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The equation of state (pressure) of a hard-sphere fcc crystal is computed by means of a classical
density-functional theory based on the modified weighted-density approximation and a simple Gaussian
approximation for the density distribution. Predictions for the total pressure compare favorably with
computer simulation data for packing fractions throughout the range 0.46 <7 <0.68 (i.e., from just
below to well above the fluid-solid transition). The ideal-gas and excess contributions are computed indi-
vidually and found to exhibit physically interesting variations with packing fraction. In particular,
whereas the ideal-gas pressure is always positive and generally makes the largest contribution, the excess
pressure is relatively small and, for 7 <0.63, negative in sign, implying an effective attraction between
neighboring hard spheres. Preliminary analysis of available simulation data for mean-square atomic dis-
placements lends support to these predictions. Implications for a recently proposed heuristic model of

hard-sphere crystal pressures are also discussed.

PACS number(s): 64.10.+h, 64.30.+t, 61.66.—f, 05.70.Ce

I. INTRODUCTION

Ever since Ramakrishnan and YussoufP’s [1] pioneering
theory of the liquid-solid (freezing) transition, the classi-
cal density-functional (DF) theory of nonuniform fluids
[2—-4] has been in a state of rapid evolution. Over the
past decade, the theory has been recast in a variety of
forms [5—-18] and applied to an expanding range of prob-
lems in equilibrium statistical mechanics [19]. Applica-
tions have included both interfacial systems (e.g., wall-
fluid and solid-fluid interfaces), in which spatial varia-
tions in the density are generated by external boundary
conditions, and bulk systems, which undergo freezing
and other phase transitions, in which nonuniformities
may arise intrinsically from internal interactions.

In DF studies of crystallization, the bulk crystal is
treated as a highly nonuniform system whose density
varies on the scale of the lattice constant. To locate the
phase transition, the structural and thermodynamic prop-
erties of the crystal are usually required only over a nar-
row range of relatively low metastable and stable densi-
ties near liquid-solid coexistence. Beyond the initial
focus on freezing transitions, several recent studies have
been devoted purely to the stable high-density solid phase
alone. Properties examined include the solid density dis-
tribution [11,20,21], elastic moduli [22-29], crystal de-
fects [8,30,31], and phonon dispersion [29,32,33].

One basic solid-state property that has not yet been ful-
ly examined, but for which DF theory is very well adapt-
ed, is the high-density equation of state. The theory is
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especially suited to studying the distribution of pressure
between ideal-gas and excess contributions. In previous
work [13], we proposed a “modified weighted-density ap-
proximation” (MWDA) and applied it to freezing of the
hard-sphere fluid. Our primary interest in that work was
in determining freezing parameters and pressures near
the transition. The main objective of the present paper is
now to extend DF theory, based on the MWDA, to the
equation of state of a hard-sphere crystal, at densities
well within the stable solid phase, and in the process to
examine the relative magnitudes of the ideal-gas and ex-
cess contributions to the pressure. An interesting result
is that the excess pressure is relatively small in magni-
tude, and negative in sign, over a considerable range of
densities.

In the next section we begin by briefly reviewing the
formulation of the MWDA and its application to the
equation of state of a crystal. Section III comprises our
results for the pressure of a hard-sphere fcc crystal, in-
cluding the individual ideal-gas and excess contributions,
and a comparison with available simulation data. In Sec.
IV we discuss the physical meaning of negative excess
pressure in a crystal, briefly compare our DF approach
with free-volume theory for the hard-sphere equation of
state, and consider implications of our results for the
physical interpretation of a model recently proposed by
Rosenfeld [34]. Finally, in Sec. V we close with a sum-
mary and conclusions.

II. DENSITY-FUNCTIONAL THEORY

The density-functional approach to nonuniform fluids
is based on a fundamental variational principle [4], ac-
cording to which the total Helmholtz free energy func-
tional F[p] is minimized by the equilibrium (spatially
varying) one-particle density p(r), at constant average
density. It is standard practice to make the separation
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F[p]:Fld[p]+Fex[p] ’ 1

where the ideal-gas contribution Fi4[p] is the free energy
of an ideal (noninteracting) nonuniform fluid and the
remaining excess contribution F,[p] is due entirely to in-
teractions. This separation is usually a matter of con-
venience, motivated first by the amenability of the excess
free energy to rather well-defined approximations, and
second by knowledge of the exact relation for the ideal-
gas free energy as a functional of the density,

BFulp]= [ drp(r){In[p(r)A*]—1} , @)

where the volume integral extends over all space, A is the
thermal de Broglie wavelength, and B=1/kzT. It is im-
portant to note, however, that the two contributions may,
at least in principle, be individually measured experimen-
tally or computed by simulation. In the next section we
present evidence suggesting possibly interesting physical
significance to this separation.

Guided by its immediate precursor—the weighted-
density approximation (WDA) of Curtin and Ashcroft
[10]—the MWDA is founded on the basic premise that
thermodynamic properties of a nonuniform system (e.g.,
a solid) may be mapped onto those of an effective uniform

fluid. The excess free energy per particle,
fex=F[pl/N,is thus approximated by
FMWDA[ 5]
fexz_e‘x“}‘\,“L:fo(ﬁ) , 3)

where f, denotes the uniform-fluid counterpart of f., N
is the number of particles, and g is a weighted density,
defined as a weighted average of the physical density p(r)
with respect to a weight function w, according to

ﬁ:jl\?fdrp(r)fdr’p(r’>w<r—r’;ﬁ) - @

Specification of the weight function w by normalization
and by the requirement that the approximate functional
FMWDA[5] yield the exact two-particle direct correlation
function ¢{?’(|r—r'|;p) in the uniform limit [p(r)—p]
completes the statement of the MWDA. (For further de-
tails, the reader is referred to Ref. [13].)

In our earlier application to freezing of the hard-sphere
fluid [13], the predicted freezing parameters—coexisting
fluid and solid densities, latent heat, and Lindemann
ratio—and solid-phase free energies and pressures were
all found to agree well with simulation, generally to
within a few percent. In the meantime, several authors
[35-37] have attempted to directly apply the MWDA
and other “nonperturbative” approximations [14,15] to
systems interacting via softer pair potentials [e.g., the
Lennard-Jones potential and various inverse-power po-
tentials: ¢(r)~ (o /r)", where n tunes the softness of the
potential]. They have come to the conclusion that for
such systems these approximations actually are consider-
ably less successful, in some cases even failing to predict a
freezing transition.

The source of this inconsistency is likely to be found in
the treatment of higher-order correlations. Indeed, by
extending the MWDA to fully incorporate third-order

correlations, together with approximate higher-order
correlations, Likos and Ashcroft have recently obtained
accurate freezing parameters for both the hard-sphere
system [17] (n = o0 ) and the one-component plasma [18]
(n=1), the hardest and the softest, respectively, of the
inverse-power potentials. We caution, therefore, that ex-
tension of the present application to other potentials may
require implementation of a more accurate version of DF
theory, such as the extended MWDA [17,18].

In freezing studies, the solid is usually assumed to be a
perfect crystal (i.e., no vacancies or interstitials), al-
though in a few studies [8,31] a mean vacancy concentra-
tion has been allowed by treating the number of atoms
per unit cell as a free parameter. Furthermore, on the
basis of simulation evidence for harmonic atomic motions
[38,39], the crystal density distribution is often
parametrized in real space as a sum of normalized Gauss-
ians centered on the sites of an assumed Bravais lattice

[6,40], according to
3/2
p(l')E % ze—a|r—R|2 , 5)
R

where R denotes the position vector of a lattice site, and
a is the Gaussian width parameter, which is directly re-
lated to the Debye-Waller factor commonly measured in
solids. For comparison with this simple Gaussian ap-
proximation, several authors have experimented with
more realistic (and complicated) parametrizations. For
example, Laird, McCoy, and Haymet [20] have employed
a Fourier component representation of p(r), Colot, Baus,
and Xu [41] and Curtin and Runge [42] have examined
anisotropic variants of Eq. (5), and Popovi¢ and Jarié¢
[43] have generalized Eq. (5) to an arbitrary Bravais lat-
tice with a symmetric Gaussian width matrix. In general,
the freezing parameters of the hard-sphere fluid are found
to be rather insensitive to the choice of parametrization.
Simulation studies by Young and Alder [38] and
Ohnesorge, Lowen, and Wagner [21] have demonstrated
the form of the hard-sphere crystal density distribution to
be close to Gaussian, especially near close packing. At
lower densities near melting, however, the tails of the dis-
tribution do exhibit significant anisotropic deviations of
roughly 10% from the Gaussian form [21].

Given a density parametrization, the weighted density
is computed by iteratively solving the implicit relation

e bl bl p LAY
p=p— 2L pip), ©
where p is the average solid density and
O(p,a,p)=1 3 p&lp,a)cP(G,p) 7
G#0

is the contribution that clearly depends on the crystal
structure of the solid (i.e., the lattice symmetry and the
distribution of the one-particle density about the lattice
sites). In Eq. (7), pg(p,a)=pexp(—G?/4a) is p times
the Fourier component at reciprocal-lattice vector (RLV)
G of the Gaussian single-site density, and c¢{?’ (G, /) is the
Fourier component at RLV G of the two-particle direct
correlation function of the uniform fluid of effective den-
sity p. If the Gaussians are assumed to be
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nonoverlapping—a valid assumption for the hard-sphere
system at densities near and above the freezing
transition—then the ideal-gas free energy per particle,
fia=F,q/N, can be well approximated by

Bfia(a)=3In(a)+const . (8)

Taken together, Egs. (3), (6), (7), and (8) constitute a
well-defined approximation for the functional F[p]
which, when minimized with respect to the single varia-
tional parameter a, at fixed average density, yields the
Helmholtz free energy of the crystal.

At fixed temperature, the total pressure P of the
crystal—our main concern in this paper —can be derived
from the total free energy per particle, f=f4+ fex, ac-
cording to

BP _p 0 —3p %a
from which two distinct contributions to the total pres-
sure can be identified. The first, the “ideal-gas pressure”
P, is given by

+Bpfx(p) s 9)

P.
_—__B id =_3_£_aﬁ , (10)
p 2a dp
and the second, the “excess pressure” P, by
BPCX ’ AN
——=Bpf(p)=Bpf (PP (p) . (11

Note that both contributions depend on the structure of
the solid through the Gaussian width parameter a and
the lattice symmetry.

III. APPLICATION TO A HARD-SPHERE CRYSTAL

For several reasons, many of the early applications of
DF theory focused on systems interacting via the hard-
sphere pair potential. Since structural properties of dense
fluids are known to be governed largely by short-range
repulsive interactions [44,45], hard-sphere systems are of
fundamental importance as they permit effects of the
most singular possible repulsions to be studied in isola-
tion from competing attractive interactions. Moreover,
the hard-sphere potential is especially relevant to dense
solids where short-range repulsive interactions predom-
inate. From a practical perspective, structural and ther-
modynamic properties of the uniform hard-sphere fluid,
which are required as input to the theory, are well under-
stood and readily available in convenient analytic form.
Finally, extensive computer simulation data for hard-
sphere systems [39] permit systematic testing of theoreti-
cal predictions.

Here the requisite uniform-state functions, namely, the
excess free energy per particle f, and the direct correla-
tion function c{?’ [see Egs. (6) and (7)], are obtained
directly from the analytic solution of the Percus-Yevick
integral equation for hard spheres [46,47]. We have also
explored the use of the more accurate Verlet-Weis [48]
functions, and in Sec. IV we discuss the sensitivity of the
results to the choice of input functions.

By implementing the MWDA, adopting the simple

Gaussian approximation for the density distribution, and
numerically evaluating the derivatives in Eq. (9), we have
computed the total pressure SP /p of a hard-sphere crys-
tal with fcc lattice symmetry, as well as the individual
ideal-gas and excess contributions. The results are plot-
ted in Fig. 1, and tabulated in Table I, as a function of
crystal packing fraction 7=(7/6)pco?> from 7=0.46, the
lower limit of mechanical stability, to #=0.71 (cf. the
close-packed limit 17,=V27/6=~0.74). The total pres-
sure increases monotonically, rising sharply as 7 nears
close packing. More interesting is the behavior of the in-
dividual ideal-gas and excess contributions. The ideal-gas
pressure is evidently always positive and, except for a
narrow range at the lowest stable packing fractions
(0.46 <1 <0.51), a monotonically increasing function of
7, which simply reflects the monotonic increase of a with
n [see Eq. (10)]. Furthermore, P;; clearly makes the
dominant contribution to P except at the highest packing
fractions. In contrast, the excess pressure is negative and
comparatively small in magnitude at lower packing frac-
tions in the range 0.46 <7 <0.63. At 7=0.63, however,
P, changes sign and thereafter increases rapidly as the
close-packed limit is approached.

Figure 1 includes, for comparison, the simulation data
of Hoover and co-workers [49] for the total pressure (see
Table II), which are seen to be in generally good agree-
ment with theory, except above 7=0.68 where the
theory increasingly overestimates the pressure. Also in-
cluded are limited data for the individual ideal-gas and
excess pressures, obtained by analyzing the simulation
data of Young and Alder [38] for mean-square atomic
displacements (r2). As shown in Table III, theory and
simulation are in generally fair agreement for {72) over a
range of packing fractions, although the theory con-
sistently overestimates atomic localization. Since the
solid density appears to be reasonably well described by
the Gaussian approximation, in which (r2)=(3/2a),
Young and Alder’s data for {?) may easily be converted
to equivalent Gaussian widths a. Then, by fitting a sim-

L 1| ‘ I J L1l

!

FIG. 1. Equation of state BP /p vs average packing fraction 7
for a hard-sphere fcc crystal. Solid, dotted, and dashed curves
are the total, ideal-gas, and excess contributions, respectively,
predicted by DF theory (MWDA). Circles, triangles, and
squares represent (in the same order) corresponding simulation
data [38,49] (see text).
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TABLE 1. Total, ideal-gas, and excess contributions to the equation of state BP /p for a hard-sphere
fce crystal vs average packing fraction 7, as predicted by DF theory (MWDA), corresponding to Fig. 1.
Also included are various localization parameters, a, L, and s (see text for definitions).

7 BP/p BPy/p BP. /p ao? L s
0.46 7.21 13.7 —6.48 40.33 0.165 1.12
0.47 7.26 11.0 —3.77 47.95 0.152 1.08
0.48 7.41 10.1 —2.70 55.57 0.142 1.06
0.49 7.62 9.70 —2.08 63.65 0.134 1.04
0.50 7.88 9.57 —1.69 72.47 0.126 1.03
0.51 8.20 9.58 —1.38 82.23 0.119 1.02
0.52 8.56 9.75 —1.19 93.20 0.113 1.01
0.53 8.97 10.0 —1.04 105.6 0.107 1.01
0.54 9.44 10.3 —0.86 119.9 0.101 1.01
0.55 9.97 10.7 —0.74 136.3 0.095 1.01
0.56 10.6 1.2 —0.64 155.5 0.089 1.01
0.57 1.2 11.8 —0.54 178.1 0.084 1.01
0.58 12.0 12.5 —0.47 204.9 0.079 1.01
0.59 12.9 13.3 —0.40 237.3 0.074 1.01
0.60 13.9 14.2 —0.33 276.8 0.069 1.01
0.61 15.1 15.4 —0.28 325.8 0.064 1.02
0.62 16.5 16.7 —0.19 387.5 0.059 1.02
0.63 18.1 18.1 0.06 466.2 0.054 1.03
0.64 20.2 19.5 0.68 568.0 0.049 1.03
0.65 22.9 21.2 1.78 700.7 0.044 1.04
0.66 26.6 23.2 3.36 877.7 0.040 1.06
0.67 31.6 26.1 5.49 1123 0.035 1.08
0.68 38.8 29.8 9.08 1480 0.031 1.11
0.69 50.3 33.6 16.7 2014 0.027 1.15
0.70 70.8 38.6 322 2840 0.023 1.21
0.71 114 50.0 63.9 4273 0.018 1.33

ple fifth-order polynomial to Ina vs 7, as illustrated in
Fig. 2, and computing the derivative d Ina/d7, we have
determined P,y from Eq. (10), and then P, as the
difference, P,, =P —P;4. The resulting data for P;; and
P, are seen to be in fair agreement with our predictions.
Although this simple test, using available simulation

data, appears to support the predicted distribution be-
tween ideal-gas and excess pressures, a more conclusive
test will require more detailed information about the
one-particle density, particularly its second moment. In
passing, we note that a similar procedure could, in princi-
ple, also be applied to experimental Debye-Waller factors

TABLE II. Equation of state BP /p vs free-volume parameter (V' —V,)/V,, where V), is the close-
packed volume, as predicted by DF theory (MWDA) and compared with molecular dynamics (MD)
simulation data [49] and free-volume (FV) theory [Eq. (14)].

(V=V"u)/Vo n (BP /p)mwpa (BP/p)mp (BP /p)pv
0.60 0.4628 7.21 9.315 6.896
0.5385 0.4813 7.43 9.253 7.476
0.50 0.4937 7.71 9.304 7.910
0.4286 0.5183 8.50 10.088 8.921
0.3793 0.5368 9.29 10.870 9.838
0.35 0.5485 9.89 11.452 10.505
0.30 0.5696 11.2 12.801 11.942
0.25 0.5924 13.1 14.736 13.950
0.20 0.6171 16.0 17.683 16.960
0.15 0.6439 21.2 22.640 21.969
0.10 0.6732 33.6 32.605 31.979
0.09 0.6793 38.3 35.932 35.314
0.08 0.6856 44.6 40.093 39.483
0.07 0.6920 53.5 45.445 44.842
0.06 0.6986 67.0 52.582 51.987
0.05 0.7052 88.8 62.577 61.989
0.04 0.7120 128 77.573 76.991




TABLE III. Mean-square atomic displacement {(r /c)?) for
several average packing fractions 7, as predicted by DF theory
(MWDA) and compared with available MD simulation data
[38].

(V_'Vo)/Vo n

103((r /0 mwpa  10°((r/0)*)mp

0.42 0.5215 15.80 26.01+0.6
0.3488 0.5506 10.92 15.6+0.3
0.25 0.5924 6.10 7.81+0.11
0.20 0.6171 4.08 4.89+0.12
0.15 0.6439 2.44 2.68+0.03

for dense crystals. In cases where the Gaussian approxi-
mation is not valid, however, more extensive knowledge
of the one-particle density distribution may be required
to compute F;y by numerical integration via Eq. (2), and
then Py, as its density derivative.

The physical significance of negative excess pressure is
discussed in the following section. Some insight into its
origin in the theory, however, is gained by considering
two localization parameters, L and s, derived from the
Gaussian width parameter a, and included in Table I.
The first is simply a generalization of the usual Lin-
demann ratio, defined as the ratio of the rms displace-
ment (r2)!/2 of an atom away from its equilibrium lat-
tice site in the crystal to the mean distance d between the
centers of nearest neighbors. The second, which we call
the “separation ratio,” is defined as the ratio of (72)!/?
to the mean distance (d — o) separating nearest neighbors
from contact. (It can be shown, incidentally, that {r2)!/2
is just 1/V2 times the standard deviation of the distance
between nearest neighbors.) For a fcc lattice,

<r2>1/2 3 172 1/3
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FIG. 2. Polynomial fit (dotted curve) to equivalent Gaussian
width parameter a (see text) derived from simulation data [38]
(dots), together with DF theory predictions (solid curve), vs
average packing fraction 7.
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From Table I, the Gaussian width parameter a is seen to
increase monotonically with packing fraction, and corre-
spondingly the generalized Lindemann ratio L decreases
monotonically, simply reflecting the increasing localiza-
tion of the atoms about their equilibrium lattice sites as
the crystal is compressed. More illuminating is the sepa-
ration ratio s, which is relatively constant and close to
unity, except at either end of the 1 range where it is
slightly larger. This indicates that over a wide range of
packing fractions the rms displacement of an atom gen-
erally remains comparable to the mean distance separat-
ing it from contact with its neighbors. Furthermore, the
initial decrease in s with increasing n reflects a diminish-
ing overlap of neighboring density distributions, which in
turn implies a decreasing weighted density p [see Eq. (4)
and also Fig. 5, discussed below] and hence [from Eq.
(11)] a negative excess pressure. Similarly, the relatively
weak variation of s with 7 implies a correspondingly
weak variation of 5, which accounts [again from Eq. (11)]
for the small magnitude of P,,.

IV. DISCUSSION

As mentioned in Sec. III, we have tested the sensitivity
of our DF results to the accuracy of the fluid-state input
data by repeating some of the calculations using the more
accurate Verlet-Weis [48] input functions in place of the
Percus-Yevick functions. In general, with the Verlet-
Weis input the Gaussian width parameter is found to be
slightly lower—typically by no more than 10% for
7 <0.6, but more so for higher 7. Correspondingly, the
pressures are also slightly lower—making the compar-
ison with simulation slightly worse at lower 7, but better
at higher p—although the qualitative dependence on 7 is
unchanged.

In the equation of state results presented in Fig. 1 two
features stand out: (1) the small negative values of the ex-
cess contribution, and (2) the dominance of the ideal-gas
contribution at all but the highest packing fractions. The
magnitude of P, indicates weak interactions between
neighboring hard spheres, which is ensured by their
strong localization. The reason for such strong localiza-
tion is well understood on the basis of competing contri-
butions to the free energy, which for hard-sphere systems
is purely entropic [50]. In a crystal the loss in global (or
configurational) entropy resulting from localization of the
atoms to within the vicinity of lattice sites is more than
balanced by a corresponding gain in local entropy as each
sphere enjoys access to a larger (local) free volume. The
rapid increase in P, near close packing results from the
inevitable loss of free volume—and attendant cost in lo-
cal entropy—as neighboring hard spheres are squeezed
ever closer together. In passing, it is of interest to note
that three centuries ago, well before the development of
kinetic theory, Newton conceived of the pressure of a
fluid as a purely static property arising solely from short-
range repulsive interactions between neighboring atoms
[51]. Our DF theory results suggest that indeed —at
least in the solid phase—such interactions can make a
significant contribution to the pressure, albeit only very
near to the close-packed limit.
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The negative sign of P,, may be physically interpreted
as implying an effective hard-sphere attraction, due to in-
teractions only, that opposes ideal-gas repulsions. This is
manifested by the tendency, noted above, of the density
distribution to contract (become narrower)—beyond
what would be expected from the lattice contraction
alone—as the packing fraction increases. It is interesting
to compare this behavior of the classical hard-sphere
crystal with that of its quantum counterpart. In a similar
DF analysis of the ground-state quantum freezing transi-
tion [52], it was shown that for a Bose hard-sphere crys-
tal near freezing the weighted density actually increases
monotonically with packing fraction. This, in turn, im-
plies a strictly positive excess pressure in the quantum sys-
tem, differing qualitatively from the classical case. The
difference can be attributed to quantum zero-point ener-
gy, which tends to strongly oppose localization. This can
be seen from the linear dependence of the quantum
ideal-gas ground-state energy on a [52], as compared
with the much weaker logarithmic dependence of the
classical ideal-gas free energy [Eq. (8)].

The notion of effective attractive interactions in hard-
sphere systems is by no means original. For instance,
Shinomoto [53] has invoked this notion in deriving an
equation of state for the one-component hard-sphere
fluid. More recently, Biben and Hansen [54], by means of
an integral-equation analysis of additive binary hard-
sphere fluid mixtures, and Kaplan et al [55], in an experi-
mental study of binary colloidal mixtures, have addressed
the issue of phase separation in hard-sphere mixtures.
For highly asymmetric mixtures, with diameter ratios
smaller than roughly 0.2, phase separation was seen to
occur in both studies, and was attributed to an effective
attraction or “‘stickiness” between the larger spheres,
mediated by the smaller spheres. In light of the connec-
tion that we have identified between excess pressure and
effective attraction, we suggest that it may also be worth
examining excess contributions to the three pair pres-
sures (associated with each of the three pair interactions)
of binary hard-sphere mixtures for possible signals of
phase separation. It should be noted, however, that the
effective attraction has different physical origins in fluids
and crystals, being determined in fluids by global exclud-
ed volume, but in crystals by local excluded volume.

The DF approach to the equation of state may be com-
pared with the well-known free-volume theory [56]. The
latter begins by partitioning the system into N cells and
then makes two essential approximations: (1) single occu-
pancy of the cells and (2) independent (uncorrelated)
motions of the atoms within their cells. For a D-
dimensional hard-sphere fcc crystal the theory predicts
the equation of state

1/D71—1

p

1_
Mo

where 7, is the close-packed limit of 7. Despite its ana-
lytic simplicity, Eq. (14) is also remarkably accurate at
high density, as Fig. 3 and Table II illustrate. This is
perhaps not surprising though, considering that the two
underlying approximations of the theory are well
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FIG. 3. Equation of state BP/p vs average packing fraction
7, as predicted by DF theory (solid curve) and compared with
simulation data [49] (dots), free-volume theory [Eq. (14)]
(dashed curve), and Rosenfeld’s model [34] (dotted curve).

justified—and increasingly so with increasing n—by the
structural properties of the hard-sphere crystal predicted
by DF theory, namely, the extreme localization of the
atoms about their lattice sites and the resulting weak in-
teraction between neighbors. It is important to note,
however, that this structural information is not given by
free-volume theory itself, but must be assumed a priori.
Furthermore, the theory does not permit the separation
of pressure into ideal-gas and excess contributions, and
thus offers less physical insight than DF theory into the
properties of the crystal.

Finally, to further demonstrate the importance of the
pressure distribution, we compare our DF results with
the predictions of a heuristic model recently proposed by
Rosenfeld [34], which we first briefly summarize. The
model is based on the observation that the same
structure-dependent quantity © that appears in the for-
mulation of the MWDA [Egs. (6) and (7)] also appears in
the effective liquid approximation (ELA) of Baus and
Colot [7]. The ELA for the excess Helmholtz free energy
per particle of the solid phase may be expressed in the
form

fa=folp)—2L22) (15
Bp
where p is the density of an effective uniform liquid. The
effective density p was originally prescribed [7] by a phys-
ically motivated structural criterion, which subsequently
was shown by Colot, Baus, and Xu [41] to be empirically
equivalent to the variational criterion

9
9P
The derivation of Rosenfeld’s model is based on the key

assumption that an analogous variational criterion exists
for the MWDA of the form

8(p,a,p)=0 . (16)

2 6(p,a,=0, (17)
9p

the difference being the appearance of p rather than p.



Supposing this to be so, and proceeding to substitute Eq.
(6) into Eq. (17), then yields the following relation for 5
[Eq. (12b) in Ref. [34]]:
S
0 (P)
Taken together, Egs. (3) and (18) constitute an approxi-
mation for the solid-phase excess free energy per particle
fex- It should be noted, however, that this approxima-
tion is entirely independent of the crystal structure of the
solid. This is despite the fact that on physical grounds
the excess free energy of a solid must depend not only on
the average density, but also on structural details of the
density profile p(r), since otherwise there clearly would
exist no basis for distinguishing the relative stabilities of
different crystal structures.
Proceeding further, by assuming that

O(p,a,p)=6(p,a,p) , (19)

(18)

and thus implicitly assuming the equivalence of the
effective density p and the weighted density g, an assump-
tion which we examine in some detail below, © is elim-
inated between Egs. (6) and (15) to obtain another rela-
tion [Eq. (13) in Ref. [34]],

FalP)=Folp)+fo(P)Np—p), (20)

which, together with Eq. (18), constitutes a second
structure-independent approximation for f.,.

From Egs. (3), (11), (18), and (20), one obtains corre-
sponding structure-independent approximations for the
excess pressure. Since the model eliminates a priori any
structural information for the solid, there is, however, no
obvious choice for a structure-dependent ideal-gas pres-
sure. Instead, motivated by a formal resemblance be-
tween the equation of state of a solid and that of a uni-
form fluid, Rosenfeld adopts the following model equa-
tion of state:

%B=l+pf;x(p) , 1)

in which the ideal-gal contribution is that of a uniform
fluid.

For comparison with the predictions of the MWDA,
we show in Fig. 4 the variation with packing fraction of
the ideal-gas, excess, and total pressures as calculated
from Egs. (3), (18), and (21). Rosenfeld’s model is seen to
predict an excess pressure that is always positive and one
that dominates the trivially constant ideal-gas pressure, in
direct contrast to the predictions of the MWDA (see Fig.
1). Remarkably, however, by what appears to be a fortui-
tous cancellation of errors between the ideal-gas and ex-
cess pressures in Eq. (21), the fotal pressure is actually a
physically sensible function of packing fraction (see Fig.
3).

The apparently unphysical distribution of pressure be-
tween the ideal-gas and excess contributions in
Rosenfeld’s model can be traced to the assumption, im-
plicit in the derivation of the model, that the weighted
density g in the MWDA and the effective density g in the
ELA are similar quantities. Actually, p and p exhibit
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FIG. 4. Equation of state BP /p vs average packing fraction
7, as predicted by Rosenfeld’s model [34] (independent of crys-
tal structure). Curves have the same meaning as in Fig. 1.

qualitatively different variations with packing fraction.
As Fig. 5 illustrates, g is a decreasing function of 7 from
7=0.46 through the freezing transition, reaching a
minimum at 7=0.63 and thereafter increasing monotoni-
cally with 7. In contrast, p is everywhere a monotonical-
ly increasing function of % [41)], and is always consider-
ably larger than p.

The qualitatively different behaviors of p in the
MWDA and p in the ELA preclude the application of a
variational criterion to the MWDA [Eq. (17)], as well as
the subsequent equating of O(p,a,p) and O(p,a,p) [Eq.
(19)]. This is further demonstrated by a direct compar-
ison of the variation with % of 5 in the MWDA [Eq. (6)]
and p in Rosenfeld’s model [Eq. (18)], also illustrated in
Fig. 5. Evidently, p in Rosenfeld’s model is quite a
different quantity from p in the MWDA. This compar-
ison demonstrates that the wunderlying premise of
Rosenfeld’s model, namely, the essential equivalence of p
and p, as embodied in Egs. (17) and (19), is actually in-

0.5 Pl —

Effective Density

0.5 0.6 0.7

7

FIG. 5. Effective density vs average packing fraction 7 as
predicted by DF theory (with a fcc crystal lattice and a Gauss-
ian density profile) and by Rosenfeld’s model [34] (independent
of crystal structure). Solid curve: po® in the MWDA; dotted
curve: po? in the ELA [41]; dashed curve: ﬁa3 in Rosenfeld’s
model.
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consistent with results derived from it.

The inconsistency demonstrated above has implica-
tions for a major conclusion of Ref. [34] regarding a pos-
sible connection between three different versions of DF
theory. By demonstrating that the relations for f., ex-
pressed by Egs. (3), (18), and (20), as well as a third rela-
tion suggested to be associated with the generalized
effective liquid approximation (GELA) [15], may all be
obtained by a “‘trivial parabola-shift” transformation be-
tween f and f,,, Rosenfeld concludes that the three ver-
sions of DF theory based on the MWDA, the ELA, and
the GELA may all be similarly related in their applica-
tion to freezing of the hard-sphere system. Since, howev-
er, the excess free energy per particle of the hard-sphere
fluid £, is a monotonically increasing function of packing
fraction, it follows from Eq. (3) that the behavior of f, in
the MWDA differs from that in Rosenfeld’s model in a
manner analogous to the difference in p. Thus, whereas
the MWDA predicts f, to be a decreasing function of 7
for 7=<0.63, Rosenfeld’s model predicts it to be an in-
creasing function (see Fig. 1 of Ref. [34]). These qualita-
tive differences between Rosenfeld’s approximations for
the excess free energy per particle and the actual DF ap-
proximations from which they are derived leave incon-
clusive, in our judgment, the issue of possible connections
between different versions of DF theory.

V. SUMMARY AND CONCLUSIONS

In summary, we have used classical density-functional
theory, in a form based on the modified weighted-density
approximation and a Gaussian approximation for the
density distribution, to compute the equation of state
(pressure) of a hard-sphere fcc crystal at densities ranging
from near to well above the fluid-solid transition. The
predicted total pressure increases monotonically with
packing fraction, in good agreement with simulation data
at all but the highest packing fractions.

The individual ideal-gas and excess contributions ex-
hibit far more interesting behavior. In particular, the
ideal-gas pressure is always positive, generally dominant,
and increases monotonically with packing fraction above
freezing. Conversely, the excess pressure is relatively
small in magnitude and initially negative in sign, but be-
comes positive and increases monotonically with increas-
ing rapidity as the close-packed limit is approached. The
negative sign of the excess pressure would suggest an
effective attraction between hard spheres, entirely attri-
butable to interactions, that opposes ideal-gas repulsions
and is manifested in the rapid localization of the atoms
about their lattice sites as the crystal is compressed.

Although the distribution between ideal-gas and excess
pressures appears to be at least qualitatively supported by

preliminary analysis of available simulation data, the pos-
sibility remains that, given the small magnitude of the ex-
cess pressure, the sign is merely an artifact of theoretical
approximations, principally the MWDA for the excess
free energy and the Gaussian approximation for the den-
sity distribution. Indeed, there is already some evidence
that the extended MWDA of Likos and Ashcroft predicts
a weighted density that increases with average solid den-
sity in the range 1.0 Spo®<1.1, which would imply a
positive excess pressure over the same range (see Fig. 1
and Table IV of Ref. [18]). We suggest that the predicted
pressure distribution can be more conclusively tested via
simulation by a careful characterization of the density
distribution, particularly its second moment. Such data
would also serve to guide the design of more accurate
density parametrizations.

Compared with the simple free-volume theory, the DF
approach is quantitatively less accurate in predicting the
total pressure at high densities, but provides additional
structural information in the form of localization param-
eters. Furthermore, free-volume theory cannot resolve
the individual ideal-gas and excess pressures.

Finally, we have considered the implications of our
findings for the physical significance of a model recently
proposed by Rosenfeld. Compared with DF theory,
Rosenfeld’s model predicts a qualitatively different distri-
bution between ideal-gas and excess pressures, a
discrepancy that may be attributed to.two approxima-
tions of the model: (1) an apparently inappropriate mix-
ing of two independent versions of DF theory based on
different approximations, and (2) an oversimplified treat-
ment of the ideal-gas pressure. It follows that con-
clusions drawn from the model regarding a possible con-
nection between different versions of DF theory in appli-
cations to hard-sphere freezing are unsupported. This
does not negate, of course, the possibility that since non-
perturbative DF approximations, such as the MWDA,
ELA, and GELA, are all related by a common basic
assumption—namely, that thermodynamic and structur-
al functionals for the nonuniform solid may be mapped
onto the corresponding functions for the uniform fluid—
deeper connections between the various approximations
may yet be discovered. This is an interesting issue fully
deserving of further consideration.
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