distance between
Ao and As increases with both 5 and g (see Fig. 1).

APPENDIX B

Consider the function

b. —(v —1)u + —,'ua=p+1=
1 —e

(B1)

Throughout this appendix the variable u takes only
positive values. In the following I am going to show that
a, and then p, exhibits at most one minimum at a positive
value of u. Note that a behaves as u /2 for large u,
whereas its behavior for small u depends on the values of
both 6 and v,

a(u) ——[1+O(u)]—(v —1)[1+O(u)]+—+O(u ) .
u~O u 2

(B2)

Now, to study the extrema of a, I calculate its deriva-
tive

where

f (u)
( 1

—lc)2 (B3)

Let me begin studying the function h (u) [see Eq. (28)].
First of all a series expansion of Eq. (28) readily leads to

h (0)=1, h'(0)= ——'

Now I am going to prove the following properties, val-
id for u )0: (a) h(u) &2/u; (b) h(u) &2/(u+2))0; (c)
h'(u) &0.

Proof.
(a) u )0—:u—(1—e ")&u -h(u) &2/u.
(b) Let p(u)=u [(u+2)h(u) —2]. It is easy to see

that p(0) =0, p'(0) =0, and p" (u) =2ue ")0. This
means that p( u ) is a positive function for u & 0 and then,
as u )0, h (u) )2/(u +2).

(c) h'(u)=[2 —(u +2)h (u)]/u &0 according to (b).
Property (c) says that h is a decreasing function for

u )0. Since h (0)=1 I deduce
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f(u)= —Ae "+f (u),
f,(u) = —(v —1)o (u)+ fo(u),
o(u) =1—e "—ue

(B4)

(B5)

(B6)
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f0(u)=u —ue " 1+— (87)

0
f0(Q) —u, f0(u) — +O(Q ),

0 —~oo Q~O 2

o(0)=o'(0)=0, o'(u) )0,

(88b)

(88c)

0a( ~ )=1, o(u)—
u~o 2

3

+O(u ) .
3

The behavior of f close to the origin will also be use-
ful,

f (u) —u 1 ——+O(u') .
u~O 2

(89)

All this leads to the following.
(a) If v&1, then f,'(u))0. Consequently, f is a

monotonically increasing function vanishing at the ori-
gin. As for p, one can see from Eqs. (Bl) and (83) that
p') 0. Finally, p(0) = —v&0.

(b) If v& 1 the analysis is more complicated. If I write

Consider first the case b, =0. The functions o and fa
are easily seen to have the following properties:

f0(0)=f0(0)=0, f0'(0) =1, f0(u) )0, (88a)

p(v) = v —(v /2) —1+e r(v)
1 —e 1 e

(812)

The function r (v) is easily seen to be negative for all
positive values of v. On the other hand,

f (u, ) &0. If u &u„ f (u) —f(u)=he "(be
=f (u, ) f—(u, ), and then f (u) &f (u) —f„(u, ) &0 be-
cause, as I said above, f, is an increasing function for
u & u . On the other hand, if u & u & u, (this affects

only the case v) 2), f,(u) —f(u) =be "&Ae
=f,(u, ) —f(u, ). Then, f (u) &f (u) —f„(u, )(0, the
last inequality being due again to the increasing behavior
of f, for u ) u . This ends the proof of the uniqueness of
u„which amounts to saying that p has a unique
minimum.

In the following I am going to study how the location
of the positive zeros of p varies with 6 and v. For the
sake of clarity I initially consider a fixed value of v, thus
studying the dependence with h. This is easy to do if I
notes that p grows up monotonically for each value of v
as 5 increases from zero. And this growth is continuous
except at u =0. For b =0 it is easy to show that p has
one zero on the right of v, the slope being positive at this
point. To see this I will calculate p and p' at u =v with
b, =0. From Eq. (81) it follows that

f"= —(v —1)o."+f0' =e "8,
with 0 given by

(810) '(u) „
1+e (v /2 —v —1)

(1—e ") (813)

Q8(u)= — +uv+2 —v,
2

(811)

the following two cases are to be distinguished.
(i) 1 & v & 2. 8(u) is an inverted parabola crossing the u

axis at a positive value u2. Then, for u &u2, f")0 and

f ' increases; and for u ) u2, f"& 0 and f ' decreases. As
f ', (0)=0 and f '

( ~ ) = 1 this means that f,' must be posi-
tive for u )0, and as f (0)=0 I get that f is always pos-
itive. Consequently, p is again monotonically increasing.

(ii) v) 2. In this case there exist two positive values of
u, say u, and uz, at which 0 vanishes. Then, f'„' &0 for
both u & ui and u & u2, and f,"&0 for u, & u & u2. As
f ' (0)=0 and f ', ( ~ ) = 1 I finally conclude that f ' is neg-
ative up to a certain value of u, say uo, and then becomes
positive. Consequently, f, has one maximum at u =0,
where the function is zero, and one minimum at uo. Tak-
ing into account the behavior of f, at infinity, all this
means that it must vanish at some unique positive value
of u larger than u0. Finally, from Eqs. (81), (83), and
(89) I obtain p'(0) = (1—v/2) & 0, which says that p' van-
ishes at only one point, showing the existence of a unique
minimum.

The case 6)0 is now easy to solve. The idea is based
on the relation (84), where he is a strictly decreasing
function. Let u be the point at which f vanishes (in the
case v) 2, u is the positive value). For u & u, f(u) &0
and, for u~~, f(u)-f (u). I then conclude that there
exists a point u, & u „ for which f ( u, ) =0. I am going to
prove now that u, is the unique zero of f. Since u, )u,

which is always a positive function.
Finally, taking into account the behavior of p at the

origin, one can conclude that, for 6 small enough but
different from zero, p(v) cuts the v axis at two points, one
of them being smaller and the other larger than v. More-
over it always reaches the point u =v in the growing part
of the curve.

For every fixed u, when 5 grows up, the function p al-
ways increases. At a certain value of b„say 6, it exact-
ly vanishes at u =v. For A&A the two zeros of p are
on the left of v. At a certain later value of 6, 6+, p cuts
the v axis at just one point that coincides with its
minimum. For 6 )6+ there are no zeros of p. A typical
situation can be visualized in Fig. 4 in the main text.

It remains to calculate the functions 6+ and 6 . The
value of 6 is very easy to obtain from the condition
p(v)=0. I get

(v —1) 1

2 +2+——e (814)

f(u;b, +)=E(u ),
f'(u;b, +)=E'(u ) .

(815a)

(815b)

It is not possible to get an explicit expression of 6+ in
terms of v. But it is easy to prove the following proper-
ties:

is an increasing function of v. As concerns b, + it is
defined by the conditions p'(u )=0 and p(u )=0. If I
write in Eq. (Bl) a=f (u;b, )/E(u), the former condi-
tions are equivalent to
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b. +(v) )0,d
(816a) aa ~. aab'+(v)= + =u &0,

t)um t)v Bv
(820)

[6+(v)—b, (v)] )0 . (816b) where I have used Eq. (817). This proves (816a). To
prove (816b) I will set

To see it I first solve for u in Eq. (815b),

—(v —1)+u =e ™ (817)
b, '+ b,

' =—u —(v —1+e ) . (821)

This equation has one unique positive solution u (v)
fulfilling

Since u satisfies Eq. (817) I get
06+ —5' =e —e and v —u =1—e )0,

u (0)=0, u' (v)=
1+e

&0. (818) (822)

Finally I introduce this value into Eq. (815a) and calcu-
late 6+,

u (v) „ ( )
b, +(v)=(v —1)u (v) — +1—e

which ends the proof of (816b). A plot of the functions
6+ and 6 can be found in Fig. 3 in the main text.

I finally give an approximate expression of 6+ in the
limit v&)1. From (817) I get u =v —1+O(e ), and
putting it into Eq. (19).

—= b, (u (v), v) .

Now b, +(0)=0and

(819) 2

b, += +1+0(e ) . (823)
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