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Kinetic equations for a dissipative quantum system driven by dichotomous noise:
An exact result
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We obtain kinetic equations for the stochastically averaged reduced density matrix of a quantum
system driven by a dichotomous Markovian process and weakly coupled to a quantum thermal
bath. These kinetic equations are exact in arbitrary dichotomous perturbation and provide a unified
description of both small and large correlation time limits, along with an intermediate case. As an
example, the problem of a dissipative two-level system with a dichotomically modulated difference
in eigenenergies is considered.
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Quantum-dynamical systems (QDS) with a finite num-
ber of states are ubiquitous in physics. Such systems are
frequently interacting with an environment which causes
the damping and dephasing effects in the QDS dynamics.
The vast literature has been devoted to discussing these
efFects in the different contexts (see, for exainple, [1] and
references therein). So far, two different theoretical ap-
proaches have been used to account for the environment
influence on the QDS dynamics. One is the dynami-
cal approach. Within this approach, the environment is
usually modeled by a set of independent harmonic os-
cillators being in the thermal equilibrium [thermal bath
(TB)]. The dynamical approach is based on the remov-
ing of the TB variables from the Liouville equation for
the whole system (QDS+TB) by means of an appropriate
elimination procedure (using, for example, the projection
operator method [2] or the path-integral approach [1]).
The main idea of the alternative stochastic approach is
to treat the QDS-environment interaction phenomeno-
logically via the introduction of a stochastic term in the
QDS Hamiltonian [3]. Both methods have limitations.
The dynamical approach is rather tedious to be practi-
cal beyond the harmonic approximation for TB. In turn,
the pure stochastic approach is unable to get a descrip-
tion valid at finite temperatures [4—6]. Several efForts to
overcome these shortcomings in the framework of a com-
bined approach have been recently undertaken [4—8]. The
main idea of Refs. [6,7] was to model the environment in-
fluence both via the interaction, V, with a quantum TB
and through semiclassical stochastic addition, H(t), into
the QDS Hamiltonian, Hp. The latter one can be used,
for example, to model the highly anharmonic degrees of
the TB.This stochastic addition has been handled within
the cumulant expansion method [4,9] in [4,6]. However,
in such a way it is possible to obtain the averaged ki-
netic equation only in the lowest approximations over the
Kubo number R = Lw, which characterizes the strength
of fluctuations of the stochastic process H(t) [9]. Here A
and w are the parameters which characterize the ampli-

tude of fluctuations (hereafter h = 1) and autocorrelation
time of a stochastic term H(t), respectively.

Recently, an alternative approach to the problem based
on the theory of kinetic equations for a QDS in strong
external field has been proposed [7,8]. This approach
permits one to obtain the averaged kinetic equations in
the way which is nonperturbative with respect to the
above Kubo number. However, this approach was re-
stricted before to the case of the fast fluctuation when
the autocorrelation time of a stochastic perturbation, v;,
is much shorter than the relaxation time, ~„, in the quan-
tum system. In the present paper we put forward a way
to overcome this restriction in the case of arbitrary di-
chotomous perturbation H(t). This case is virtually very
important because of the fact that it allows us to per-
form an exact treatment, and the dichotomous noise can
be treated as a pre-Gaussian one [10] and hence is used
as a simple model for colored noise [11,12].

The main goal of this paper is to obtain the ki-
netic equation for the averaged reduced density matrix
(p (t)) = (n~(p(t))]m) of QDS. Here p(t) = Trcr(t) is
the reduced density operator of the quantuin system, o (t)
is the density operator of the whole system, ~n) is a state
of the QDS, Tr denotes the trace over the quantum TB,
and (. ) denotes the average over the stochastic pro-
cess. With this goal in mind we start from the Argyres
and Kelley equation for the reduced density operator of
a QDS in a strong external field [13].

Let

H(t) = II, + H(t) + V + HT

be the Hamiltonian of a whole system, where

(2)

denotes the Hamiltonian of the QDS written in the basis
of the transition operators p = ~n)(m~,
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where E = F~ are the bath-dependent opera-
tors with zero average over thermal bath, (I"„)T
Tr(pTE'„) = 0. The density operator of thermal bath,
p~, is supposed to be equilibrium,

pT = exp( —HT /k~T) [Tr exp( —Hz /k~T)] ', (5)

where k~ is the Boltzmann constant, and T is the abso-
lute temperature.

Following to Argyres and Kelley [13],we write the re-
duced density operator equation in the Born approxima-
tion in the interaction V and by the initial factorization
assumption, 0 (0) = p(0) pT, in the form

where

t—p(t) = —iI (t)p(t) — I'(t, t') p(t') dt',
dt 0

(6)

L(t) = I () + cx(t)I i, L, = [H;, ( )], i = 0, 1

is stochastic I iouville superoperator, and

1(t t) = ).(~- (' —t)[ - s(t t) (.)]
kk', rr'

- (t' —t)[i" s(t t')(.)i ]) (8)

is the memory kernel. In Eq. (8)

Kf, f, „„(w)= (exp(iHTv)Ef, f, exp( —iHT&)F„„)T (9)

is the bath correlation function, and S(t, t') is the evo-
lution superoperator that fulfills the stochastic evolution
equation (SEE) written in the "forward" and "backward"
forms as

dE
—S(t, t') = —i[L, + n(t) L,]S(t, t'), S(t', t') = I,

„,s(t, t') = is(t, t')[L, + n(t')L, ], s(t, t) = I.

nian of a quantum thermal bath. In Eq. (3) n(t) denotes
the dichotomous Markov process (DMP) with zero mean
and autocorrelation function (a(t + w)n(t)) = exp( —vw)
[14]. The operator of quantum system-thermal bath in-
teraction is written in the quite general form as

(4)

The main peculiarity of Eqs. (6)—(10) is that the dichoto-
mous noise H(t) affects the memory kernel and may be
arbitrarily strong.

One must average the master equation (6) over the
dichotomous process n(t). With this goal in mind, we
proceed as follows. Consider the formal expression

(l(t, t'+~)n(t'+~)n(t')p(t')), ~ & 0.

In Eq. (11) the I'(t, t'+w) and p(t') are functionals of the
DMP n(t) involving only times, respectively, posterior to
t' + w and prior to t'. Therefore, this expression meets
the conditions of the Bourret and Frisch theorem (the
theorem B in [14]) and can be transformed as

(I'(t, t'+ ~)~(t'+ ~)n(t') p(t'))
(r(t, t'+ ~))(~(t'+ ~)~(t')) (p(t'))
+(1(t t + ) (t + ))( (t ) (t)).

By passing to the limit w -+ +0 in Eq. (12) we get, us-
ing the remarkable property of the DMP, n2(t) = 1, the
following corollary of theorem (12)

(I'(t ')p(')) = I'"(t —t') p (t') + I'"(t —t') p (t'),

(13)

where I'~ l(t t') = (I'(t—, t')), I'&il(t t') = (I'(t—, t')o(t')),
pp(t) = (p(t)), and pi(t) = (n(t)p(t)). In the same way
we obtain

( ( ) ( ')p( ')) = "( — ')pp( ') + "'( — ')pi( ')

(14)

where I'~2l(t —t') = (n(t)I'(t, t')) and I'~s&(t —t')
(~(t)r(t, t') ~(t')).

To get the equation for the correlator pi(t), one can
use the Shapiro and Loginov theorem [15,9]. According
to this theorem, any functional, f (t), of the dichotomous
process a(t) must obey the following equation:

—(~(')f(')) = «(«(')f(&))+—(«(&)~ f(&)) (»)

Using Eqs. (13)—(15), we obtain from Eq. (6) the set
of coupled equations for the averaged reduced density
operator pp(t) and the correlator pi(t),

t—po(t) = —Lppp(t) —Lip](t) — (I'~' (t —t') p. (t') + I ' (t —t') p (t'))dt',
dt 0

t—pi(t) = -(~+ 'Lp) pi(t) —~Li pp( ) — F"(t —t') pp(t') + I'"( —t')»(t'))«'
dE 0

(16)

with initial conditions pp(0) = pp and pi(0) = 0. The kernels I' (t —t ) in Eq. (16) are specified in a similar
way to the kernel I'(t, t'), Eq. (8), in which the evolution operator S(t, t') is replaced by the averaged operator
S~ )(t —t') = (S(t, t')), S( )(t —t') = (S(t, t')n(t')), S~ l(t —t') = (n(t)S(t, t')), or S( )(t —t') = (n(t)S(t, t')n(t')),
respectively. Using the Shapiro and Loginov theorem (15) together with the SEE (10), we find after some algebra the
Laplace transforms, S('~(p) = j e " S~')(7)d7,
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S~ol(p) = [p+ iLo+ Li(p+ v+iLo) 'L, ]

S~ l (p) = —iS (p) Li (p + v + iLo)
S"(.) = —(.+ -+'L.)-'L.S'"(.),

S"(.) = 'L (.+'L.)S"(.) = S"(.)(.+'L.)L,
of the operators S~'l(w).

For the averaged density matrix p„(t) and the correlation matrix P„(t) =— (n~pi(t)lm) one can obtain from
Eq. (16) the final set af the coupled kinetic equations,

p-(t) = -i ).(L.''. p-- (t)+L.''. &-- (t))
nl mI

~-(t) = —).f[ b- ~—+ L. . ]P-- (t)+ L.l. p-- (t)}

«'«."'. (t —t') p- - (t') + r.". (t —t')~- - (t')),

where

r„'* „, , ( ) = ) %„...„,(r)S',.. .(-~)+K,„,„(- )S,*, „',„„(—~)

-K „.„,(-r)S„',„', „(-~)—K„„„(~)S'*I„,„„(-~)),

and S~'„„, , (~) = (n)S~'&(v. )p„~ [r) are the elements of
the Lioville operator I, , the kernel r&'l(r), and the av-
eraged operator S~'l (~) in a supermatrix representatian,
respectively. The kinetic Eqs. (18), and (19) along with
Eq. (17) are the main result of this paper and may be
used in a number of applications. It should be partic-
ularly emphasized that the derived equations are valid
in the limiting cases of both large (v (( w„) and small
(v )) w„) correlation time, as well as in an intermediate
case v

In order to make this result more concrete, we treat be-
low the simplest illustrative example of a weakly damped
two-level system,

where wg is the frequency of the Ath bath mode, b&+ (bg)
is the creation (aniuhilation) operator, and Kp is the cou-
pling constant. The simplicity of the considered example
lies in the fact that the relevant supermatrices L;
and S ', , may be rearranged as diagonal 4 x 4 matri-
ces. Therefore, Eq. (17) is equivalent to a set of inde-
pendent scalar equations. Besides, the equations for the
diagonal and off-diagonal parts of the matrices p (t),
P (t) are decoupled also.

The bath correlation functions, K i i(r), may be
expressed as K (7 ) = K(7 ) (1 —b ) (1 —h ) in
terms of the only one function,

1
IIo = —~o(i» —i22),

2
(2O)

where

K(~) = — d(un(~) J((u)e*2'

with dichotomically modulated difFerence of eigenener-
gies, J((u) = 2~ ) r~[b(~ —(ug) —h((u + (up)] (25)

IIi = -e(iii —i22).
2

The interaction V with the harmonic TB,

IIz = ).~~
~
b~»+ —~,2)'

is chosen for simplicity in the following form:

(21) is the TB spectral function, and n(w) = [exp(m/k~T)—
1] is the Bose-function. Assume that there exists a
correlation time for the TB, To, such that K(r) = 0 for
~7

~

) ro and ro (( r„. Then on the time scale t )) ro the
upper limit in the integral of Eq. (18) can be replaced
by oo. Using, besides, the Markovian approximation on
this time scale, we get ultimately &om Eqs. (17)—(19) the
pair of coupled di8'erential equations,

&=). .(b,++b )[~ ~ +~. ]
n = —I'On —I qm —Ao,

m = —(v+ rs)m —I'in —Ai, (26)
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for the populations difference n(t) = pii(t) —p22(t) and
the carrelator m(t) = (a(t)n(t)). The rate constants I'A,,

and constants Ag in Eq. (26) are defined as

d~ J(~)Ig (w), (27)

I~(~) = —«[~i2i2(-'~)1(A, )

is the spectral line shape function. Using Eq. (17), we
get for Ig(u) the following expressions:

, 'Ip(~)

To conclude, consider the diferent limiting cases cov-
ered by Eqs. (26)—(29).

(i) Weak noise limit, K = e/v (( l. In this case the
spectral line shape Io(cu) has the sharp Lorentzian form

A, 2 = —+ I'p+ —[(I'+ —I' ) + v ]'I,
2 2

(32)

where I'~ = cath[(carp+ E')/2kgyT] J((r)p + E) are the quan-
tum rates in the quasistatic limit (v M 0) and I p

(I'+ + I' )/2 is the average relaxation rate. However,
if v )) I"p (the small carrelation time limit), we have
Ai —v, A2 —I'o and, therefore, the decay of n(t) remains
electively single exponential with the quantum rate I'0
in agreement with [7]. Thus Eqs. (26)—(29) reproduce
correctly all known limiting cases and provide additional
information in an intermediate case (e v r„ i).

I wish to thank Professor E.G. Petrov and Dr. V.I.
Teslenko for many &uitful discussions. This work was
supported in part by International Science Foundation,
Grant No. U4UOOO.

where g = e /v. Because af Eqs. (27)—(30) we have I'i—
O. The latter condition fulfills exactly in the white noise
limit: e, v —+ oo, g = const and while v —+ oo, c =const
or r ~ 0, v =const. Therefore, we have in these cases
a single-exponential decay of the n(t) with the quantum
rate I'0.

(ii) Strong noise limit, K = e/v » 1. In. this case

1
Io(~) = Is(u) = —[h(a —~o+ s) + ~(a —~o —e)],

2
1

I~((u) = —[8(cu —(up + e) —b((u —~p —e)], (31)
2

and thus we have generally the double-exponential decay
af the n(t) with the quantum rates
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