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Periodic solitons in optics
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Periodic (higher-order) solitons are presumed to be a by-product of integrability and thus, in
optics, applicable only to one-dimensional beams, propagating in a Kerr (cubic) nonlinear medium.
Here, their existence is demonstrated numerically both in one and thoro transverse dimensions, prop-
agating in a medium that di8ers radically from a Kerr nonlinearity. Our motivation comes from
linear physics. This also provides physical understanding of higher-order solitons.

PACS number(s): 03.40.Kf, 42.50.Rh

Chiao, Garmire, and Townes showed the existence
of self-guided optical beams (fundamental spatial soli-
tons) [1]. These are stationary solutions of the wave
equation and are characterized, in general, by fields

E(x, y, z) = 4 (x, y) exp(iPz).

Here, the (real) transverse field distribution 4 and the
associated propagation constant P are related via the
expression 1V't2 + k n (@ )

—P2j 4' = 0, where V't2 de-
notes the transverse Laplacian, k = 27r/A, A is the free-
space wavelength, and n2(4 ) specifies the dependence
of the refractive index on intensity.

One monumental achievement of the inverse scattering
technique is to demonstrate the existence of second-order
solitons, i.e., self-guided beams whose intensity profile
changes periodically in the direction of propagation [2—4].
However, the inverse scattering technique applies only to
integrable systems which, in optics, is restricted to the
nonlinear Schrodinger equation or, equivalently, to one-
dirnensional beams propagating in a Kerr (cubic) nonlin-
earity.

In light of the above remarks, we demonstrate an inter-
esting fact. Optical periodic spatial solitons, of both one
and two transverse dimensions, propagate in the thresh-
old nonlinearity —a nonlinearity which divers radically
from the Kerr nonlinearity. There is some radiation, but
it is insignific:ant over a period. Indeed, after numeri-
cally beam propagating these periodic solitons for one
hundred periods we typically observe only about 1% ra-
diation loss. We emphasize that our aim in this paper
is to demonstrate the first numerical evidence of peri-
odic solitons in a non-Kerr material and not to provide
a general prescription for generating such solitons.

The motivation for this work comes from the need
to explain the salient physics underlying the recent ex-
perimental observations of periodic (higher-order) soli-
tons [5—7]. Our initial reasoning and physical intuition
comes directly from the perspective of linear physics.
Thus, quite apart from our new results, we also intro-
duce a conceptual approach, which provides physical un-
derstanding of periodic solitons. Indeed, prior to imple-
menting the linear perspective discussed here, we found
the subject of higher-order solitons mystifying. Why, for
example, does scaling up [3,4] a fundamental (N = 1)

soliton eventually result in it becoming a bound periodic
soliton7

To initiate our approach to periodic spatial solitons, we
first give a concise overview of the linear perspective to
nonlinear wave optics. The physics of self-guided beams
is particularly transparent from this perspective [1,8]:
stationary solutions of the wave equation are simply the
modes of the soliton-induced (linear) optical waveguide
that is characterized by n (~E~ ). The optical waveguide
is uniform in the direction of propagation z but it has a
graded refractive index profile n(x, y) transverse to the
direction of propagation [9].

More importantly, the linear perspective enables con-
ceptual leaps. For example, all self-guided optical beams
that have been investigated since the pioneering work of
Chiao et al. [1] have been stationary solutions. Neverthe-
less, if a self-guided beam is a mode of the linear optical
waveguide it induces, why can it not also be two orthogo-
nally polarized modes a and 6 of the induced multimoded
waveguide? This generalized self-guided beam has a field
of the form

E(x, y, z) = 4' (x, y) exp(iP z)e + 4q(x, y) exp(iPbz)eq,

(2)

where (Vt2 + k2n2(~E~ ) —P )@ = 0 and fV't2+
k n (~E~ ) —P&)4'~ ——0. The orthogonally polarized
modes (e . et*, ——0) ensure that the soliton intensity re-
mains uniform in the direction of propagation but the po-
larization state now changes as the soliton evolves. These
dynamic solitons do exist and, in fact, have an exact an-
alytical description for both the Kerr and threshold non-
linearities [10].

Armed with this linear perspective, we can now antic-
ipate the existence of periodic solitons. Again, suppose
that a beam propagating through a nonlinear medium is
composed of two modes of the multimoded linear waveg-
uide it induces, but now let the two modes be identically
polarized so that e e& ——1 in Eq. (2). Because of
modal beating, the intensity of the beam would change
sinusoidally in the direction of propagation. This elemen-
tary picture of periodic solitons provides physical insight.
For example, it suggests that higher-order solitons result
only if the induced waveguide is multimoded. This is
consistent with the fact that periodic solitons occur only

1063-651X/95/51(6}/6297(4)/$06. 00 51 6297 1995 The American Physical Society



BRIEF REPORTS

vrhen the fundamental (K =— 1) 1'

fi- . t].
so iton has been suf-

cient].y scaled u "3 4~.p,"3,4&~. It ls also consistent with the

the beating of the IIlrst two even Inodes.
We Ilow glvc aI1 cxamp]. c of this ],

prc .lcting periodic spatial solitons in non-Kerr material
wo tI aIlsvcrsc dimension I d h

)

icaH
we consider the threshold nonlinearit h' h d'rl y w lc 11Iers rad-
ica y from the Kerr Donlincarit . It slca . i y. supports bistable
se. -gui e earns (spatial sohtons) in both

+ 2
1aIlsvcrsc dlmcnslons aIld han is c aracterized by

n'(I
I ) = ~- &» I&l' & 1«and ~'(I&l') = no «r

res o d nonlinearity induce step-index profile (linear
o es are vrell known I12].

e first consl er one-dlmensiona]. bCaIIlS. earn

(x) 1s a undamental (K =
spatial soliton when it is a mod f thmo e o e step-profile ~slab
waveguidc it induces. Now

' ' bow) consider a beam composed
of two like-polarized modes 0, and 6 of
such that

es 0, an of a slab wavcguide

but p now denotes the waveguide radius.
In summary, we have

spatial solitons o
e emonstrated numericall th t

of second-order can propagate in both
e a y a

and two transverse
aga e ln ot one

se "imenslons in a medium which d
dl aIIlat lcall from

W 1C 1 CI'S

these re
y rom the Kerr non]. inearit . I' thi y. ur ermore,

physics of modal beatin0

se results are fully anticipated f he rom t e elementar y
a ing in a hnear optical wave d

onsequentl to
vegul e.

q y, o ~ave a second-order soliton the '

in uce a waveguide which propa ates the fi
n mo~es only. Consistent with th f

we have also show
wl ls act)

shown that second-order threshold ].

can result fr
res o so itons

from scahng up fundamental (K = 1 soli-
tons. This foHoms because th '

d
' e-e in uce waveguide be-

comes multimoded for a suKcient]. lar en y arge amount of sca].-
n ee, ese second-order solitons are t

a vallct o
genera e y

y o initial conditions prov d d thvi e e resulting in-

Induced waveguide

E x, z) =- 4 (L) exp(iP z) + @g(x) exp(iPgz),

where the power P =-
&~ 4' dA of mode G and

Pg ——-= 4' dA ofP =-=
& &

mode 6 are independent d b'

tral . This
en an ar i-

y. ls composite LCM ls a candidate for a erls n 1 a e or a periodic
ls suPucient]. y small for the fi M

to induce a single stc — rofll
e e

then 4 and 4'
ave ransverse even symmetry,

o give a spcciGi. c example we usee use numerica' '
earn

pI"opagatlon to dctcl lIllllc what happcIls whcI1 a

]aunchcd in a nonlinear thrcshoM

pro c s a wavcguide, respectively, while the re
power ln each of th

w i.e t e relative
o these modes is taken to be P ~P

O.O848. Thc ~initial~ d~& induced waveguide is cha t d
byt eparameter V =4 wh V=k r2 —AW = k ~ 0

—A ) p

um an minimum refractive indices of the th-
,

'
y, respectively. According to the h si-

ca]. argument given above this b ' aovc) ls caIIl pI'opagatcs with a
p CI'loulC lilt CDSltu

'
y pro6]c. Furthermore, in the thresh-

old DOD].lnearlty considered here a bea
cD .p-prof~le waveguldc whose widthensi y ln uces a ste — ro~

c anges periodica]. ]. in the d'c y c dlrcctloD of plopagatloIl. II1-
ee, Fig. 1(a) demonstrates that the d d

ion; ot cr numerical simulations with diKe
s ~&i.c.) IFj.erent Pg ~P~ va ucs

ie uns a e beams that did not propa ate.
Entircl an 1y Dalogous results were found for be

aga c.

s sec ion. I or example, by launching the first
two circularly symlnctric modes of V — p- etwo c . . o es o — p-p eo es o a = 5 step- rofii. ].c

a g = 0.1344, the results
arc qua ltatlvcl thct, t' ly he same as those presented in Fi . 1.
The notation here is idcntica] to thica o t e example given above

II 4-

Q
2-

—6 0 6
X

-6 0 6
X

J I

-4 -2 0 2 4
Transverse distance, X=xlp

2

FIG. 1. One-One- imensional periodic soliton pro a atin

step-profile planar w avp w aveguide are launched vrith
0.0848 to induce a se

um an minimum transverse dimension



BRIEF REPORTS 6299

duced waveguide becomes multimoded, e.g. , by colliding
two K = 1 solitons [13].

We have shown numerically that second-order soli-
tons propagate over many periods in a threshold nonlin-
ear medium, but do they propagate indefinitely without
changing their form'? To answer this question theoreti-
cally, we again appeal to the linear equivalence principle
which, in the present context, is stated as follows: a pe-
riodic soliton must be a Floquet or periodic mode of the
periodic (linear) optical waveguide it induces [14]. This
elementary, yet exact, concept fully describes periodic
solitons. Consequently, we can borrow results freely from
the literature of linear periodic waveguides [15], from
which we learn that periodic modes are, in general, leaky
for structures with spatial wavelength perturbations rel-
evant to our present study. Furthermore, first-order per-
turbation theory shows that the radiation comes from the
second even mode [16].

To test this prediction, we have numerically beam
propagated the soliton discussed in Fig. 1 for one hun-
dred periods which revealed a total radiation loss of
about I/O. The consequences of this small amount of
radiation are demonstrated in Fig. 2. Consistent with
perturbation theory, the power in the second even mode
couples to the fundamental (first even) mode. This, in
turn, causes the amplitude of the periodic perturbation
to decrease. It is not possible for the fundamental-mode
power to couple back into the second even mode because
this would violate the fact that the fundamental mode is
stable (at V = 4) to arbitrary perturbations [11]. Thus,
second-order spatial solitons are leaky when propagating
in a threshold nonlinearity but the leakage is insignificant
over distances that are experimentally meaningful [18].
Our argument from linear physics suggests that all pe-
riodic modes must radiate in the spatial wavelength re-
gion of interest. Yet, this would appear to contradict
the well-known result of inverse scattering: second-order
one-dimensional solitons do not radiate in a Kerr non-
linearity. Is it possible to contrive a shape of periodic
distortion such that a linear optical waveguide does not
have radiating periodic modes. Apparently, yes, and this
shape is the one induced by a second-order soliton in a
Kerr nonlinearity [19].
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FIG. 2. As in 1(a) but showing the gradual power transfer
from the second to the first even mode after a much longer
propagation distance.

In conclusion, we have shown that periodic (second-
order) optical solitons of one and two transverse dimen-
sions can propagate in both a Kerr nonlinearity and
a material differing radically from the Kerr nonlinear-
ity. Although they are leaky, the radiation is negligible
per period and, in particular, is insignificant over dis-
tances considered experimentally meaningful [18]. These
conclusions follow from the elementary physics of linear
waves. More importantly, the linear perspective also
explains the physics of higher-order solitons by show-
ing that the nonlinear-induced waveguide must be mul-
timoded to support higher-order solitons. On the other
hand, the inverse scattering procedure reveals that the
radiation losses are zero for beams of planar symmetry,
propagating in a Kerr nonlinearity. The equivalent (non-
linear induced) linear waveguide thus has periodic modes
which are lossless —a fact apparently unknown within
linear theory.
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