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The time-dependent behavior of solutions of the Korteweg —de Vries {KdV) equation for nonsoliton
initial conditions is considered. While the exact solution of the KdV equation can in principle be ob-
tained using the inverse scattering transform, in practice it can be extremely difficult to obtain informa-
tion about a solution s transient evolution by this method. As an alternative, we present here an approx-
imate method for investigating this transient evolution which is based upon the conservation laws associ-
ated with the KdV equation. Initial conditions which form one or two solitons are considered, and the
resulting approximate evolution is found to be in good agreement with the numerical solution of the
KdV equation. Justification for the approximations employed is also given by way of the linearized in-

verse scattering solution of the KdV equation. In addition, the final soliton state determined from the
approximate equations agrees very well with the final state determined from the exact inverse scattering
transform solution.

PACS number(s): 03.40.Kf, 52.35.Mw, 52.35.Sb, 47.35.+ i

I. INTRODUCTION

The Korteweg —de Vries equation on the infinite line
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c)t Bx
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together with the initial condition

u(x, 0)= Uo(x), —Oo &x & Oo, (2)

of the Korteweg —de Vries equation (1) for which the non-
linearity and dispersion balance one another. The soli-
tons formed from the initial condition (2) are given by the
point spectrum of the eigenvalue problem and hence the
final state can be easily obtained from the inverse scatter-
ing solution since any radiation formed decays as t —+ ~.
However, the time evolution of the initial condition into
the soliton(s) is not easily determined via the inverse
scattering method as this time evolution is determined by

where Uo(x) is square integrable, is the simplest of a
series of equations which have an exact solution via the
inverse scattering transform [1,2]. This method converts
the Korteweg —de Vries equation into a linear eigenvalue
problem for a set of scattering data and a linear integral
equation (the Marchenko equation) for the time evolu-
tion. The eigenvalue problem is Schrodinger's equation
from quantum mechanics together with the boundary
condition that u ~0 as x~+00. It can be shown from
the inverse scattering solution that a general initial condi-
tion (2) evolves into a fixed number of solitons plus decay-
ing radiation [2].

A soliton is the particular solution
' 1/2

a
u =a sech — (x 2at)— (3)
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solving the Marchenko integral equation, which in gen-
eral is nontrivial. As a consequence of this, the transient
evolution of the solution from the initial condition to the
final soliton state is dificult to calculate.

It is this tiine evolution of the soliton(s) from the initial
condition which forms the focus of the present work.
Rather than using the inverse scattering method, the time
evolution will be studied using the conservation laws as-
sociated with the Korteweg —de Vries equation (1). The
particular initial condition Uo(x) = A sech (x lb) will be
used as a simple, specific example since the calculations
are relatively simple, and. , furthermore, for this Uo, the
point spectrum of Schrodinger's equation can be found
explicitly [1].

The Korteweg —de Vries equation (1) possesses an
infinite number of conservation laws and conserved densi-
ties [1,2]. Berezin and Karpman [3] used these conserva-
tion laws to determine the N solitons formed from the ini-
tial condition (2). The long-time solution was assumed to
consist of N solitons and the initial and final values of the
N lowest-order conserved densities were equated to deter-
mine the N unknown amplitudes of the final solitons.
The calculated amplitudes were found to be in very good
agreement with the inverse scattering solution.

This method of approximate solution su6'ers from a
number of drawbacks, however. The most severe is that
the time evolution of the initial condition (2) into the N
solitons is not determined, as only the long-time asymp-
totic state is evaluated. Also, as the initial conserved
densities are equated to the final conserved densities for N
solitons, the amount of the conserved densities associated
with dispersive radiation is not taken into account. It is
found from numerical solutions of the Korteweg —de
Vries equation with the initial condition (2) that disper-
sive radiation is generated as well as solitons. The lack of
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inclusion of radiation leads to discrepancies between the
inverse scattering and approximate solutions. Finally,
the number N of solitons into which the initial condition
evolves is not known a priori, but is determined from the
inverse scattering solution. In the present work, it is
shown how information which describes the time evolu-
tion of the solution from its initial condition into
soliton(s) can be determined from the conservation laws
alone. Furthermore, it is shown how the effect of disper-
sive radiation can be included via the conservation laws
and how the dispersive radiation, if it carries away posi-
tive mass from the lead soliton, can cause additional soli-
tons to be formed. It is this determination of how much
radiation is shed as the soliton evolves that is the major
component of the present work.

Another reason for the approach presented here is that
this method for investigating the evolution of an initial
condition for the Korteweg —de Vries (KdV) equation can
be applied to equations for which there is no inverse
scattering solution. For example, in [4] the evolution of
an initial condition for the mKdV (modified Korteweg de
Vries) equation, in which the nonlinear term uu in the
Korteweg —de Vries equation (1) is replaced by u "u„, is
considered. The mKdV equation can be solved using the
inverse scattering transform only for the cases n =1 and
n =2. The approximate conservation equations are
found to predict in a straightforward manner the instabil-
ity of the solitary wave solution for n ~4, which was
found previously only through very detailed analysis [5].
For 1 ~ n & 4, the solitary wave solutions are found to be
stable, again in agreement with [5]. The further informa-
tion found by [4] in the case of the rnKdV equation is the
existence of a critical initial amplitude of the soliton for
n 4. Below this critical initial amplitude, the soliton de-
cays into dispersive radiation alone; above this critical in-
itial amplitude, the amplitude of the soliton blows up.
This blowup has been observed previously in numerical
simulations of the mKdV equation [5],but the determina-
tion of the critical amplitude is new.

The approximate method outlined in the present work
is also being applied to perturbed KdV equations describ-
ing, for example, the motion of a soliton on a Quid of
varying depth or the effect of kinematic viscosity on the
motion of a soliton. The method outlined in the present
work is expected to be particularly useful in the case in
which the soliton moves on a Quid of decreasing depth.

.In this case, a second (and possibly more) soliton(s) is
(are) generated behind the original soliton, a situation
which has been observed in numerical simulations of the
perturbed KdV equation [6]. The formation and evolu-
tion of the second soliton, which is extremely difficult to
determine via inverse scattering techniques, should be
describable by the method outlined in Sec. IV.

Applications connected with other evolution equations
are also expected to benefit from improved methods for
studying the interaction between solitons and dispersive
radiation, and provide added motivation for the present
work. One application of current interest is the modeling
of optical solitons using the nonlinear Schrodinger (NLS)
equation, and related problems involving perturbed or
coupled NLS equations. The behavior of solutions in

II. CONSERVATION LAWS AND THE FORMATION
OF ONE SOLITON

Let us consider the classical initial value problem for
the Korteweg —de Vries equation on the infinite line—~ &x & ~, which consists of the Korteweg —de Vries
equation (1) together with the initial condition (2). An
approximate solution of this problem will now be found
by using the conservation laws associated with the
Korteweg —de Vries equation. In this section, we shall
consider the case when only one soliton is formed from
the initial condition (2). The case when two solitons are
formed is considered in Sec. IV.

It can easily be found that the Korteweg —de Vries
equation (1) has the following two conservation laws:
conservation of mass

(u)+ (3u +u )=0a a 2

Bt Bx

and conservation of momentum

(4)

( —,'u )+ (2u +uu„„——,'u )=0 .
Bt Bx

(5)

These two conservation laws are the two lowest-order
conservation laws of the infinite set of conservation laws
for the Korteweg —de Vries equation. To be specific, we
consider the particular initial condition

such cases has typically been explored in the past via soli-
ton perturbation theory, which yields equations for the
evolution of the soliton parameters. A straightforward
application of soliton perturbation theory, however, does
not include interaction effects between the soliton and the
dispersive radiation.

A variational method for partially including such
eff'ects in the NLS equation has been demonstrated [7].
This variational method includes a local interaction be-
tween the soliton and the dispersive radiation, but makes
no provision for the propagation of radiation away from
the vicinity of the soliton. This variational method has
been used to study a number of applications such as pulse
propagation in birefringent optical fibers [8—12], and has
been shown to provide a more accurate description of the
solution behavior. Recently it has been reported that it
also provides an efficient method for modeling soliton
dragging logic gates (high-speed optical switches which
employ solitons) [13]; in particular, the variational
method proved to be the most accurate among the
several approximate methods tested.

While inclusion of the local interaction between a soli-
ton and dispersive radiation gives an improvement over
standard soliton perturbation theory, there are still
differences between these approximate solutions and nu-
merical solutions. These differences are clearly due to the
propagation of dispersive radiation, which causes a per-
manent momentum loss in the soliton. For additional
improvements in the approximations, it is necessary to
include this effect. The KdV equation is the obvious first
choice for study since its solitons have fewer parameters,
and the local interaction between the soliton and the
dispersive radiation is relatively simple.
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where

uo=a sech (8/P),
8=x —g(t), g'(r) = V(t) .

Here g(t) is the position of the "soliton" maximum, V(t)
is the "soliton" speed, and the amplitude a and the width
p are functions of time t From. the initial condition (6)
and upon taking u, (x,0)=0, we see that

a(0)=A and P(0)=b . (10)

Comparing (8) with the soliton solution (3), we see that
the first-order solution up is assumed to be a time varying
solitonlike solution. The solution up is only an exact soli-

Uo(x)= 2 sech (x/b) .

As was stated in the Introduction, this initial condition is
chosen for simplicity and because the Schrodinger equa-
tion eigenvalue problem can be solved explicitly in this
case, so that the conservation law results can be com-
pared with those from inverse scattering.

It is known from inverse scattering that the initial con-
dition will evolve into a soliton or solitons plus dispersive
radiation. We shall therefore seek a solution of the form

ton if a =2p, in which case V =2a =4p and a and p
are constants [see (3)]. It is expected, both from the in-
verse scattering solution [1,2] and from noting that the
soliton has positive velocity while small amplitude linear
dispersive radiation must have negative group velocity,
that as t~~ up will approach an exact soliton. The
function u

&
is assumed to incorporate the dispersive radi-

ation and to have small amplitude compared with up. It
is difficult to precisely quantify this criterion, of course,
since no explicit solution for the dispersive radiation is
available. The validity of this small amplitude assump-
tion can be verified from numerical solutions of the
Korteweg —de Vries equation with the initial condition
(6); an example solution is shown in Fig. 1. Alternatively,
in general terms one can determine that the dispersive ra-
diation is small from the inverse scattering solution, since
from the general theory the amplitude of the dispersive
radiation goes to 0 as t~ ~ [2]. Note that u, also in-
corporates the small transient changes of shape necessary
for the evolution of the initial pulse into a soliton. Thus,
u& accommodates any transient deviation of the pulse
shape away from the hyperbolic secant form assumed in
(8).

Substituting the assumed form of solution (7) into the
Korteweg —de Vries equation (1), we obtain, on neglecting
terms of order u &,

u„+6(uoui)„+u, „„=—a'sech (8/p)+2ap (4—p8p' —p V)sech (8/p)tanh(8/p)

+12ap (ap 2)sech (8—/p)tanh(8/p) .

The error terms on the right-hand side of (11) arise since
the three-parameter family of solutions (8) is (of course)
too simplistic to capture all of the complicated pointwise
behavior of the KdV equation. By working with integrals
of u &, however, we expect many of these pointwise devia-
tions to cancel one another. For example, integrating
(11) from —oo to co, we obtain

Since dispersive radiation is quickly shed by the soli-
ton, we assume that ahead of and in the vicinity of the
soliton u, quickly decays to zero. (It is possible that
there will be some small error in this approximation just
after t =0, however. ) For this to be true it is necessary
that the soliton position be correct. This can most -easily

d I u, dx = —2(aP)' .
dt

In addition, from (8), we find that

f uodx =2(aP)' . (13)

1.2

0.8

0.6
Hence, the integrated form of the mass conservation
equation (4) shows that the mass lost by the "soliton" uo
is gained by the dispersive radiation u &, as expected. The
key problem is therefore to determine precisely how
much mass goes into the dispersive radiation, or
equivalently how much mass is lost by the "soliton" up.
It will be seen in what follows that including only the in-
tegrated effect of the dispersive radiation (i.e., the total
amount of mass shed) is sufficient to give a quite accurate
representation of the e8'ect of the dispersive radiation
upon the evolving pulse. In particular, if one is not in-
terested in the specific details of the radiation but only in
the evolving pulse (which is the most likely case), it is not
necessary to determine the dispersive radiation in a point-
wise sense.

0.2

-0.2 I I i I I I
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I
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FIT&. 1. Numerical solution of the KdV equation using the
initial condition Uo(x)= A sech (x/b) with A =1.25 and b =1,
showing the smallness of the dispersive radiation and how it is
quickly left behind by the soliton. The solution is plotted at
t =3; in this and in subsequent Agures all plotted quantities are
dimensionless.
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ui =uo„= —4ir sech (vx 4—ir t)tanh(vx 4i—r t), (14)

when a=2P =2s is the soliton amplitude. Adding a
small amount of this solution to up can be thought of
merely as representing a small shift in the soliton posi-
tion. If the soliton position has been accurately deter-
mined, however, then u I quickly decays to zero ahead of
and in the vicinity of the soliton. Further justification for
this is given in Sec. III.

Assuming this to be the case, we integrate (11) from g
to ao [or equivalently integrate the mass conservation law
(4) directly over this range, assuming that only uo con-
tributes] and obtain

be seen from Eq. (11), since a homogeneous solution of
(11) is easily found to be

ian) with respect to translations in x, and conservation of
energy is associated with the invariance with respect to
translations in t. In addition to these invariances, howev-
er, there are two additional invariances which give rise to
equations involving moments of two conserved densities.
The first additional invariance is Galilean invariance,
which gives rise to the equation

f xudx= f 3u dx . (20)

This equation is difficult to use to determine an expres-
sion for the velocity because it is clear that the mass of
the soliton, f u dx, is not constant.

The second additional invariance of the KdV equation
is scale invariance, and this gives rise to the equation

(aP)' =3a —Va —2a P (15) f xu dx= f [4u —3(u, ) ]dx .

As before, we work with an integral of the equation since
this allows the pointwise errors in the approximation (8)
to cancel one another. In addition, if we denote the mass
present in the linear dispersive radiation by

M= f u, dx, (16)

then from (12) we see that mass conservation gives

dt dt
(2aP)+ ™=0 . (17)

We have thus completed the consideration of mass con-
servation and have two equations for the unknowns a, P,
M, and V. We next consider momentum conservation.

From the momentum conservation equation (5) and the
expansion for u (7), we see that the momentum density is

2 —$ 2
2u = 2up+upul+TulI 2 (18)

Note, however, that since u, is assumed to be zero in the
vicinity of the soliton, no contribution comes from the
cross term uou, . The term u, /2 is second order in u„
but can produce a significant contribution to the momen-
tum, since the contribution from this term is not restrict-
ed to points near the soliton, it can become large if the re-
gion over which u I is nonzero becomes large. The
amount of momentum in the radiation contributed from
this term will be approximated below. If this term is
neglected, however, integrating the momentum conserva-
tion equation (5) from —oo to oo gives to first order

d
dt

(a'P) =0, (19)

upon using (8).
To complete the ordinary differential equation (ODE)

system describing the approximate solution of the KdV
equation (1), we need an expression for the velocity V.
Unfortunately, none of the standard conservation laws
for the KdV equation involves the velocity. It is well
known that each conservation law is associated with an
invariance of the KdV equation, and that the lowest con-
servation laws are associated with physical invariances
[1]. For example, conservation of momentum is associat-
ed with the invariance of the equation (or the Lagrang-

This equation can be used to determine an expression for
V, since the largest contribution comes from the vicinity
of the soliton; as explained above, any contributions to
this from u& are of second order. In addition, momen-
tum is very nearly constant [see (19)]. If we neglect these
second-order contributions, and substitute the leading-
order soliton (8) into (21), we obtain an expression for the
velocity

dg 16 12
dt 5 5p'

(22)

while the exact solution given by inverse scattering is

[( 1 +4+b 2)1/2 (2n 1 ) ]2
1

2b
(24)

(see [1]). Here n is the number of the soliton formed,
1~n ~X, where N is the total number of solitons gen-
erated. For given A and b, N is determined by

X= (largest integer) ~
—,
' [( I+4Ab )'~ + 1] . (25)

A comparison of the approximate result (23), the exact
inverse scattering result (24), and the result obtained by
using the % lowest conservation laws [3] for the ampli-
tude of the largest (first) soliton is shown in Fig. 2. Note

Note that for large times 2P ~a, so that V~2a, the
velocity of a soliton [see (3)].

The system describing the evolution of the solution of
the Korteweg —de Vries equation (1) with initial condition
(6) is then (15), (17), (19), and (22). This system gives a
solution for the pulse amplitude a (t) which has final am-
plitudes which are in good agreement with the final am-
plitudes obtained from the exact solution of the
Korteweg —de Vries equation, even after the initial ampli-
tude 3 or width b are increased past the point where two
solitons form out of the initial profile. (In this case, the
above solution describes the larger soliton. ) Here the
final steady state is independent of the expression used for
the velocity V, and is given by

2/3
2 ba= (23)

2
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3
A

FIG. 2. Comparison between the final steady soliton ampli-
tudes as given by the solution of the approximate conservation
equations: —-, result from [3]; ———,result from present
work (assuming constant momentum);, inverse scattering
solution (24) with n =1.

that for 0~ 3 &2 the result obtained from the lowest
conservation law (i.e., mass conservation) underestimates
the final amplitude, because the pulse sheds a consider-
able amount of dispersive radiation which carries away
negative (relative) mass. In contrast to previous work,
however, the present method also gives an approximation
for the time evolution for the pulse. A comparison be-
tween this approximate solution and the numerical solu-
tion is given in Fig. 3, and shows reasonable agreement.

The accuracy of the approximate solution can be im-
proved somewhat, however, by including the momentum
loss from the soliton. While this improvement is not
essential here, it will be shown to be so in Sec. IV when
the formation of a second soliton from the mass lost by
the first is considered. In many perturbed KdV prob-

u dx= —Vu (26)

after neglecting terms quadratic and higher in u and as-
suming that spatial derivatives in the shelf region are
small. Comparing (26) with (17), we see that we can set

dM = VQ
dt

(27)

Similarly, integrating the momentum conservation equa-
tion (5), we obtain

—'u dx= ——'Vu~
—L

(28)

lems, it has been shown that mass and momentum leak
away from the soliton through the formation of a
nonzero shelf behind it (i.e., a region where the solution is
relatively fiat; see [14]). This region can be seen forming
near x = —10 in Fig. 1. This effect can also be seen in the
solution of Eq. (11). Taking u, =u

&
( 0) and assuming

that a and p are slowly varying, Eq. (11) for u, can be in-
tegrated once. Upon choosing the constant of integration
so that u, —+0 as 0—+ ~, we find that u

&
approaches a

nonzero value as 0~ —~. Thus, if we seek a solution
for u as a perturbed soliton, we find that there is mass
and momentum loss far behind the soliton. (Note that
the loss in mass is first order, while the loss in momentum
is second order, however. ) It is this that gives rise to the
dispersive radiation.

The momentum associated with this leaking radiation
can be estimated as follows. We suppose that the mass
loss from the "soliton" is due to the solution approaching
a small nonzero value (which we denote by u ) in the
shelf, which we assume occurs near x = —L. The shelf
position is also assumed to follow at a fixed distance
behind the soliton, so that it moves with the soliton ve-
locity. Integrating the mass conservation equation (4)
from —L to ~, we obtain

1.5
which becomes, upon using (27),d, p

M'
(29)

1.45

1.4

1.35
0 0.5 1 5 2 25 3

FICx. 3. Comparison between the time evolution of the soli-
ton amplitude a as given by the solution of the approximate
conservation equations and that obtained from the numerical
solution of the KdV equation:, numerical solution of the
KdV equation; ———,using velocity {22) with momentum
equation (30); ——, using velocity (22) with constant momentum
(19). Here A =1.5 and b = 1.

This gives an approximate expression for the rate of
momentum loss by the soliton.

From the approximate expression for the velocity (22),
we see that it is possible for V to be zero. This will intro-
duce an artificial singularity into the above expression
(29) for the momentum loss. It is reasonable to use
another expression for the velocity V which does not
have a singularity, however, as long as it approaches the
correct value when the solution is close to a soliton. First
of all, the rate of momentum loss (29) is only intended to
be valid when the solution is close to a soliton, i.e., when
a=2p and V=2a. In addition, in the worst case a
different expression for V will produce errors only for a
finite time; since the rate of momentum loss is small, the
total integrated error in the momentum will also be small.
One obvious replacement for the velocity in the rate of
momentum loss (29) is V=2a. Alternatively, one can use
V=4(a p/4) . This latter expression has less variation
since a P is approximately constant. No significant
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quantitative difference between results obtained with
these two expressions [and with (22) when it is nonsingu-
lar] was observed, however, and so the simpler of the
two, V =2a, will be used in (29). Finally, then, this gives
the required expression for the momentum being shed
from the "soliton. " Including this momentum loss term
in the momentum equation (19), we therefore have

d 2 3M'
dt 8a

(30)

Technically speaking, when the momentum varies the
expression for the velocity V given by (22) is not correct.
If the effect of variable momentum is included, an addi-
tional term appears which is proportional to g, the posi-
tion of the soliton. Since the KdV equation is translation
invariant, this is not correct. The momentum loss is
therefore neglected in determining the velocity. In addi-
tion, since the momentum loss is small this is, in any
event, a small effect.

The system governing the evolution of the solution of
the Korteweg —de Vries equation including momentum
loss with initial condition (6) is then (15), (17), (22), and
(30). This system is solved numerically using a fourth-
order Runge-Kutta scheme and the results are compared
with those obtained from a numerical solution of the
Korteweg —de Vries equation using the pseudospectral
method of [15]. A comparison between the numerical
solution of the KdV equation and the above system both
with and without momentum loss is shown in Fig. 3.
From the figure it is seen that including momentum loss
gives a slight improvement in the accuracy of the approx-
imation.

As mentioned previously, the accuracy of the transient
behavior of the ODE system depends most sensitively
upon the expression used for the velocity V in the equa-
tion for the mass loss (15). The calculated expression (22)
gives reasonably good results, but by changing the con-
stants slightly they can be substantially improved.

The general form of the right-hand side of (22), as well
as other approximations for V (such as that obtained
from the moment of mass conservation equation), sug-

gests a velocity expression of the form

dg 4—2c
dt p2

(31)

The constants in this expression are chosen so that
V—+2a as tab ac (e is still arbitrary even with this con-
straint). Note, however, that the expression calculated
using the moment of the momentum, (22), gives c = —", . If
we assume that the momentum is constant, i.e. , (19) is
satisfied, then the steady-state solution of the ODE sys-
tem occurs when a =2a and P= I /a, where
a P=4Ir = A b. The constant momentum expression al-
lows us to eliminate P from (15), i.e. , P=4a /a . Then
using the above expression for the velocity (31), (15) be-
cornes

da c 3 4 a
dt 4~3 8g6

(32)

The steady state of this equation is clearly a =2~, and
linearizing about this solution with a =2~ +&, we obtain

dQ = —6a (c —3)&,
dt

(33)

so that the steady state is stable only if c )3. Also, the
rate of approach to the steady state strongly depends
upon the value of c appearing in the modified velocity ex-
pression (31). Evidently, the velocity depends somewhat
sensitively upon deviations from the exact soliton shape.

To determine a better value of c, the KdV equation and
the ODE system were both solved using A =I.25 and
b =1 and c was adjusted until the transient behavior of
the two solutions was close. This occurred for a value of
c of approximately —,', and this was used as an alternate
value in the numerical simulations. As described below,
this value gives much better results for other initial con-
ditions than the value c = —", .

Figure 4 shows a comparison between the final steady
soliton amplitude a obtained from the conservation equa-
tions (15), (17), (31) [with both c = —", , or equivalently (22),

8

7

4

2

Fig. 4. Comparison between the final steady
soliton amplitudes as given by the solution of
the approximate conservation equations: 0,
using velocity (22); +, using velocity (31) with
C=2j from the inverse scattering solu-

tion (24) with n =1.

0

A
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and c =
—,'], and (30), and the largest soliton amplitude ob-

tained from inverse scattering theory [(24) with n =1]
for A in the range 0 to 6 and b =1. For 0& A ~2, one
soliton forms, while for 2& A ~6, two solitons form. It
can be seen that the agreement between the approximate
equations and inverse scattering theory is good up to
A =6. Around A =6, the two solutions start to diverge,
which is not unexpected since to obtain the approximate
equations the assumption was made that the mass lost by
the soliton is small. As three solitons start to form after
A =6, this assumption clearly starts to break down. The
interesting point about Fig. 4 is that the amplitude of the
largest soliton is well predicted even when two solitons
are formed. The prediction of the evolution of the second
soliton is dealt with in Sec. IV.

Figure 5 shows a comparison between the time evolu-
tion of the amplitude a of the soliton as predicted by the
conservation equations (15), (17), and either (30) or (19),
and the results obtained from a numerical solution (pseu-
dospectral) of the Korteweg —de Vries equation for
A = 1.5 and b = 1. In both approximate solutions the ve-
locity (31) was used with c=—,'. It can be seen that the
two solutions are in quite good agreement, and that the
results obtained by including momentum loss are slightly
better than those with constant momentum. The
momentum loss becomes important when a second soli-
ton is produced as the inclusion of this term allows
momentum to Aow into the second soliton. Figures 6 and
7 show similar plots when the initial conditions are
A =1.0 and 2.5, both for b =1. In these figures only ap-
proximate solutions with momentum loss are shown.
Again, using c =—,'in (31) is seen to give much better re-
sults than using (22).

III. LINEARIZED INVERSE SCATTERING SOLUTION
FOR ONE SOLITON

While it is not possible to obtain a full transient solu-
tion using the inverse scattering transform, it is possible
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0.75
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FIG. 6. Comparison between the time evolution of the soli-
ton amplitude a as given by the solution of the approximate
conservation equations and that obtained from the numerical
solution of the KdV equation: ———,using velocity (31); —-,
using velocity (22) with c =~;,numerical solution of the

KdV equation. Here A =1.0 and b = 1.

into the KdV equation, where

u, =2@ sech (ax 41' t —ax—o):—2a sech g (35)

is an exact soliton solution and ~q~ ((1. This gives the
linearized equation

(36)

Equation (36) is still relatively complicated, but its ex-

to obtain some information from the linearized version of
this solution when the amount of dispersive radiation is
small. In particular, this linearized solution provides ad-
ditional justification for the approximations used in the
preceding section. The idea is to linearize the KdV equa-
tion (1) about a single soliton by substituting

(34)
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FICx. 5. Comparison between the time evolution of the soli-
ton amplitude a as given by the solution of the approximate
conservation equations and that obtained from the numerical
solution of the KdV equation:, numerical solution of the
KdV equation; ———using velocity (31) with c =—,'and with

momentum equation (30); --, using velocity (31) with c =
z

and

with constant momentum (19). Here A = 1.5 and b = 1.

FIG. 7. Comparison between the time evolution of the soli-
ton amplitude a as given by the solution of the approximate
conservation equations and that obtained from the numerical
solution of the KdV equation: ———,using velocity (31); —-,
using velocity (22) with c =~;,numerical solution of the

KdV equation. Here A =2.5 and b = 1.
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act solution can be written explicitly [16] as

g=f „„+4fw +8m f sech gtanhg

—8~ f, sech g
—4~f tanhg+C sech gtanhg,

where f is any solution of the linear KdV equation

(37)

shift of the soliton position and another which is disper-
sive radiation that does not stay localized near the soli-
ton. This justifies the division which was used in Sec. II.
The result follows from integrating (37) to obtain

Bf 8'f
8t

(38) and (46)

[f „+4m f 4v f s—ech g
—4' tanhg],8

(39)

or as

and C is an arbitrary constant. This constant C can be
interpreted merely as a small change in the position xo in
the single soliton solution (35); since the initial condition
and the soliton are both even about their center positions,
however, we may take both xo =0 and C =0.

Alternatively, the linearized solution (37) can be writ-
ten as

where x, is the position of the soliton maximum, (=0.
Next, all that is necessary is to determine f,„at the un-

perturbed soliton position x„which means solving the
time-dependent problem for f, Eq. (38). As mentioned
above, however, it is not possible to obtain a simple solu-
tion for f (x, O). One can approximate this solution, how-
ever, by taking

(3
u, rl= (u, f„)— (u, f) .

f (x,0)=a tanhvx (47)

These forms of the solution show that

f g dx =4~ f I+ „and t u, g dx =0 (4l)

if f„—+0 as x~+~. Thus, for bounded f's, this linear-
ized solution can only be used to consider soliton pertur-
bations which have no net change in momentum. This is
equivalent to saying that the linearized solution g cannot
be used to alter the amplitude of the soliton u, .

This allows us to use the linearized solution to deter-
mine the approximate final soliton state from the initial
condition. The initial condition 3 sech (xlb) is split
into two parts, a soliton part and a part which is the
linearized perturbation,

2 sech (x lb) =2~ sech lrx+g . (42)

4~ f ~

=2Ab —4~=6m .

Since f is odd, this means that

(44)

4xf( + oo, t ) = 4I~ f.( —~, t ) = A b 2a =—,' b, m . — ——

The linearized perturbation g eventually disperses, leav-
ing only the soliton. Since f u, gdx =0, however, if we

multiply Eq. (42) by u, and integrate, we obtain (letting
x =b g in the integral)

Ab f sech (mba')sech /de= —',vb, (43)

which can be regarded as an equation for ~ given A and
b, which determines the final soliton state from a given
initial condition.

While (37) or (39) cannot be solved explicitly for
f (x, O), it can be seen that f (x, O) is an odd function in x,
and that

and choosing the constant a so that the amount of mass
represented by this f (x, O) is correct, as given by Eq. (44).
This condition gives a = b, m /8', since a =f(+ ~,0).

Whichever initial condition is used, the solution of Eq.
(38) can be written as

f(x, t)=a+ f Ai(g)[f((3t)'~ (g —g), 0)—a]dg, (48)

where Ai(z) is the Airy function and x=(3t)'~ g. For
large t the term inside the square brackets asymptotes to
0 for g) g and —2a for g(g, since f (x, t)~+a as
t ~+~. Thus, for large I;,

f(x, t)-a —2a f Ai(g)dg=a —2a f „,Ai(g)dg.
71 x /(3t)

(49)

As expected, the linearized solution quickly loses almost
all information from the initial condition as it disperses,
becoming a similarity solution. The only information re-
tained is the total amount of mass in the initial condition.

We need the behavior of f and f in the vicinity of the
soliton position x„where x, =4v . Since the soliton
moves much faster than the dispersive radiation spreads
(t versus t '~ ), very quickly we have f—a in the vicinity
of the soliton, and f„and f„,—+0. We therefore see from
Eq. (46) that, apart from a short initial transient, the
mass in the linearized solution q divides itself up into two
equal halves: one half in the part of the solution from
—~ to the unperturbed soliton position x, and the other
half in the part of the solution from the soliton position
x, to+~.

Still more can be said, however, if we use f +a in the-
vicinity of the soliton. This immediately gives

(45)

This linearized solution is now seen to separate the per-
turbation into two parts, one of which is essentially a

g —8a~ sech gtanhg=xAm sech gtanhg,

so that

(50)
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u -2a sech /+i''b, m sech gtanhg

=2m sech Am + ~ ~ ~

4v
(51)

IV. TWO SOLITONS

In Sec. II, the evolution of the largest soliton created
from the initial condition (6) was found from approxi-
mate equations derived from the mass and momentum
conservation equations for the Korteweg —de Vries equa-
tion. It was found that Eqs. (15), (17), (31) with c = —', ,
and (30) described the soliton of largest amplitude quite
well, even when two solitons formed from the initial con-
dition. Equations describing the evolution of the second
soliton formed from the initial condition (6) when
2& Ab ~6 will now be found. For Ab &6, three or
more solitons are formed. However, the results derived
from the conservation equations lose accuracy as Ab in-
creases above 6, and so the formation of three or more
solitons will not be dealt with in the present work.

As found in Sec. II, Eqs. (15), (17), (31), and (30) de-
scribe the evolution of the largest soliton quite well.
Hence, the amplitude a, and width p, of this "soliton"
are given by

dt (2aiP, )+™=0,
d

( 2p
3M'

dt ' '
8a&

(52)

(a,p, )=3ai —V, a, —2a, p, (54)

7 3
V =—ai 2 1 (55)

Next, equations for the evolution of the second, smaller
"soliton" need to be found.

The second "soliton" could be assumed to have the
profile (8), as was done for the first "soliton. " This was
not found to give physically valid solutions, however, as
either az or pz were found to go negative. This is because
the second "soliton" is being built up from zero ampli-
tude at t =0. The profile (8) then gives too much free-
dom and either the amplitude or width can become non-

From this we see that the mass change from the unper-
turbed soliton position x, to + ~ is really the result of a
small shift in the position of the soliton. This means, of
course, that there is an equal and opposite mass change
just to the left of x„since the total change of mass in the
vicinity of a soliton associated with a shift in position is
zero. Thus, the total amount of mass which goes into the
dispersive radiation is really equal to the total amount of
mass in the linearized solution, hm, as expected, and not
one-half of this value.

In addition, if the shift in the soliton position is taken
into account, then the linearized perturbation in the vi-
cinity of the soliton will vanish completely for sufticiently
large time. This is precisely the assumption which was
made in Sec. II.

physical. This is related to the question of what value to
give P2 at t =0. When a2 is zero, P2 can have any value.
If the initial amplitude was nonzero, the profile (8) could
be assumed. To overcome these problems, the second
"soliton" will be assumed to have the soliton profile

1/2
ap

a sech2 2
[x —$2(t) J, (56)

where

$2(t) =2a2 (57)

for all time. The second "soliton" is different from the
first "soliton" in that it is formed from a zero initial con-
dition, so that a2=0 at t =0.

The point at which two solitons form presents itself in
the solution of Eqs. (52) to (55) for the larger "soliton" by
the change of sign of M. As the point Ab =2 is crossed,
M changes from a negative to a positive quantity. Hence
for Ab &2, the lead "soliton" leaves behind a positive
amount of mass, which can form a soliton, as it is known
from inverse scattering theory that any positive mass will
result in the formation of a soliton. As a first approxima-
tion, it will be assumed that all of this positive mass goes
into forming the second soliton. Hence from (4) and (56),
mass conservation for the second "soliton" gives

(58)

upon integrating the mass density u over the second "sol-
iton" (which can be taken to be from —oo to oo). This
equation is then the equation governing the evolution of
the second soliton. As there is only one free parameter in
(56), only one equation is needed for the second "soliton"
and momentum conservation does not need to be con-
sidered.

Figure 8 shows a comparison between the final steady
amplitude of the second soliton as found from a numeri-
cal solution of the approximate equations (52) to (55) and
(58), and the amplitude of the second soliton as predicted
by inverse scattering theory [(24) with n =2] for
2 ( A ~6 (the range for which two solitons are formed)
and b =1. For comparison, the result obtained using the
velocity expression (22) for the first soliton is also includ-
ed. It can be seen that the comparison is very good con-
sidering the approximations which have been made.
Similar to the result for the lead soliton, the agreement
gets worse as A =6 is approached, as then the mass being
left behind by the lead soliton is not small, and the ap-
proximations of the present work start to break down.
For A & 6, three solitons are formed.

It was assumed above that all of the mass being left
behind by the lead "soliton" was used to generate the
second soliton. Also, in deriving (58), it was assumed
that the second soliton does not produce dispersive radia-
tion, where in fact it will. To account for this radiation,
however, a second parameter is needed in the assumed
profile for the second "soliton" and then momentum con-
servation must be used to give a second equation for this
parameter, as was done for the lead "soliton. "The results
shown in Fig. 8 indicate that this radiation is not
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1.5 FIG. 8. Comparison between the final

steady amplitude of the second soliton as given

by the solution of the approximate conserva-
tion equations: 0, using velocity (22); +, using
velocity (55);,from the inverse scattering
solution (24) with n =2.

0.5

o
2 2.5 3.5

A

4.5 5.5 6.5

significant until near the point at which a third soliton is
formed (for A )6). In analogy with what happens at
A =2 for the lead "soliton, " it is expected that the mass
left behind the second "soliton" will become positive at
2 =6, so that the third soliton can form.

V. SUMMARY AND CONCLUSIONS

We have examined the time-dependent behavior of
solutions of the Korteweg —de Vries equation. While in
principle the exact inverse scattering solution of the KdV
equation can be used to determine such transient
behavior, in practice it is dificult to do so. As an alterna-
tive, here we have used the conservation laws associated
with the KdV equation to determine a system of ordinary
differential equations which approximately describe the
time evolution of solutions. We have considered initial
conditions which form one or two solitons, and have ob-
tained good agreement between the solutions of the ap-
proximate equations and the full numerical solution of
the KdV equation.

Key to the analysis was the use of the conservation
laws to determine how the mass and momentum from the
initial condition split into two parts, one part associated
with the evolving pulse which eventually forms the soli-
ton and the other associated with the dispersive radia-
tion. In addition, an approximate expression for the ve-
locity of the pulse is needed, and the transient behavior is
found to depend somewhat sensitively on the expression
used for this velocity.

In addition, we have presented a linearized inverse
scattering analysis of the transient evolution. This linear-
ized analysis is consistent with, and provides additional
justification for, the analysis done using the conservation
laws.

ACKNOWLEDGMENTS

This work has been supported in part by grants from
NATO (Grant No. 920557), the Air Force Office of
Scientific Research (Grant No. 93-1-0084), and the Na-
tional Science Foundation (Grant No. DMS 92-08415).

[1] G. B. Whitham, Linear and Nonlinear Waves (Wiley, New
York, 1974).

[2] A. C. Newell, Solitons in Mathematics and Physics (Society
for Industrial and Applied Mathematics, Philadelphia,
1985).

[3] Yu. A. Berezin and V. I. Karpman, Zh. Eksp. Teor. Fiz.
51, 1557 (1967) [Sov. Phys. JETP 24, 1049 (1967)].

[4] N. F. Smyth and A. L. Worthy, Wave Motion (to be pub-
lished).

[5] J. L. Bona, P. E. Souganidis, and W. A. Strauss, Proc. R.
Soc. London Ser. A 411, 395 (1987).

[6] Noel F. Smyth, Ph. D. thesis, California Institute of Tech-
nology, 1984.

[7] D. Anderson, Phys. Rev. A 27, 3135 (1983).
[8] T. Ueda and W. L. Kath, Phys. Rev. A 42, 563 (1990).

[9] D. J. Muraki and W. L. Kath, Physica D 48, 53 (1991).
[10]D. J. Kaup, B. A. Malomed, and R. S. Tasgal, Phys. Rev.

E 48, 3049 (1993).
[11]P. L. Chu, Ci. D. Peng, and B. A. Malomed, Opt. Lett. 18,

328 (1993).
[12] B. A. Malomed and N. F. Smyth, Phys. Rev. E 50, 1535

(1994).
[13]Q. Wang, P. K. A. Wai, C.-J. Chen, and C. R. Menyuk, J.

Opt. Soc. Am. B 10, 2030 (1993).
[14] C. J. Knickerbocker and A. C. Newell, J. Fluid Mech. 98,

803 (1980).
[15]B. Fornberg and Cx. B. Whitham, Philos. Trans. R. Soc.

London Ser. A 289, 373 (1978).
[16]J. Cx. B. Hyatt-Smith, J. Fluid Mech. 197, 503 (1988).


