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Plasma-beam interaction in a wiggler
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The possibility of obtaining self-bunching of the beam, emission of coherent radiation and strong elec-
trostatic fields in a plasma loaded free electron laser, is studied by means of a set of nonlinear self-
consistent equations deduced from the Maxwell equations, the Quid plasma model, and the relativistic
equations of motion for the electrons of the beam in the limit of plasma density much larger than the
beam density.

PACS number(s): 52.75.Ms, 52.40.Mj

A considerable effort has been made in recent years in
the field of high-power and high-frequency generators to
invent new configurations and schemes and to improve
the efficiency and the operating characteristics of existing
devices. Along these hnes is the proposal of the plasma
free electron laser [1—3], which consists of a free electron
laser (FEL) loaded with a cold plasma whose density n is
much larger than the average density nb of the electrons
of the beam. This system is expected to have a large radi-
ation efficiency due to the presence of two concurrent in-
stabilities, the usual FEL instability, which converts the
kinetic energy of the beam into transverse radiative ener-
gy, and the beam-plasma instability, which instead con-
verts the kinetic energy of the beam into the electrostatic
energy of the Langmuir wave excited in the plasma. The
model has been further simplified by assuming that a res-
onance condition between the longitudinal plasma wave,
the magnetic Geld of the wiggler, and the transverse radi-
ation field is realized, i.e., that col =co and kL =k+k, co

(coL ) and k (kL ) being the frequency and wave number of
the transverse (longitudinal) wave and k the wave num-
ber of the undulator. If we consider the dispersion rela-
tion of .the transverse mode inside the plasma,
co=(co&, +c k )' and that of the Langmuir wave
coL = [co~, +3u,h(k+k ) ]', we find that the above res-
onance condition implies a constraint upon both frequen-
cy and wave number of the radiation, namely
co=[co +p k /(1 p, ) ]'~ =co& —and k=pk /(1 —p)«k, where @=i/3u,h/c «1 is the ratio between the
thermal velocity v,h of the electrons of the plasma and
the speed of light c [co& =(4nne /m )' .is the plasma
frequency of the electrons of the plasma].

It follows from these relations that the frequency of the
excited radiation is determined by the plasma density and
that the wave number of the radiation in the plasma is
much smaller than k . Furthermore, by defining
p„=coL /ckL =co(k)/[c(k+k )] as the ratio between the
phase velocity of the Langmuir wave and c, one can ar-
gue that the maximum efficiency of the system will occur
when the average parallel velocity of the injected elec-
trons U~~(0)=cp~~(0) is equal to cp„. Obviously, this last
condition can only be satisfied when p„& 1.

The analysis presented in this Brief Report is based
upon the following set of nonlinear differential equations,

which have been deduced, in the framework of the slowly
varying amplitude approximation, from the Maxwell sys-
tem, the Quid plasma model, and the relativistic equations
of motion for the N electrons of the beam:
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pi(j =U~)j/c, ()j =(k+k )zj cot —5c(k +k —)r, is
the beam electron phase in terms of the physical time t,

rc(k+k~)t, and j ranges between 1 and X. We as-
sume a beam that initially is monokinetic, so that
„( =0)/ =P. S, = /(4P ), S =Q /(8P ),

coefficients of the equations, with Qb =co„/[c(k+k„)],
Q~ =co~/[c(k+k )], co&=4m.n&e /m, the plasma fre-
quency of the electrons of the beam, and with
a~o=eB„/(k mc ), the nondimensional undulator pa-
rameter, B being the intensity of the magnetic field of
the wiggler.

Furthermore, 5 =po
—p„ is the detuning factor,

yj=(1—
p~~j

—pij) ' is the Lorentz factor of the jth
electron, and, taking into account that the transverse
component of the velocity of the electrons of the beam
pi is related to the external magnetic field by the condi-
tion pij=a 0/yj, y. can be expressed as y =[(1+a„o)/
(1—p~~j)]'". Finally, &b & =(1/X)y,",e ' is the
bunching factor of the electrons of the beam, while
A =[eaii, /2mc Q&]e' A and a=[ P2„ /&Q] 'e5n /n

are the nondimensional scaled transverse vector potential
A and disturbance of the electron density 5n /n, respec-
tively.

The previous system is written in the framework of
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Cauchy-type problems, and only time variations have
been taken into account. The first 2% equations are the
relativistic equations of motion of the X particles of the
beam. The equations for the fields have been written fol-
lowing the line presented in Ref. [3]. In that model, how-
ever, y. was assumed to remain very close to its initial
value y(0)=y„(y„=[(1+a„o)/(1—P'„)]' '), i.e., y,—y(0) «y„and was identified with y„ in the second
members of the equations. In our model, on the con-
trary, no assumptions are made on the magnitude of y,
which, therefore, can vary without limitations; that en-
able us to explore the regime y(0) = 1 and, in general, all
those cases in which y has strong variations.

The linear analysis of system (1) has been made around
the equilibrium solution given by

g=o, &=0, (b) =0, y =y(o) .
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Assuming that all quantities vary exponentially as

exp(ikey),

the dispersion relation turns out to be a fourth
degree equation in A, , and the quantity 6 = —1m',
represents the growth rate of the unstable mode of the
system.

The linear growth rate 6 versus y(0) is given in Fig. 1

for increasing values of Q . The smooth transition from
a situation of small plasma effects [curve (a), A~ =0.1],
which is similar, therefore, to that of the usual FEL, to a
situation in which the plasma effects are dominant [curve
(d), Q~=1) is clearly shown. In fact, for a very small
value of plasma density, the growth rate has a maximum
for a value of the detuning parameter 5 larger than zero
(5=0.315) as in the pure FEL case [see Fig. 1(a)]. In-
creasing the plasma density [Fig. 1(b)], this maximum be-
comes flat (5=0.27) and a second peak appears at a neg-
ative value of the detuning (5= —0.36). Increasing fur-
ther 0, the original maximum at positive detuning
disappears, and only the peak at negative detuning
remains. Negative detunings, i.e., Po&P„, correspond to
low values of y(0).

The output of a typical nonlinear calculation is report-
ed in Fig. 2. Curves (a) and (b) give the intensity

~
3

~
of

FIG. 2. (a} Intensity of the normalized transverse potential
~

A
~

vs the normalized time r=c{k+k )t; (b) intensity of the
plasma density disturbance ~a~ vs r; (c) bunching factor (b ) vs

r; (d) average value (y) vs r for 0~ =1.1, Q2b =10 ', a20 =1,
p= 10 ', and with the initial values y(0) =2. 1, A (0)=2 X 10
a{0)=2 X 10 ', and (b )(0)=0.

the scaled transverse potential and the scaled plasma den-
sity disturbance

~
a ~, respectively, as a function of the

scaled time r. In Fig. 2(c) the bunching factor (b ) is
represented, while Fig. 2(d) gives the average value (y )
of the energy of the electrons of the beam. These data
were obtained with y(0) =2. 1, Q~ = 1. 1, IIt, = 10
p =10, and a o

= 1, which may correspond to a plasma
of low electron density (n =5 X 10' cm ) and with an
electron temperature of about 0.5 eV, in a 10 cm wave-
length wiggler. The initial conditions assumed were
A (0)=2 X 10,a(0) =2 X 10,and (b )(0)=0.
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FIG. 1. Linear growth rate 6 versus y(0) for Qb=0. 006,
a 0=1,p=0.01, and (a) &~ =0.1, (b) 0~=0.3, (c) 0~=0.6, and
(d) Q~ —1.

p {0}
FIG. 3. (a) Maximum value of the intensity of the transverse

potential given in FEL units vs y(0) for Qb =0.006, a~&=1,
p=0.01, and 0~=1. (b) Linear growth rate for the same pa-
rameters.
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FIG. 4. Radiation efficiency g vs fl for a'o =1,p=2X 10
and (1) 0& =10 and (2) A& =10

FIG. 5. Lethargy time ~«T of the system vs the initial elec-
trostatic field a(0) for a o

= 1, p =2 X 10, Ab =10, and (1)
Q~ =0.1, (2) Q~ =1.7, and (3) in the FEL case.

Figure 3 gives the maximum value of the transverse
field intensity I,„obtained during a temporal run [curve
(a)] as a function of y(0), for fixed values of the other pa-
rameters. The intensity of the radiation field has been
normalized in the following way:

~
A ~P 0' [16(1—p)']' '

2(1—p)(aii, Qi, )
~

This choice is justified by the fact that, if the transverse
field is expressed in this unity, Eqs. (1), written in the lim-
it Q =0 and y. &&1, turn out to be independent of pa-
rameters. Calling IFEL the maximum value attained by
the transverse field during a temporal run in this limit, it
can be shown that I„EL assumes the universal value 1.4
[4]. The comparison between the performance of the
pure FEL and the plasma loaded FEL is therefore easy
and immediate. For instance, in the case of Fig. 3, I „
reaches 5, which is more than three times larger than the
value without plasma background. Furthermore, the
curve (b) on the same figure represents the growth rate 6,
as provided by the linear theory for the same parameters.
As one can see, the region of strong radiation falls inside
the instability region predicted by the linear theory, but
the peak of I „does not coincide with the maximum of
the growth rate G. It is shifted towards the border of the
instability region, which corresponds to smaller negative
detunings.

Figure 4 gives the quantity g= [Aba /16y(0)(1
—p) ]' I as a function of Q~, for various values of Qb.
This quantity is defined as the ratio between the output
energy due to the transverse radiation field and the initial
kinetic energy of the beam. It measures, therefore, the
efficiency of the radiation generated by the system. Each
point on the graph corresponds to the maximum value of
g, obtained by varying y(0) and for fixed values of both
Q and Qb. As one can see, the eKciency g reaches large
values (even more than 25%%uo in some cases), as compared
with that of the usual FEL, which is only a few percent.
Furthermore, the presence of the critical plasma density

pointed out in Ref. [1] is confirmed. In our case the value
of the critical plasma density corresponds to a value of
Q of about 1.85 and we attribute the reduction in the
efficiency occurring above this value to the fact that the
phase velocity of the Langmuir wave cf3„—=0 exceeds c
and, therefore, the electrons of the beam cannot be
trapped anymore by the electrostatic potential of the
Langmuir waves.

Another possible application of the plasma FEL is to
use it as a buncher of electron beams. In fact, if a small
electrostatic field is applied at ~=0, the lethargy time of
the system decreases considerably, while the value at-
tained by the bunching factor ( b ) remains large
((b ) =0.7). Figure 5 shows this efFect: the lethargy time
%LET c(k +k )rLFT (measured as the time correspond-
ing to the first maximum of (b )) is presented versus the
applied Langmuir field a(0). The lethargy time of the
usual FEL [curve (3)] is also reported for comparison. A
third possible use of this system is for generating large
electrostatic Langmuir waves in the plasma with phase
velocity larger than c, which is one of the basic in-
gredients for the acceleration of electrons [see, for in-
stance, Fig. 2(b)].

As a conclusion, we can say that, in a plasma loaded
FEL, the concurrence of two instabilities (the usual FEL
instability and the plasma-beam instability) permits us to
obtain values of the e%ciency of radiation production
very much larger than in a usual FEL. The study of the
radiation intensity as a function of the basic parameters
of the system shows that the maximum efficiency is
reached when the initial energy of the beam is sma11 and
when the phase velocity of the excited Langmuir wave is
larger than c. The presence of a Langmuir wave can also
contribute to diminish the time lethargy. Finally, prelim-
inary results seem to indicate the possibility of obtaining,
with this configuration, high-gradient acceleration of the
electrons of the beam either when a strong electrostatic
field is applied or when an external electromagnetic wave
is injected into the system.
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