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Controlling chaos in unidimensional maps using constant feedback

S. Parthasarathy and Somdatta Sinha
Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
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We demonstrate that a constant feedback can control chaotic oscillations in one-dimensional discrete
maps. This is a simple method of controlling chaos as the feedback signal does not require a priori
knowledge of the dynamics of the system and it generates the desired behavior by simply varying the
strength of the feedback. We illustrate this method with an application to the quadratic and exponential
logistic maps.

PACS number(s): 05.45.+b

Much attention has been focused on controlling chaot-
ic behavior exhibited by many nonlinear dynamical sys-
tems in recent times, and several algorithms [1—15] have
been proposed for achieving control of chaos. In general,
there are two ways to control chaos. In one way control
is achieved by converting chaotic behavior into any of the
desired periodic behaviors exhibited by the system. This
kind of control algorithm may be classified as suppressing
chaos algorithms and a few well-known algorithms of this
kind are (i) the adaptive control algorithm [2,3], (ii) the
effect of resonant parametric perturbation [4,5], (iii) the
effect of second periodic force [6], (iv) weak feedback con-
trol [7], and (v) addition of noise [8].

The other way to control chaos is by stabilizing the un-
stable periodic orbits embedded in a chaotic attractor to
any desired periodic orbit. Such prescriptions of control
may be classified as stabilizing chaos algorithms. A typi-
cal example is the method developed by Ott, Grebogi,
and Yorke, popularly known as the OGY algorithm [1,9],
in which the stabilization of unstable periodic orbits asso-
ciated with a chaotic attractor is achieved by applying
small appropriate feedback to one of the accessible sys-
tem parameters. More recently, other control algorithms
of this kind such as proportional feedback [10],occasion-
al proportional feedback [11,12], continuous feedback
[13,14], and pulsed proportional feedback [15] algorithms
have also been employed to control chaos by stabilizing
unstable periodic orbits. All these control algorithms
have been successfully applied to gain control over chaot-
ic oscillations observed in both theoretical models and ex-
perimental systems. These studies have also been applied
to other situations such as the synchronization of chaotic
systems [16], the direction of trajectories to specified tar-
gets [17],and the transmission of information [18].

Most of the above mentioned control methods require
a priori knowledge of the dynamics of the system, such as
the location of stable fixed points or periodic attractors,
and the choice of the feedback signal is based on this in-
formation. In many algorithms, the feedback signal is
used to perturb some of the system parameters directly to
control chaos in the system. In this Brief Report we
present a simple method to control chaotic oscillations in
unidimensional discrete maps. Our method can be
classified as a suppressing chaos algorithm, as it converts
a chaotic attractor into any desired periodic or fixed

x„+,=f(x„)+k, (2)

where k represents the strength of the feedback which
can take both negative and positive values. In other
words, the map is controlled by changing x„ in such a
way that a constant value k is withdrawn (for k (0) from
or injected (for k )0) into the value of x„at every itera-
tion. For a given map, this constant feedback (2) may be
applied suitably to gain control over the chaotic dynam-
ics exhibited by the system. However, the choice of the
type of the feedback (i.e., negative or positive) to be used
for controlling chaos depends on the response of the sys-
tem to the applied feedback. Therefore this controlling
algorithm is not equivalent to driving an unstable system
to a quiescent state by increasing the dissipation as in the
case of continuous systems, since for some maps control
can be achieved only by applying negative feedback.

To illustrate our control algorithm we consider the
quadratic logistic map [19—21]

x„+,= rx„(1—x„)
and the exponential map [20,22,23]

x„+,=x„exp[r (1—x„)],

(3)

(4)

where r is the parameter of the system. Equations (3) and
(4) are widely used as population growth models in ecolo-
gy [19—23] and they are considered as simple models for
illustrating the occurrence of chaos in unidimensional

point attractor by simply varying the strength of a con-
stant signal fed into the system at every iteration. This
constant signal, which we refer to as the "feedback sig-
nal" neither requires any a priori knowledge of the dy-
namics of the system, such as the stable fixed points or
unstable periodic orbits, nor changes any of the system
parameters explicitly.

To describe our method, let us consider a typical one-
dimensional discrete map of the form

x„+i=f(x„),
where f (x„) is a nonlinear function possessing "single-
humped" shape controlled by a parameter. Our simple
control algorithm essentially consists of the application
of a constant feedback to Eq. (1) at every iteration having
the form
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maps [19].
In Fig. 1 we show the successive iterates (x„vs n plot)

of the quadratic logistic map (4) for r =3.8 subjected to a
constant feedback (2) for diferent values of the feedback
strength (k). When feedback is absent (k =0), system (3)
exhibits chaotic oscillations as shown in Fig. 1(a). The
corresponding Liapunov exponent in this case is calculat-
ed to be 0.43, which is positive as expected for chaotic os-
cillations. However, when the feedback control is
switched on with a strength k = —0.2, the system exhib-
its period-2 (I' =2) oscillations, which is shown in Fig.
l(b) and the chaotic behavior exhibited by the system
shown in Fig. 1(a) is completely suppressed. Further de
crease in the feedback strength to k = —0.3 results in a
stable period-1 (I' =1) or fixed point attractor, as shown
in Fig. 1(c). the Liapunov exponents for the above values
of k = —0.2 and —0.3 are found to be —0.80 and —0.21,
respectively, and their negativity con6rms the observed
regular behavior in Figs. 1(b) and 1(c). From Fig. 1 it is
evident that a constant feedback (with k (0) controls
chaotic oscillations in the quadratic logistic map.

Figure 2 illustrates the control of chaotic dynamics for
the exponential map (4) under the influence of a constant
feedback (2) with strength k )0. Here the chaotic
behavior exhibited by the system (4) at r =2.8 for k =0
[cf. Fig. 2(a)] is converted into period-2 and period-1 os-
cillations as the feedback strength is increased to k =0.S

[cf. Fig. 2(b)] and k =0.95 [cf. Fig. 2(c)], respectively.
The corresponding Liapunov exponents of the exponen-

tial map (4) at r =2.8 are found to be 0.23, —0.84, and
—0.06 for k =0.0, k =0.5, and k =0.95, respectively,
con6rming the dynamical behavior shown in Fig. 2.
Thus it is clear that a constant feedback with strength
k &0 is capable of controlling chaos in the exponential
map.

We now describe the mechanism of controlling chaos
involved in this method by using a simple geometrical in-

terpretation. As an example, we consider the logistic
map ex(3) exhibiting chaotic oscillations for r =3.8 in the

hicha sencebsence of any feedback, i.e., k =0 [cf. Fig. 1(a)] w ic
has been controlled by applying a constant feedbac k
k = —0.3 [cf. Fig. 1(c)]. To illustrate this geometrically,
we have obtained the x, +& versus x„plot of the logistic
map for r =3.8 without feedback k =0 (broken-line
curve) and with feedback k = —0.3 (solid-line curve) as
shown in Fig. 3, where the bisecting line x„+&=x„ is de-

picted by the dotted line. In general, the evolution of x„
for every iteration is obtained by starting with some ini-
tial x„value and moving vertically to the curve to obtain
the x value. We then proceed horizontally until thee x„+&

=x line and use this value for the next iteration,xn+i xn
from where a vertical move to the curve gives the next
x value. Repeating this process for a number of itera-xn+i
tions allows us to visualize the dynamics of the system. It
can be easily seen (cf. Fig. 3) that discrete jumps (from
the upper broken-line curve to the lower solid-line curve)
occur in the value of x, + &

at every iteration as the con-
stant feedback k is applied by the control algorithm.
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FIG. 1. Iterates of quadratic logistic map (3) subjected to
constant feedback (2) for r =3.8 with (a) k =0.0, (b) k =——0.2,
and (c) k = —0.3.

FIG. 2. Iterates of exponential map (4) subjected to constant
feedback (2) for r =2.8 with (a) k =0.0, (b} k =0.5, and (c}
k =0.95.
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negative feedback signals. For example, we have already
shown in Fig. 2 that the system (4) exhibits chaotic oscil-
lations for r =2.8 in the absence of feedback (k =0)
which has been controlled to period-2 and period-1 oscil-
lations by applying the feedback (2) with positive values
of k =0.5 and k =0.95, respectively. Similar control of
chaos can also be achieved for the system (4) for the same
value of r =2.8 by applying constant feedback with nega-
tive values of k = —1.595 and k = —1.695, which results
in period-2 and period-1 oscillations, respectively. How-
ever, Fig. 5 clearly indicates that the exponential map (4)
with negative feedback strength (k (0) exhibits stable
oscillations including chaos within a narrow wedge-
shaped band of k values. As the band becomes narrow
for increasing r, the range of k values used for controlling
chaos correspondingly becomes small. On the other
hand, the behavior of the exponential map (4) with posi-
tive feedback strength (k )0) exhibits the P =2 and 1 re-
gions for a wide range of k, even for high r values. Thus
in the case of the exponential map control of chaos can
be easily achieved with the help of a constant positive
feedback.

It may be mentioned here that we have also applied
this control method to other one-dimensional discrete
maps [19,20] such as

x„+,=rx„ / [1+(ax„)"] (5)

and

x„+,= rx„ l( I+ax„)

where r, a, and b are parameters. We find that the con-
trol of chaos can easily be achieved in these maps with
the help of constant positive feedback. More recently, a
similar kind of control algorithm has also been success-
fully applied to control the chaotic oscillations exhibited
by certain continuous systems described by coupled ordi-
nary difFerential equations, such as the forced DufBng-
Holmes oscillator [24] and certain nonlinear electronic
circuits [25], both experimentally and numerically.

In conclusion, we have shown that it is possible to con-
trol one-dimensional discrete maps in a range of parame-
ters that makes the system exhibit deterministic chaos by
simply applying a constant feedback with negative or
positive amplitude at every iteration. The suggested
method does not require any a priori knowledge of the
dynamics of the system for its feedback signal and also it
does not alter any of the system parameters explicitly.
The algorithm is applied to the quadratic and exponential
logistic maps for various values of parameters. Finally,
we may mention that in this simple method the effect of
applying a constant feedback for a given system either
can produce a resultant system that can exhibit different
dynamical properties from the original one or can be
scaled out leaving the system invariant, as in the case of
the quadratic logistic map [22].
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Department of Biotechnology, India for financial sup-
port.
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