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The strongly correlated stopping of N pointlike charges organized in clusters with a regular geometry
is thoroughly investigated at high velocity as a linear and binary superposition of the stopping of a di-
cluster polarized with respect to the overall drift velocity. For N =3, a priori unexpected N-body and
collective behaviors are identified in terms of variations for the target electron density, cluster topology,
charge distribution, and projectile velocity. The target is featured as a homogeneous and dense electron
jellium quantified with the Wigner coupling parameters rg. A corresponding dielectric function is taken
in a plasmon pole approximation, allowing for a quasianalytic and transparent analysis. A recurring
trend of this study is an enhanced stopping due to charge correlation, increasing rapidly with N. A no-
ticeable counterexample is afforded by a regular N chain of charges flowing parallel to its velocity. As a
rule, in most practical cases of interest, correlated charges within a few atomic interdistances can experi-
ence a stopping that is enhanced by orders of magnitudes relative to the isolated charge case, when
stopped in a target at ordinary matter density, with initial kinetic energy in the tens of keV/amu range.

PACS number(s): 52.40.Mj, 34.50.Bw, 52.65.+z, 52.55.Mg

I. INTRODUCTION

The production and basic physical properties of atomic
clusters are presently given an ever growing attention [1].
The interaction of clusters, in particular metallic or car-
bonlike, with cold or hot targets is envisioned either as an
additional source of knowledge about clusters structure
or as a powerful driver for compressing or processing the
target material in order to achieve a prescribed result.

It is already a well documented fact that many regular
and neutral cluster architectures may accommodate
several additional positive or negative charges without
any further fragmentation. This allows for an efficient
linear acceleration process provided the gradient length
of the given electric field remains larger than the cluster
ion dimensions. These properties are now quite routinely
probed and used in several acceleration experiments and
projects [2] devoted to fullerenelike [3], carbonlike [4], or
metallic [5] ions such as Au¢™. The acceleration and
fragmentation in flight or in target is also a topic inten-
sively investigated [6] for hydrogen clusters. The mass
spectrum of the accelerated particles span a much wider
range than that of normal atomic ions. This allows con-
sideration of heavy cluster ions as a potential driver ex-
tending the capabilities of protons or heavy atomic ions
to inertially drive a pellet to release thermonuclear ener-
gy arising from pressure-induced fusion reactions. In-
tense beams of those particles could thus provide a reali-
zation of some previous scenarios involving mesoscopic
material such as dust or accelerated metallic plates [7].

The extrapolation to cluster ions beams of the concepts
already developed for particle-driven inertial fusion
through light or heavy atomic ions has been recently dis-
cussed [8]. The so-called direct-drive compression, ela-
borating at length on a huge hammerlike effect [9-11]
arising from the enhanced correlated stopping (ECS) in-
vestigated at length in the present work, has already been
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demonstrated to be efficient when operated through clus-
ter ions. The prospects for indirect drive through the
production of x rays confined in a hohlraum around the
thermonuclear pellet look even more promising [12].

The main goal of the present work is to lay the ground-
work for a basic understanding of the strong interaction
of the cluster ion debris resulting from an initial cluster
ion impacting and fragmentating in the target outer lay-
ers. The fragmentation issues are not presently ad-
dressed. It is therefore taken for granted that the cluster
ions get suddenly disrupted under impact, on a fem-
tosecond time scale, through a kind of Coulomb-like ex-
plosion [13].

Moreover, we focus interest on situations where the in-
itial impacting velocities are nearly fully transmitted to
the ion debris. This hypothesis implies that the energy
toll given in the Coulomb repulsion between ion debris
remains negligible with respect to initial cluster kinetic
energy. Such simplifying assumptions have been demon-
strated to be compatible with a bona fide particle-driven
compression [9] of a pellet containing a thermonuclear
fuel. In such a case the interaction of ion debris with the
target may be understood as a stopping process of many
pointlike charges flowing in the vicinity of one another.

The complex interaction of a partially fragmented clus-
ter ion stopped at low velocity in a dense electron jellium
has been addressed by Abril and co-workers [14,15]
through a dicluster correlation contribution averaged out
over relative orientation [16]. Most cluster ion stopping
calculation are performed assuming a quadratic depen-
dence on the charge of ion debris. However, the difficult
issues connected to including a cubic dependence (Barka$s
effect) are currently under scrutiny by Mikkelsen and Sig-
mund [17].

Section II develops a linear formulation of Coulomb
clusters built on pointlike charges in a dense electron jel-
lium target based on the high velocity dicluster approach
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proposed by Basbas and Ritchie [18]. The latter is ex-
tended to an N cluster through a straightforward binary
superposition approximation. Ion-electron interactions
within the target are treated by a plasma pole approxima-
tion [19], allowing for easy and nearly analytic technical
manipulations, while retaining the essential physics in-
volved. Section III demonstrates the strongly enhanced
stopping derived from the considered formalism for an
increasing number of correlated ion debris and how it de-
pends on geometric configurations and sizes. In Sec. IV
we give deeper attention to specific features such as those
displayed by N chains. In Sec. V globally neutral
Coulomb clusters are shown to display a nonzero stop-
ping at finite size.

The incidences of uneven charge distributions are tack-
led in Sec. VI. Straggling is given proper attention in
Sec. VII. Range-energy relationships are discussed in
Sec. VIII and intriguing velocity dependences are demon-
strated in Sec. IX. Concluding remarks are offered in
Sec. X.

II. COULOMB CLUSTER STOPPING

Our technical starting point is a Coulomb cluster of
nearby pointlike charges featuring ion debris resulting
from an energetic fragmentation of a weakly ionized clus-
ter ion accelerated toward a fully degenerate electron tar-
get. Each ion charge experiences a stopping force
through Coulomb interaction with the jellium fluid. The
corresponding physics is considered to be pretty well un-
derstood. For the past 20 years or so, a rather intense ac-
tivity has also been given to formulating in various ways
the stopping mechanisms of two charges flowing close to
each other in a jellium or a harmoniclike collection of
neutral atoms [13-15,17].

In this work, we emphasize a situation for energetic ion
cluster fragments where the kinetic energy per nucleon E
is =10 keV/amu, so the overall drift velocity after im-
pact in the target remains at least two orders of magni-
tude above the transverse velocity due to ion-ion
Coulomb repulsion (intercharge distance =1 a.u.). In
such a case, ion stopping may well be addressed within a
kind of Bohr-Bethe-Bohr formulation. For example,
stopping within solid Li (rg=3.27a,) in this given veloci-
ty range, the stopping time will be ~10713-10712 sec
with a much slower ion-ion relative motion. Such a pic-
ture enables us to consider a frozen configuration of ion
debris building up a kind of Coulomb cluster interacting
mostly with degenerate target electrons. We shall restrict
our attention to regular topologies with constant ion-ion
nearest-neighbor distances. When this is not the case, it
is rather easy to describe the actual situation through
suitable averages of regular Coulomb clusters [9].

A. Stability

The correlated stopping of a cluster of closely related
ion debris is expected to display an observable effect be-
cause the stopping time is expected to remain much
shorter than a typical Coulomb repulsion time. The ratio
of these two times is given by the ratio of the correspond-

ing energies. The Coulomb cluster is therefore experienc-
ing a kind of dynamic stability. Coulomb clusters are
also likely to display static stability. Recently it has been
shown that regular Coulomb clusters [20] may exhibit a
negative binding energy where the target may be modeled
as a rigid background of a neutralizing charged fluid
within the framework of a strongly coupled one-
component plasma. Such a modeling implies a total
neglect of any dynamic interaction between flowing clus-
ter fragments and the target ions. Such a drastic approxi-
mation is likely to be valid over a large part of the
presently considered velocity range. Even without invok-
ing a genuinely bound cluster structure, recent calcula-
tions have shown [21] that a cluster of ten ion charges ar-
ranged regularly on a circumference is barely disturbed
by the target electrons as long as their velocity stays far
below the cluster velocity.

B. Dicluster stopping

Here we briefly review the polarized stopping of a di-
cluster with interdistance R (see Fig. 1) between charges
1 and 2. We follow closely a recent presentation due to
Basbas and Ritchie [18], developed within a three-
dimensional framework in cylindrical coordinates about
the velocity axis v.

First, one immediately retrieves the isolated charge en-
ergy loss per unit length to target electronic excitations,
given as (in a.u.)

2 2
Szewp
p v2

In o, (1)
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for ion cluster fragments with charge Z; =1, velocity v,
and the target plasma frequency o, =v'3/rd’?, in terms
of the Wigner coupling parameter rg=(%mwn, )" 13a
where a is the Bohr radius. m is the electron mass.

For a solid density Li target with r¢=3.27a, the elec-
tron number density will range from n, =2X10'"e cm™3
(r¢=200a,) to n,=4.58X10%e cm™* (rg=0.0327a,),
excluding the relativistic edge at r¢ <0.01a,. The target
medium is taken as a fully degenerate electron jellium in
the so-called plasma pole approximation [18] with the dy-
namic dielectric function e€(k,®) explained as
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FIG. 1. Cylindrical coordinates along velocity for dicluster
stopping with intercharges distance R.
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The choice k., =(2ma), /#)'/? allows the two & func-
tions to coincide at k =k, in the k- plane, depicted on
Fig. 2. Approximation (2) corresponds to dashed curve
on Fig. 2.

Working out the response theory up to the first-order
Born approximation, according to Fig. 1 geometry, we
can write down the dicluster energy loss in the form
(k2=Kk®+ 0 /v?)

So= 2 [ [ S m |
Z*+272+427,Z,J,(kB)
X cos @D ]

=(Z}+2Z3)S,+2Z,Z,S,(B,D) . A3)

The right-hand side of Eq. (3) is straightforwardly inter-
preted as a superposition of isolated stopping contribu-
tions for particles 1 and 2 with a crossed term due to dy-

namic interferences between the two charges. Introduc-
ing Eq. (2) into Eq. (3) yields
e2w? w,D k. kJo(kB)
S,(B,D)=—"~ £
o ) 1) cos | — fo k2+(o[2,/v2
k2 dk #ik“D
== 4
+ fkc o c0s |5 — |Jo(@B) |, @)

where Q2=k2—(wk/v)2 K k2—a) /v?, wk—hk /2m,
k,=2mv /#, and Jy(x) is the usual Bessel function.

Plasma Mode

Single Particle
Excitations

FIG. 2. Spectrum of excitation energies vs wave-vector
transfer g for an interacting electron gas. The upper boundary
of the single-particle excitations is (%#>/2m)[(kr+¢)*—k2] and
the lower boundary is (#/2m)[(—kz+¢q)*—k2]. In the
plasmon model, this spectrum is replaced by a single mode
#iw(q), indicated by the dashed line [after A. W. Overhauser,
Phys. Rev. B 3, 1881 (1971)].

C. N-cluster stopping

Now, it is a straightforward matter to apply Eq. (4) to
any selected (7,j) pair within a given configuration of N
pointlike charges. The corresponding energy loss appears
as a linear superposition of the dicluster one, given by

=[22}]SP+2 S  ZZ;5,(B;,D;), (5

1<i<j<N

ij»

in terms of the definitions (1) and (4). S, is obviously
bounded by the pointlike stopping of the coalesced
charge $M_,Z;. A detailed study of the actual range in
the coalesced limit has been given recently for a partially
degenerate target within the random-phase approxima-
tion for dicluster stopping and for straggling as well [22].

As far as the presentation of numerical results in the
sequel is concerned, it appears convenient to introduce
the ratio of correlated to total stopping [see Eq. (5)]
fulfilling

ZZ,-Z
i DS <1l————=— [EZ] . (6)

An obviously related quantity of great interest is

R=2 3 ZZS,B,

1Si<j=N

2 1<.z'<sz S,(B;;,D;)S,;”!
7{2= Si<j= =
2 715,
Z, \?
7 _ 2%
=< -1, )]

1-%, - 3z
1
denoting the ratio of correlated to uncorrelated stoppmg

Symmetric charge conﬁguratlons with Z,=Z,=
=Zy=Z fulfill #,<1—N"! and R,<N—1. In this
case, one has O.666§sup(7€1)5 1 with 3SN=oo.
sup(#,) refers to the right-hand side of inequality (6).
Selecting a highly asymmetric configuration with
Z,=2Z,=---=Zy =1 and Zy_,, one witnesses
0.59 <sup(#?2,)<0.75 with 3= N =< «. As a consequence,
as confirmed below, one is led to estimate symmetric
configurations as those providing the highest correlated
stopping.

Before detailing the numerical and physical content of
expression (5) in the next section, it should be mentioned
that we have intentionally left aside the important discus-
sion about its validity when arbitrarily large Z; values are
introduced. Here we take the simple view that projectile
charges are fixed during the stopping process and we
push the present linear analysis to its limits in order to
unravel the specific qualitative and semiquantitative
features of correlated ion species in the high velocity
range of present interest.

III. ENHANCED CORRELATED STOPPING

Referring to Eq. (5), the first and obvious manifestation
of the ECS concerns the N dependence for a given spatial
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FIG. 3. Eight-cluster stopping in jellium target for unit
charges located at vertices of a rectangular box.

charge configuration. In order to highlight the basic
physics features of the present model, we first assume
that every correlated charge flows with the same velocity.
For instance, Fig. 3 depicts a regular distribution of eight
pointlike charges with 28 charge-charge connections.
Then if one displays step by step 15 charges on a cubic
box with B=C =D =2 a.u,, as in Fig. 4, one witnesses a
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o
o

Number N of unit charges on a cubic lattice

FIG. 4. Stopping per charges of 1 <N <15 unit charges lo-
cated at the vertices, center, and the face center of a cubic box
BXCXD with B=C =D =2 a.u. The overall drift velocity is
v =2.4 a.u. R, denotes the ratio (7). D|jv.

rapid increase of the stopping per charge and of the
correlation contribution featured by the ratio 72,.

This mundane example demonstrates how efficient the
charge correlation may be, even with a relatively reduced
number of ion debris. The jellium density (rg=3.27a,)
corresponds to a lithium blanket of a thermonuclear
fusion pellet [9].

The next step in investigating the ECS is afforded by
different charge configurations with the same N and
charge connectivity (number of bonds at a given particle
location). In Fig. 5 a boxlike arrangement is compared to
lines of regularly spaced pointlike charges, flowing either
along or transverse to an overall drift velocity. As intui-
tively anticipated, the compact boxlike topology displays
a faster increase in stopping with N. Moreover, linear
charge arrays transverse to velocity are more efficiently
stopped than longitudinal ones.

This example makes it clear that, everything else being
equal, the repartition of charges with respect to velocity
is a significant parameter qualifying stopping perfor-
mances. For instance, if one is looking for an efficient
hammerlike pressure in a given target [9-11], one is led
to prefer compact Coulomb clusters providing the
shortest ranges, with the highest resulting rate of shock
wave production.

It is also very important to investigate, for a given clus-
ter geometry, the size dependence of its stopping capabili-
ties in a given target. For that purpose, Fig. 6 features
the cubic box depicted in Fig. 4 with a charge nearest-
neighbor distance ranging from zero (coalesced) to 2.5 (in
a.u.), at three target densities differing by order of magni-
tude. As expected, the stopping per charge steadily de-
cays as the size increases, while the correlation ratio
spans nearly all of its allowed range [Eq. (7)], including
the upper bound N —1 at full coalescence. It also de-
creases rapidly and even goes down to zero at very small
target electron correlation length ~1.1r4/2 [cf. Fig. 6(c)
with r4=0.0327a,].

07+

0 2 4 6 8 10 12 14 16

STOPPING POWER/CHARGE (a.u.)

NUMBER UNIT CHARGES

FIG. 5. Stopping per charges of 1 =N <15 unit charges, dis-
tributed on three different arrangements. v =2.4 a.u. and
rs=3.27a,. (a) Centered cubic box B=C=D=1 a.u. (b) N
chain B =1 a.u.lv. (c) Nchain D=1 a.u. ||v.
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FIG. 6. Stopping per charges and correlation ratio 7, of 15
unit charges located at the vertices, center, and the faces on cu-
bic boxes of various sizes. D||v. (a) rs=3.27a, and v =2.4 a.u.
(b) rs=24 a.u. and v =0.327. (c) rs=0.0327a, and v =43 a.u.

IV. N CHAINS

Once generic trends of the ECS are identified, it is of
special interest to focus attention on specific stopping
features. Within the present formalism, the simulation of
the behavior of large N chains with N >>1 is easily
affordable. This allows us to contrast more effectively the
stopping of N chains respectively parallel and transverse
to v, already alluded to in Fig. 5. According to Egs. (4)
and (5), the oscillatory patterns, in particular, for N
chains along velocity, are monitored by the ratio w,D /B.
Figure 7(a) corresponds to a value 0.1220, while Fig. 7(b)
has 0.9763. In both situations, the longitudinal propaga-
tion exhibits oscillations and the transverse one shows a
similar trend. After a rapid increase with N, the trans-
verse N chains experience a well-behaved plateau
behavior for the stopping per charge. At large N value,

(a

o
IS

0.35
0.3
0.25
0.2

0.15
0.1
0.05

STOPPING POWER / CHARGE (a.u.)

NUMBER UNIT CHARGES

STOPPING POWER / CHARGE (a.u.)

NUMBER UNIT CHARGES

FIG. 7. N-chain stopping of unit charges in solid Li
(r¢=3.27a,). (@) v=2.4a.u.and B=D =1a.u. (b)v=0.6a.u.
and B=2a.u.
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longitudinal chains obviously experience a strong and
negative correlation contribution to stopping.

The remaining overall energy loss, while still positive,
appears to arise only from a few particles. All other par-
ticles seem to experience a kind of surfing effect, with
practically no stopping at all. On the other hand, the
transverse N chains display a pattern where every charge
contributes the same definite amount. In that case, every
particle has to make its way, while keeping track of its
neighbor through a strong and positive correlation con-
tribution.

With a view toward future fusion applications, it is of
interest to gain more insight about the promising
behavior of the transverse propagation. In Fig. 8 we con-
sider a target a little more dense than that discussed
above (rg=2.1446a,) with a nearest-neighbor transverse
distance of B =1 a.u. In Fig. 8(a), we picture first an ob-
lique propagation at 7 /4 relative to v. The profile in N

(a)

STOPPING POWER / CHARGE (a.u.)

NUMBER UNIT CHARGES

0.8

Ry

-1 0.2

-0.2
0 20 40 60 80 100 120

STOPPING POWER / CHARGE (a.u.)

NUMBER UNIT CHARGES

FIG. 8. N-chain stopping of unit charges in a dense jellium
target (rg=2.1446a,). (a) /4 propagation with B=D =1 a.u.
and v =1 a.u. (b) Transverse propagation with B =1 a.u. and
v=1au.

of the stopping per charge appears to be strikingly similar
to the pure transverse profile [Fig. 8(b)] with D =0. Such
a result is quite encouraging as far as matter compression
is concerned. It demonstrates that only the pure longitu-
dinal N-chain propagation with B =0 might be deleteri-
ous in allowing a strongly reduced stopping efficiency and
a resulting longer range in target. Actually, a closer scru-
tiny [22] of the plasmon pole approximation (2) shows
that more damping has to be included in order to partial-
ly bridge a gap with an actual target, which indeed brings
in a more efficient longitudinal stopping efficiency. In
Figs. 8(a) and 8(b) the saturation plateau occurs for a
correlated stopping higher than 50% of the total, as
featured by the ratio 7.

It is also of theoretical interest to notice that a weak
correlation contribution to stopping persists even for a
very nearest-neighbor interdistance. In Fig. 9 we see that
with B =D =100 a.u., both transverse and longitudinal
N chains still behave qualitatively as former ones, where
B =D =1 au. Of course, as expected, the value of the
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FIG. 9. Stopping N-chains unit charges with very large inter-
charge distances. (a) Transverse propagation with B =100 a.u.,
v=1 au., and rg=2.1446a,. (b) Parallel propagation with
D =100 a.u.,v=1.2 a.u., and r¢ =3.27a,.
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FIG. 10. Stopping of an overall charge neutral cubic box ar-
rangement in terms of intercharges distance. (a) v =2.4 a.u. and
rs=3.27a,. (b) v =13 a.u. and rs=0.0327a,. (c) v =2.4 a.u.
and rg=32.7a,.
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stopping per charge is now very close to the isolated
charge value, especially in the transverse case. The in-
terest of the comparison lies in the fact that for very
small correlations, one witnesses a positive contribution
for a transverse N chain and a negative contribution lon-
gitudinally.

V. OVERALL NEUTRAL COULOMB CLUSTERS

The flexibility and power of the unassuming expression
(5) is demonstrated once more by the straightforward in-
sight it allows for rather exotic charge configurations. In
real experimental situations, it is not uncommon that due
to charge fluctuations in target an excess of electrons can
stick to a given ion debris.

It is also likely that the so-called convoy electrons may
be dragged at same velocity v along ion debris. In such a
case, one is confronted with a Coulomb cluster with
pointlike (or nearly pointlike) charges of either sign. A
rather obvious realization of such a situation within the
present modeling may be pictured as a boxlike structure
of positive and negative charges regularly spaced, as seen
in Fig. 10(a), featuring a globally neutral but extended
system of charges. In such a case, with geometric and
dynamic parameters already used previously for one sign
clusters, one observes a behavior opposite to that already
seen. At vanishing interdistances, coalescence now
reduces stopping to zero, while an increasing cluster size
now causes the energy loss to increase. Of course, such
an increase has to be bounded for very large interparticle
distances. This is indeed confirmed in Fig. 10(b) for a
very dense target (r¢=0.0327a,) with a very short de-
generate electron screening length, which thus clearly
limits the stopping growth by the isolated charge
value, with a vanishing ECS. Figure 10(c), with
r¢=32.7a,(n, ~4.6X10"%e cm~? in Li) illustrates the op-
posite case of a more dilute target with a slower ECS
variation.

It is also of interest to notice that the propagation
along v (Fig. 11) of N chains of alternate charges could
decrease significantly the energy loss per charge below

0.055
0.05
0.045
0.04
0.035 -
0.03 -
0.025
0.02 >
0.015 ; ; ~

STOPPING POWER / CHARGE (a.u.)

Number Unit Charges

FIG. 11. Parallel stopping of N chains of alternate unit
charges with v =5 a.u. and rg =2.1446a, for two values of inter-
charges spacing.
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the isolated charge value. In the case at hand, in Fig. 11,
that reduction is by a factor of 3. Also, previous smooth
oscillations (see Fig. 7, for instance) are now replaced by
a sawtooth profile.

VI. UNEVEN CHARGE DISTRIBUTIONS

In order to make conspicuous the above displayed
trends of the present formulation, we have purposefully
restricted our discussion to Coulomb clusters with equal
charges. Now, we release that limitation by considering a
configuration of four charges located on vertices of a rec-
tangle with one of its sides parallel to velocity [Figs. 12(a)
and 12(b)]. In Fig. 12(a), we also put an extra charge at
the center, while the charge Z of one vertex is changing.
One thus witnesses a steady increase with Z of the stop-
ping per charge, in view of the strong connectivity of this
flat cluster. In Fig. 12(b) we investigate how a system of
eight charges arranged in various repartitions at vertices
and the center can influence the resulting energy loss, in
terms of velocity.

According to the quadratic charge dependence of ex-
pression (5), the symmetric distribution 2+2+2+2
displays the largest energy loss. Similar trends are ob-
served in three dimensions.

Figure 13 displays a regular pyramidlike structure of
five charges. Figures 13(a) and 13(b) now contrast the
behavior of ECS, here featured by the correlation ratio
AR ,. For five unit charges [Fig. 13(a)] a large portion of
stopping is due to the ECS, while in the asymmetric case
pictured in Fig. 13(b), with a quadrupled charge at the
pyramid vertex, the ECS drops by at least a factor of 2.
The ratio #7; now pertains to the ratio of the largest
charge stopping relative to total. It is a striking feature
that in contradistinction to other quantities, the largest
charge stopping remains nearly constant with increasing
velocity.

Similar trends are displayed by cubic clusters of unit
charges centered with a much higher one, as shown in
Fig. 14. The cubic box centered with a charge 8 at its
center [Fig. 14(a)] exhibits a behavior very close indeed to
that in Fig. 13(b), but extended to a much larger velocity
range. On the other hand, the neutral combination
8X1—8 featured by Fig. 14(b) also emphasizes the
specific features of an overall Coulomb cluster, already
obtained in Sec. V. As a net result, when the cluster size
increases, its energy loss reduces to that of the largest
charge. Those specific behaviors would well introduce
useful simplifications in the complex treatment of real ex-
perimental situations.

VII. STRAGGLING

Up to now, it has been implicitly assumed that every
ion debris flows in a target at the same velocity v. Here
we intend to remove such a restriction by investigating
the quantitative significance of energy straggling. The
corresponding analysis parallels that given in Sec. II for
the stopping power.
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Starting with correlated dicluster straggling one has
(see Fig. 1)

Q,;=(Z}+22)05+2Z,Z,0;
2e? [ w © w’dw 1
= — I —_
p— fo KdKfo k2 m elk,w)

X |Z*+Z%3+27Z,Z,J,(kB)

X cos , (8)
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where, as in Sec. II, k2=«*+w?/v% The expression on
the right-hand side of (8) corresponds to one moment
higher in o relative to the stopping expression (3). In Eq.
(8) the isolated particle contribution reads
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e’w’ w,D «, kJo(kB)d Kk
Q= 2,0 cos |2 f 0 3
v 2+£0_P_
k 2
# ky #ik 2D
+ B) | ,
e, fkc dk k cos | == |7o(QB)

(10

with Sec. II notations. As above, the extension to a
Coulomb cluster of N particles is now straightforward.
Equation (5) for stopping is therefore paralleled with

ﬂe=[ZZi2]Q§+2 S Z,Z,0XB;,Dy;) (11)

1<i<j<N

ij»

for straggling. In Fig. 15 we contrast expressions (5) for
stopping and (11) for straggling by considering a distribu-
tion of four unit charges at the vertices of a rectangular
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rs=2.1446a, in terms of B=C =D. D|jv. (b) Same as in (a) for
straggling.

tetrahedron. The overall behaviors are pretty similar
when the cluster size increases. However, stopping is
quantitatively more important, which gives some ground
to the neglect of straggling in the polarized picture advo-
cated here. Also, the correlation enhancement seems a
bit less effective for straggling.

Switching to a cubic box with eight charges at vertices,
Fig. 16(a) displays straggling variations in terms of veloc-
ity, while Fig. 16(b) features the effects of an increasing
transverse size with respect to velocity. Again, those
behaviors are close to their corresponding stopping coun-
terparts. From the straggling quantity rewritten as
(AE?) and the stopping power dE /dx, one obtains the
uncertainty on the interchange distance

N1/ (AE2)1/2
(AR?)!= dE/dx ’

which may account for inflight deformations of a given
charge configuration.
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VIII. RANGE-ENERGY RELATIONSHIPS further compression of dense matter through intense

beams of cluster ions, we picture in Fig. 17 (in physical

The ECS, amply documented in most of the previously units of practical interest) several range-energy relation-
considered stopping situations, should lead to much ships for dense jellium targets pertaining to the same cu-

shorter stopping ranges in a target. With a view toward bic arrangement of eight unit charges and to several ma-
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terials of potential interest as the convertor of the beam
kinetic energy into hard photons (x rays). Qualitative re-
sults depicted in Fig. 17 look similar to those pertaining
to atomic beams. However, as expected, the cluster
ranges are shorter by an order of magnitude at the same
projectile energy per nucleon. The given energy range (a
few hundreds of keV/amu) is affordable on many tandem
Van de Graaff linear accelerating structures, when adapt-
ed to deliver cluster ion beams.

IX. VELOCITY DEPENDENCE

Despite that the stopping dependence on velocity has
already been met several times, it appears instructive to
investigate more thoroughly some specific and unexpect-
ed trends. In particular, an interplay between v and rg
may unravel new features. The stopping of eight unit
charges on a cubic box is shown in Fig. 18, in a rather
low density target (rg=6.678a,). Figure 18(a) exhibits at
moderate v values ( <3.5 a.u.), a behavior ~v ~2 close to
a Bethe-like decay, with a corresponding correlation de-
cay. However, at higher velocity [Fig. 18(b)], one ob-
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serves a nearly constant correlation ratio R ,, while stop-
ping itself remains Bethe-like.

The relative increase with v of the correlation contribu-
tion stopping is expected on several grounds. Moreover,
the interplay of v and rg in very dense targets can lead to
even more intriguing results. In Fig. 19 we consider a
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target with r¢=0.327a, (n,=4.5X10%¢ cm™? in a tar-
get), a cubic arrangement of eight unit charges [Fig.
19(a)], and a face centered cubic arrangement of 15
charges [Fig. 19(b)], with v =25 a.u.

Here, again, 72, increases significantly at high velocity.
It displays a minimum for 5<v <10 a.u., which turns
slightly negative for the face centered arrangement [Fig.
19(b)]. However, in both cases stopping decay is essen-
tially patterned through a two-slope process. A rapid de-
crease at v <10 a.u. is followed by a much smoother one.

Even more exotic behaviors are seen in Fig. 19(c) for a
cubic arrangement of 15 charges stopped in an even more
dense target (r¢=0.0327a,). Then, one witnesses practi-
cally no stopping decay at all with increasing v. Both to-
tal stopping and correlation stopping oscillate strongly at
any v value. R, features as many negative contributions
as positive ones, although the geometry and the size of
the considered Coulomb cluster do not change at all.

X. CONCLUDING REMARKS

We have seen how rich and diverse the physics of the
stopping of Coulomb clusters in a jellium target is. In
most situations of potential experimental interest, corre-
lation among ion debris is expected to bring in a very
strong stopping enhancement. The latter essentially de-
pends on size, topological arrangement of particle loca-
tions, and charge distributions as well. The most sym-

metric ones are the most effective.

The very simple N-body model based on Egs. (5) and
(11) is actually full of unexpected features. Among them
the very intriguing negative correlation brought about by
a longitudinal propagation of a linear N chain parallel to
its velocity should be addressed further. Also, the in-
creasing correlation contribution with velocity to the
stopping has to be given more scrutiny. The above stud-
ies make it clear that a most efficient target compression
should be achieved through compact arrangements of
pointlike charges. At a conceptual level, it should be ap-
preciated that the present model allows for a rather
pedestrian approach to the difficult issues of the interac-
tion physics based on non-point-like objects, as highlight-
ed by the stopping increasing with the size of a globally
neutral Coulomb cluster.

Obviously several points have been left for further en-
deavor. They include Z3 contributions, the introduction
of relative angular averages to bridge the gap with avail-
able low velocity stopping results, and also a suitable in-
flight charge evolution during the cluster penetration in
target.

ACKNOWLEDGMENT

The Laboratoire de Physique des Gaz et des Plasmas is
Unité Associé au Centre National de la Recherche
Scientifique.

[1] See W. A. De Heer, Rev. Mod. Phys. 65, 611 (1993), for a
recent introduction to metallic clusters.

[2] P. Attal, S. Della-Negra, D. Gardes, J. D. Larson, Y. Le
Beyec, R. Vienet-Lequé, and B. Waast, Nucl. Instrum.
Methods A 238, 293 (1993).

[3] S. Della-Negra, A. Brunelle, Y. Le Beyec, J. M. Curau-
deau, J. P. Mouffron, B. Waast, B. V. R. Sundquist, and E.
Parilis, Nucl. Instrum. Methods B 74, 453 (1993).

[4] K. Boussofiane-Baudin, A. Brunelle, P. Chaurand, J.
Depauw, S. Della-Negra, P. Hikanson, and Y. Le Beyec,
Int. J. Mass Spectrom. Ion Processes 130, 73 (1994).

[5] Ch. Schoppmann, P. Wohlfart, D. Brandl, M. Sauer, Ch.
Tomaschko, H. Voit, K. Boussofiane, A. Brunelle, P.
Chaurand, J. Depauw, S. Della-Negra, P. Hikanson, and
Y. Le Beyec, Nucl. Instrum. Methods B 82, 156 (1993).

[6] M. Farizon, N. V. De Castro Farcia, B. Farizon-Mazuy,
and M. J. Gaillard, Phys. Rev. A 145, 179 (1992).

[7]1 F. Winterberg, Z. Phys. A 296, 3 (1980); T. Yabe and T.
Mochizuki, Jpn. J. Appl. Phys. 22, 1.262 (1983).

[8] C. Deutsch, Laser Part. Beam 8, 541 (1990); 10, 355 (1992).

[9] C. Deutsch and N. A. Tahir, Phys. Fluids B 4, 3735 (1992);
Nuovo Cimento 106A, 1811 (1993).

[10] E. Nardi, Z. Zinamon, and D. Ben-Hamu, Nuovo Cimento
106A, 1839 (1993).

[11] S. Eliezer, J. M. Martinez-Val, and C. Deutsch, Laser
Part. Beam (to be published).

[12] N. A. Tahir, D. H. H. Hoffmann, J. A. Maruhn, and C.
Deutsch, Nucl. Instrum. Methods B 88, 127 (1994), and
(unpublished).

[13] D. Kella, M. Algranati, H. Feldman, O. Heher, H.
Kovner, E. Malkin, E. Miklazky, R. Naaman, D. Zajfman,
J. Zajfman, and Z. Vager, Nucl. Instrum. Methods A 329,
440 (1993).

[14] I. Abril, M. Vidanek, A. Gras-Marti, and N. R. Arista,
Nucl. Instrum. Methods B 67, 56 (1992).

[15] M. Vidanek, I. Abril, N. R. Arista, and A. Gras-Marti,
Phys. Rev. A 46, 5745 (1992).

[16] N. R. Arista and A. Gras-Marti, J. Phys. Condens. Matter
3, 7931 (1991).

[17] H. H. Mikkelsen and P. Sigmund (unpublished).

[18] G. Basbas and R. H. Ritchie, Phys. Rev. A 25, 1943 (1980)
and references cited therein.

[19] A. W. Overhauser, Phys. Rev. B 3, 1888 (1971).

[20] K. Tsuruta and S. Ichimaru, Phys. Rev. A 48, 1339 (1993).

[21] A. Bret, Ph.D. thesis, Université Paris XI, Orsay, 1994;
Nucl. Instrum. Methods B 88, 107 (1994).

[22] A. Bret and C. Deutsch, Phys. Rev. E 47, 1276 (1993); 48,
2989 (1993).



