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Asymptotic dissipation rate in turbulence
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Intermittency corrections g' to the scaling behavior of the structure function in the inertial range im-
ply an asymptotic decrease {~ Re ) of the dissipation rate divided by the energy input rate as a func-
tion of the Reynolds number with a ~5/. Data analysis favors x.=O. It is the classical exponent /= —,

that guarantees an asymptotically Re-independent dissipation-input ratio. Alternatively, intermittency
may imply a nonuniversal viscous-inertial crossover in the structure function together with a Re-
dependent amplitude b{Re), scaling with a small, negative exponent, as measured recently.

PACS number{s): 47.27.—i, 05.45.+b

There has been an ongoing discussion on intermittency
in the inertial range of turbulent Quid Qow. After a
longer period of describing it with models [1—4], support-
ed by various measurements [5] and numerical simula-
tions [6], recent results have shed new light on the mech-
anism and the physical implications of the spatiotem-
poral Quctuations of the turbulent activity, i.e., intermit-
tency, from the point of view of the Navier-Stokes equa-
tions [7—13].

While there is no doubt that there is much intermittent
ffuctuation in the viscous subrange (VSR) (for experimen-
tal support, cf. [14]), leading to large and measurable de-
viations of the probability density function for the veloci-
ty Quctuations from the Gaussian form, there is an in-
creasing indication that there might be no measurable
effect of these Quctuations on the scaling behavior in the
inertial subrange (ISR), provided that this latter is well
enough developed, i.e., for large Reynolds numbers Re
[10,11]. This seems to be supported by large wind-tunnel
and atmospheric measurements [15—17].

The purpose of this Brief Report is to indicate another
possibility to experimentally clarify the presence or ab-
sence of intermittency corrections in the scaling behavior
of the ISR structure functions or spectra. It is based on
the interesting observation [18] that the mean dissipation
rate c can be related to the energy input rate U L ' by
means of the often studied second order structure func-
tion D(r)=([u(x+r) —u(x)] ). The dissipation rate is
sensitive to the small scale properties of the Qow Geld,
whereas the energy input is sensitive to the large scale
properties. Connecting both by the structure function
should be a good method to identify scaling corrections
in D(r). Moreover, there is a careful analysis of experi-
mental (grid turbulence) data [19], which can be used to
compare with the theory.

Lohse [18] studies the dissipation rate in terms of the
energy input, c,( eR)=c/ UL '. Here U is defined as
u &, „the rms of one component of the velocity Geld Quc-
tuations, and L is the outer scale. More specifically, L
shall be that scale above which the spatial correlation of
the velocity field is lost. (u(r) u(0)) =0, r)L. Thus
D(L) reaches its plateau value 2(u ) or 6 u, , , Calcu-
lating D(L) in its scaling form, which depends on e, then

leads to the desired relation for c,(Re). Since the main
contribution is expected to come from the classical Kol-
mogorov behavior [20], D(L) is calculated in [18] on the
basis of a mean field closure of the Navier-Stokes dynam-
ics, as derived in [21]. This implies that ffuctuation
efFects are neglected in D(r). Since the results find sup-
port from the data [19], this already indicates that inter-
mittency corrections in D(r) might be small or even
missing for large Re.

In this Brief Report I use another parametrization for
the second order structure function, which allows one to
include scaling corrections if they are present. This gen-
eralizes Ref. [18]. Take the Batchelor parametrization
[22] and generalize it to include intermittency

D(r)= (1)1+(r /a &)z](z—g) n

Here q is the Kolmogorov length ( v /E )
' and a,

measuring the crossover scale from the VSR to the ISR
in terms of q, r„„,„„=ay, is related to the structure
function amplitude in the ISR, b =a "~ /3. The exponent
g denotes the ISR scaling exponent and may deviate from
—'„g=—', +6/. The scaling of D(r) in the VSR and ISR
are limiting cases of (1),

r

(E/3v)r, r (&ag
2Z3 2nbE'"r'"(r/aq)'&, r ))ag .

(2a)

(2b)

Use now D (L )=D „u, , , The value of D should
be near D =6. It may differ from this, since the plateau
value of D(r ), r +Oc, for which u(r ) is d—ecorrelated from
u(0), may diff'er from D(r) at r =L, depending on the
precise choice of L,. Also geometry effects may inQuence
the value of D; e.g. , the aspect ratio, or anisotropies.
Now put r=L in (1), insert E=c,u. . .L ', and intro-
duce the Reynolds nun=ber based on the relevant scales,
Re= u &, ,L /v. Then

c, =(3D„/Re)[1+(L/ ga) ]' (3)

This immediately reproduces the small Re behavior
[18,23] (cf. [24] for laminar ffows also),

c, =3D /Re=18/Re, L/qua .
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In general, the relation holds,
1/4y 3/4 1/4 R 3/4

E 9

thus

c, =(3D„/Re)[1+a —2ci/2 Re3/2](2 —P)/2

(5)
3 -1

01,rmsL

3

0
0 T 0 a

If Re becomes large, one obtains, after decomposing
(=—', +5/,

I I l

50100 500
R),

c,=E/U L '=CRe ', L/g))a, (7) p ~Reo ~ Re-0.0330
I t

where the scaling exponent x is to a good approximation
proportional to the scaling corrections 5$.

a=( —', )5g/(1+35/ /8) .

The prefactor C only weakly depends on the scaling
correction 5(,

C —(3D j (4/3) —5()12/(8+35/)

't00 10 000

FICx. 1. Dissipation rate c in terms of the energy input rate
without and with intermittency corrections 5(=0.03 in the
ISR. The inset shows the data (grid turbulence) as analyzed by
Sreenivasan [19]. The case 5(=0 according to [18] with asymp-
tote c, =(6/b)'/~=0. 60. If 5/%0 the curve represents Eq. (6)
with D =6 and a =(3b), b =8.4.

—
( 3Q )3/(4 —35$)( /L )35$/(4 —35$) (10)

If one neglects the small infiuence of 5g on C and uses
D =6, the corresponding constant in Ref. [18] is, of
course, reproduced, C(5(=0)=(6/b ) =0.60. The
data [19] seem to prefer C(0)= 1; other authors (cf. [23])
obtain C(0)=0.76.

Equation (7) shows that the presence or absence of
scaling corrections in the structure function is directly
visible in the asymptotic Re dependence of the dissipa-
tion rate in terms of the energy input rate. In this sense
scaling corrections of D(r) in the ISR have an immedi-
ate, observable, low order inhuence and are not only
small corrections.

If I use a realistic estimate for the expected scaling
correction, 5(=0.03, the scaling exponent in (7) is
a=0.0334. (This choice, by the way, corresponds to the
exponent @=0.25 for the decay of the dissipation corre-
lation in the log-normal model [1].) This leads to a con-
siderable reduction of the asymptotic dissipation rate,
which should be measurable. c,(5$)/c, (0)=Re is re-
duced by about 25 —45%%uo if Re is increased from 10
through 10 . Even if 5(=0.02 only, thus ~=0.0223,
there is 20—33% less dissipation. In Fig. 1 the dissipa-
tion rate reduction is compared graphically with the clas-
sical plateau behavior as well as with the data [19].

The difference between the Effinger-Grossmann [21]
parametrization for D(L) used in [18] and the extended
Batchelor parametrization (1) used here leads to a small
difference for c,(Re) in the transition range between
small and large Re behavior, i.e., between (4) and (7).
These differences are nonmeasurably small. One might
argue, however, that the correction ~ (r/rj) ~ in (2b) is
not acceptable physically, since at least for r near I, there
should be no such correction. Thus the effect of intermit-
tency should better read (r/L ) ~. Then instead of a Re-
independent amplitude b, one would have to use another
ISR coefficient 8=(—,')a' / ' ~(L/g) ~. This can be in-

terpreted by two different alternatives: Either the ampli-
tude in the ISR structure function (2b), which is now 8,
depends on Re; or, if one assumes the amplitude to be
constant, the crossover a must be taken as Re dependent,
a =a(Re), with

contains only weak intermittency effects in the large ed-
dies. At the outer scale r =L itself, there is no intermit-
tency contribution left at all.

If this asymptotic form (11) is used instead of (2b), the
same analysis as before immediately leads to., =(D /b)"2. (12)

Thus, c, is now independent of Re. The price to pay for
this asymptotic Re independence of the dissipation rate
in terms of the energy input despite scaling corrections in
the structure function is a nonuniversal Re dependence of
the VSR-ISR crossover scale a, in addition to the Re
dependence via iI. From (10) one gets

r„„„„„q/= (aeR)=A Re (13)

Here a=95//(16 —125$) and /I(5()=(3b) ' ~'(b/
D „) & ' ~) = 3 (0)=(3b ) ". The corresponding
structure functions are displayed in Fig. 2. It would be
interesting to analyze the data with the generalized
Batchelor parametrization (1), including its scaling
corrections using a fixed and Re-independent value for b
but a nonuniversal crossover behavior. Since
a=( —,', )@=0.017 is small, this might not be too clearly
visible in contrast to the quite apparent asymptotic de-
crease of E according to (7). But it leads at fixed rjg to a
systematic decrease of the ISR amplitude of the structure
function for increasing Re. One easily denotes this in
Fig. 2. Such an effect seems to have been found recently;
see [16], Fig. 3, roughly proportional to Re ' . From

If according to the 6rst alternative 8 is taken as Re
dependent via (L /g) ~, one again finds (7) for c„i.e., an
asymptotic decrease of the dissipation rate. The pure
rewriting of (2b) with (r/L ) & instead of (r/rj) ~ is thus
irrelevant for the large Re behavior of the dissipation
rate. Let us therefore check the consequences of a Re-
dependent crossover a(Re) but with a constant ISR am-
plitude, which then is to be chosen as B=b =—8.4. Now
the structure function

D(r)=bE r (r/L) ~
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(1) with (13) one finds that the amplitude at fixed r/sl in
the ISR should decrease ~Re ~ . This possibly ex-
plains the not yet understood experimental observation in
Ref. [16] as an effect of the VSR-ISR crossover. It is
thus due to the competition between viscosity and non-
linearity in the transport of energy [8,9], but does not in-
dicate pure ISR intermittency.

Equation (13) describes intermittency effects as concen-
trated on the VSR-ISR crossover, but being only small as
r approaches L. This situation is very compatible with
our results when solving the Navier-Stokes equation for
high Re with a reduced wave vector set approximation
[8—10].

Let me point out that this idea of explaining the experi-
mentally found b =b(Re) (cf. [16]) by a systematic cross-
over shift does not depend on the generalized Batchelor
parametrization. Even if g has the classical value g= —', , a
systematic shift of the crossover a =a(Re) = A Re im-
plies that for fixed r/ri the ISR coefficient of D(r) de-
creases ~Re . Now, a plays the role of an indepen-
dent exponent, not derivable from 5(. Taking the mea-
sured [16] value 4a/3 =0.05, one gets the estimate
+=0.035. If Re is increased by a factor of, say, 10, the
crossover factor a is reduced by =10 '=0.8. This may
well have escaped previous attention.

To summarize, it is not only the correlation function
(5E(r)5s(0) ) which is a useful object for deciding upon
intermittency effects, but this can also be concluded from
the mean dissipation rate c. itself, if one studies its
behavior for large Re. Its experimentally found approach
to a constant level near c.=u. . .L ' seems to be an ar-
gument against ISR scaling corrections in the structure
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FIG. 2. Nonuniversal VSR-ISR transition from the general-
ized Batchelor parametrization (1) with the rigorous VSR scal-
ing (2a) and the assumed ISR scaling (11), taking b=8.4 and
5/=0. 03. The crossover position a(Re) is according to (13),
A = 11.9, a =0.017, for various Re.

Stimulating discussions with Detlef Lohse are grateful-
ly acknowledged.

function.
Progress in this exciting riddle about the presence or

absence of inertial range scaling corrections evidently has
to come either from experiment (further high resolution
measurements) or from theory, provided it is Navier-
Stokes based. Resorting to models will hardly be con-
vincing, since by general argument a dimensionally
correct model, after including statistics, inevitably will
lead to scaling corrections, without ever referring to the
Navier-Stokes dynamics; see, e.g., [25].
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