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Friction-induced self-organization of a one-dimensional array of particles
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We study the frictional motion of a linear array of parallel identical cylinders on a plane where
all interparticle and particle-plane contacts can be described by a Coulomb friction law. The entire
system can be characterized in its steady state by an e8'ective coeKcient of friction and an e8'ective
inertia, both varying with the external driving force. In the steady-state regime, the organization of
the array appears as regions involving difFerent rotation modes (sliding with no rotation, rolling on
the support, alternate rotations, etc.). The mechanisms leading to this self-organization in modes
are studied analytically.

PACS number(s): 46.10.+z, 81.35.+k

I. INTRODUCTION

In the context of standard continuum mechanics, the
only Geld needed to describe the elastic deformation of
a solid body is the displacement Geld alone. Rotations
do not appear. They can be computed indirectly from
the rotational of the displacement Geld. Other elasticity
theories have been developed in order to account for the
rotational degrees of freedom of a solid material, such
as "Cosserat" or "micropolar" theory [1]. Dimensional
analysis shows that an intrinsic length scale A has to be
introduced. This length may be interpreted as the scale
below which rotations can signiGcantly differ from those
deduced from the rotation of the displacement Geld. At a
larger scale, the difference vanishes, and thus upon coarse
graining the standard theory is recovered.

In the case of granular materials, the discontinuous ge-
ometry of the solid phase, and thus of the displacement
Geld, makes it difBcult to establish a direct connection
between a discrete description at the particle level and a
continuum homogenization at a large scale. In particular,
the effect of individual rotations appears to play a deter-
mining role [2]. Although the framework of Cosserat the-
ory seems more suited to such media, it does not appear
to provide a simple key to the analysis. Some attempts
in this direction have been proposed [3]; however, basic
questions remain, such as the identiGcation of this intrin-
sic length scale, which is often postulated to be a typical
particle size. Other effects may motivate the study of
rotations in granular media, such as the propagation of
sound [5,6].
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Considering only the rotations of particles, one major
diKculty appears immediately: the generally disordered
geometry of the packing of particles induces a "frustra-
tion" of rotations. To mention only the two-dimensional
case, as soon as a "loop" of contacting particles contains
an odd number of elements, rotations of the particles in
the loop are not possible without friction being mobilized
on at least one contact. We employ the word frustra-
tion in analogy to the physics of spin glasses, where the
presence of antiferromagnetic coupling between neigh-
bors makes it impossible to satisfy all couplings simul-
taneously. We will not try here to develop the compari-
son between these two fields any further, although some
suggestions along these lines have been proposed [4].

In this paper we consider a very simple system consist-
ing of an array of disks in mutual contact supported by a
plane. Two neighboring particles are in contact with the
plane and thus a pair of particles and the support form
a loop of three solids such that rotations are frustrated.
Since frustration involves sliding on at least one contact,
it is important to incorporate the friction law accurately
in the description of the system. We will consider here
the most basic law of friction, namely, Coulomb's law of
friction.

When the array is pushed in the direction of its mean
orientation, particles will move and rotate and a collec-
tive organization of rotations will emerge. This organiza-
tion is rather complex. In particular, it involves typical
length scales which may be much larger than the particle
size, depending on the coeKcients of friction (interparti-
cle and particle-plane) and the confining pressure. This
observation might motivate revisiting discrete-continuum
transition through the analysis of intrinsic length scales
different from the particle size.

In order to present our approach, we will Grst describe
in Sec. II the simple case of a single particle being pushed
on a plane. In Sec. III, we will consider the more gen-
eral case of a long array and report on some numerical
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simulations. In Sec. IV, we will study analytically the
collective organization of the array and describe the dif-
ferent phases observed. We wiH discuss the transition
between the diferent phases and the expected effects on
the global motion of the entire system.

II. THE CASE OF A SINGLE PARTICLE

V

0
IM

N —S,
B —1 —T,
S —T,

where the first two equations refer to Newton's law of
motion in the horizontal and vertical directions, and the
last one accounts for the rotation.

To find. a complete solution to the equations of dy-
namics, we need two more equations prescribed by the
friction law at the two contact points. A friction law is a

Consider first the geometry illustrated in Fig. 1: A
single disk supported by a basal plane is pushed by a
constant horizontal force ¹ The mass and radius of the
particle are assumed to be unity. The acceleration of
gravity is set to unity as well. All quantities are normal-
ized with respect to these natural units of the problem
and, in particular, the moment of inertia I is a mere ge-
ometric constant. The friction between the particle and
the support is assumed to obey Coulomb's law with a
friction coeKcient p'. The friction between the particle
and the pushing block also follows Coulomb's friction law
with a coeKcient p. The translational and angular veloc-
ities of the particle are called v and u, respectively. We
are interested in the steady-state regime, where the ac-
celeration is constant. All solids are assumed to be rigid,
and thus they cannot interpenetrate. Figure 1 gives the
convention used for the orientation of the forces. The
tangent force at the particle-block contact is called T,
whereas the friction force on the support is S. The nor-
mal reaction of the support is B.

The equations of the dynamics are the following:

relation between the friction force and the relative tan-
gential velocity at the contact point between two solids.
The graph of this relation for Coulomb's law is displayed
in Fig. 2. In two dimensions, it is written

v„=0mTc [ p, N—, p,N],
n„) O~T= —p%,
v„&O~T=pN,

(2)

T = pN,
B = 1+pN,
S = I+~i N,

v = i I N,

where v„ is the relative tangential velocity and T and N
are the tangential and normal components of the contact
force. In the case where v„= 0, there is no equation
relating the tangential force to the normal contact force.
In the present case of a single particle, we wiH consider
di8'erent configurations with diferent relative velocities
at the contact points and we will show that the &iction
force is ajtmays uniquely determined. In the next section,
we will discuss a more general formulation of Coulomb's
law adapted to dynamical systems [7].

There are two particular values of rotation velocities:
ui ——0 and w2 ——v. Depending on the relative position
of u with respect to these particular values, the tangent
force at the contacts will assume di8'erent values. How-
ever, up to a change in the origin of time, the position of
~ with respect to the key values w,. can be equivalently
analyzed through the relative positions of the accelera-
tions u with respect to u, , since we are interested in the
steady state, where the accelerations remain constant in
time. Five diferent cases can be distinguished.

(1) w ) v. In this case, we have T = pN and S =
—p'B. Since both tangent forces, T and S, contribute
to a torque opposite to w, the angular acceleration has
to turn negative. Therefore, no steady-state solution can
be found.

(2) ~ = v. In this case, T = pN, but S cannot be de-
duced directly from Coulomb's law. However, the kine-
matic constraint u = v sufBces to determine the system
entirely. The complete solution is written

For this solution to be acceptable, the condition ~S~
p'B has to be satisfied. This gives a constraint on the
value of N:

(3) 0 & w & 6. In this case, T = IJN and S = p'B as
given by Eq. (2). The complete solution of the system is

— pN N

FIG. 1. Geometry of the single-sphere problem. FIG. 2. Coulomb's law graph.
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T = pN,
B = 1+pN,
S = p, '(1+p%),

v = —p, '+ (1 —p'p)N,
~ = 1(p' —(1 —p')p~)

Compatibility of this solution with the conditions 0
& v sets the following constraints on the values of ¹

N&&N&N2 —— p
p(1 —p')

(4) ~ =0. In this case, S = p, 'R while T is not deter-
mined by the friction law directly. The condition ~ = 0,
however, gives an additional constraint which leads to

N —Mm =mv,

(a+I)
(~—s)'

m*=g
(i—s"c ) '

l

N&N&
N&&N&N2
N2 &N.

(10)

where M is the coefBcient of friction at the block-plane
contact. Now, a look at the steady-state solutions of the
single-particle problem [Eqs. (3), (5), and (7)] in difFerent
regimes shows that they can all be written in the canon-
ical form of Eq. (9) if we introduce an effective inertia
m' and an effective coeQcient of friction M':

P
~l)

1—I"' '
P

] ~l)

I

1—p. ' '
Cd = 0.

The condition ~T~ & pN implies

N) N2.

0.30

0.25

(5) m &0. Inthiscase, S= p'Rand T= —p¹As
in the first case, the two tangent forces contribute to a
torque opposite to u and thus no steady-state solution is
possible.

In this way, the dynamics of the block-particle sys-
tem show three possible steady-state phases: rolling
(phase 1), rotating and sliding on the plane (phase 2),
and sliding on the plane without rotating (phase 3). Fig-
ure 3 shows the friction force S at the particle-plane con-
tact as a function of the driving force N. The former
increases linearly with the applied force in the two first
phases to saturate to a value greater than p' in the last
one.

As long as the translational motion of the particle is of
interest, these results can be compared to the dynamics
of a rigid block of mass m, pushed by a force N. The
respective equation of motion is written

The "effective friction force" on the plane is given by
M'm*. While it is obvious that the inertia m* should
depend on whether the particle slides or rolls, it is sur-
prising that the coefFicients of friction p, and p' enter the
expression for the inertia. Note that the effective iner-
tia is piecewise constant, and decreases by steps with ¹

Similarly, the effective coeKcient of friction M* also de-
pends on the driving force in a piecewise constant man-
ner, increasing with ¹ The first case, which corresponds
to a low applied force, is somewhat counterintuitive. The
effective coefBcient of friction is exactly zero, even though
there is a nonzero friction force in the system. This fric-
tion force being proportional to the acceleration, it only
contributes to the effective inertia rather than to the co-
efBcient of friction M*. We will see below that this be-
havior remains qualitatively valid for an array of parti-
cles, with essentially the same low force behavior (zero
coefficient of friction).

The steady state can be characterized equivalently by
the rotation of the particle. The relevant dimensionless
variable is then n = ~/v. The steady-state diagram in
the N —o,' space is shown in Fig. 4. For a given value
of the driving force, whatever the initial velocities, o. is
attracted to a point on the steady-state diagram. In
phase l, the steady-state value of o. is equal to unity,
while it is equal to zero in phase 3. In phase 2, o.' de-
creases with the driving force as

1 p' —(1 —p') pK
I (1 —pp')N —p'
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FIG. 3. Evolution of the particle-plane friction force as a
function of the driving force ¹ All forces are normalized
with respect to the weight of one particle (see text). The
first regime N & Nq corresponds to rolling on the support,
the intermediate regime Nq & N & N2 corresponds to partial
rotation where both contacts are sliding contacts, and finally
in the last regime N ) Nq, the particle slides on the support
with no rotation. Here, p = 0.1 and p' = 0.2.

0.0—

-O.2 ——
0.0 1.0 2.0

N

3.0 40

FIG. 4. Steady state of the single-particle problem in N —n
space, where n = —. . All forces and accelerations are normal-
ized (see text). The steady state depends only on parameters
and not on initial conditions. Here, p = 0.1 and p' = 0.2.
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It can also be shown that the particular motion of the
particle, for a given driving force, is the one that mini-
mizes the dissipation.

In the equations of the problem, the particular value
of unity for the coeKcients of friction appears to play a
key role. So far, we have tacitly assumed that the two
coeKcients of friction were smaller than unity. However,
it is now straightforward to understand what happens
when this is not the case. If p ( 1 and p' & 1, then the
only steady state is phase 1: the particle can only roll
on the plane. If p ) 1 and p' ( 1, then it is phase 3
that dominates the steady state: the particle can only
slide on the plane. In the case where both p and p' are
greater than unity, no motion at all is possible! The par-
ticle simply sticks to the plane. It is easy to see that if
the driving force % had a component downward, then
the same situation would occur even for smaller values
of the coefBcients of friction. In this respect, unity has
nothing special and rejects only the particular geome-
try we consider here. In a long array of particles this
same eKect takes place when the coefBcients of friction
are greater than unity, and the applied force is screened
by the particle in contact with the pushing block. This
observation suggests that in granular media, things will
change radically when the interparticle coeKcient of fric-
tion is high enough. In the forthcoming sections we will
assume that the coeKcients of friction are smaller than
unity.

III. A QNE-DIMENSIQNAL ARRAY
QF PARTICLES

The study of the motion of a single particle provides us
already with some insight into the question we address
in the general case of a long array. How are the rotations
of the particles organized in the steady state'? How does
the motion of the system depend on the applied force?
Our aim is to propose a global description of the fric-
tional motion of this system as a result of the collective
organization of rotations.

We have set up a computer program to simulate the
motions of particles on a plane. The case of a single par-
ticle (Sec. II) shows that the friction law is actually the
most important ingredient of the problem. Our program
prescribes the exact Coulomb law (with no regulariza-
tion) at the particle-particle and particle-plane contacts.
We are interested in the situation where each particle
remains in contact with its neighbors, so that the whole
system can be considered as a single object. This require-
ment is motivated by our purpose here to focus on the
role played by the rotations in the translational motion
of the array. Only if all interpartirle contacts are closed
can the global translation be defined. Hence, the system
we simulate is collision free and the relative velocities at
contact points are only tangential. Moreover, our system
involves no cohesion force and no elasticity.

As we shall see later in this section, the close-contact
condition is satisfied only for a limited region in the pa-
rameter space. We add a second block to confine the
array, where a constant force opposite to the direction of

A. Governing equations

Figure 5 shows a scheme of the array with the sign
conventions for forces used throughout this paper. With
these conventions, the equations of dynamics for each
particle i are written

(12)

The boundary conditions are

N(L) = Nl„
N(0) = Np.

There are 5L+ 1 variables to be determined, whereas we
have only 3I equations given by dynamics. The remain-
ing 2L+ 1 equations are prescribed by the contact law
at the 2I + 1 contact points.

In order to avoid any artifact in the solution of our
equations, we would like to use the exact Coulomb law
of friction. However, it is not straightforward to im-
plement it in an algorithm, since, as shown in Fig. 2,
the (v„T) should belong to a set of admissible values.

1.0
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FIG. 5. (a) An array of particles on a plane. (b) Forces
exerted on the particle i and sign conventions.

motion is applied to the first particle of the array. Al-
though this new parameter is neither necessary nor sufFi-
cient to prevent particle-particle contacts from opening,
it is, in general, a very useful control parameter, espe-
cially when the driving force is weak. So, the parameters
are the following: p, p', and p" are the coeKcients of
interparticle, plane-particle, and block-particle friction,
respectively. The driving force NI„ the confining force
No, and the number of particles L are the other param-
eters, as shown in Fig. 5.
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0 and
v„= 0~ ( v„) 0 and

V~ ( 0 arid
v„& 0~ T= —pN,v„( Om T=p¹

T c [ pN, p, lV'], —
T = —pN,
T= pN)

A mathematical framework for handling such problems,
known as nonsmooth analysis, has been developed [8].
In static equilibrium, where all the relative velocities are
zero, Coulomb's law results indeed. in an indeterminate
state of forces (the so-called hyperstaticity of a sand-
pile at equilibrium). Nevertheless, in a dynamical system
where the particles are moving and the states of contacts
are permanently subject to change, the friction force on
the vertical branch of Coulomb's law can be determined
in a unique way. We have shown this explicitly in the
case of the single-particle problem. The main point is
that one has to distinguish the contacts where the rela-
tive tangential velocity remains equal to zero from those
where this is not so. In terms of the relative accelera-
tions, we would say that there are two classes of contacts
where the relative tangential velocity is zero: one where
only the relative tangential velocity is equal to zero and
one where both the relative tangential velocity and accel-
eration are equal to zero. We shall call them active con-
tacts and nonsliding contacts, respectively. Whenever a
contact is active, i.e. , when v„= 0, there are three differ-
ent alternatives distinguished by the relative tangential
acceleration v„at the contact.

(I) 6„=0. In this case, the contact is nonsliding. The
friction force T has to be in Coulomb s limits [

—pK, pK],
where N is the normal force at the contact. Here we have
an equaiton and an inequality. When the equation v„= 0
supplements the equations of dynamics, we get the values
of T and N and we can check for the inequality. If the
inequality is satisfied as well, then we have the solution.
If this is not so, we have to switch to one of the two other
alternatives.

(2) i„)0. In this case, the contact is sliding although
it is active. So, we have to put T = —pN following the
sign convention of Fig. 2. We supplement the equations
of dynamics with the latter equation, from which we cal-
culate v„among others, and we check for the inequality.
If the inequality is not satisfied, then we turn to another
alternative.

(3) v, ( 0. This is the same as the second case except
that the corresponding equation is T = p¹

In this way, Coulomb's law in its most general formu-
lation takes the following form:

v„=0 and T ( —pN
v„= 0 and T &+pN
T = —p% and v„(0
T =+pN and v„& 0

T = —pN,
T =+@K,
v„= 0,
v„= 0.

This procedure has to be applied simultaneously to all
active contacts.

The evolution of the system can be studied starting
from a random initial state. The easiest way to generate
initial conditions is to choose initial velocities in such a
way that all contacts are sliding. For a given value of the
driving force NL„all accelerations and forces can then
be determined. . These values do not change unless some
contact becomes active. Meanwhile, the motion of each
particle is uniformly accelerated and the time bh needed
for some contact to become active is simply given by

At this moment, a relative tangential velocity at some
contact vanishes and new values of forces and acceler-
ations are to be calculated. Since the states of some
contacts change, the values of forces and accelerations
undergo discontinuous changes. The motion is again uni-
formly accelerated. This event-driven process continues
until the system achieves the steady state where at every
contact the relative velocity and acceleration are of the
same sign or both are zero. In the steady state, all forces
and accelerations remain the same forever.

B. Numerical results

ing, but cause other nonsliding contacts to turn sliding at
the same time; or it may simply turn out to be a sliding
contact and force other nonsliding contacts to become
sliding ones as well, and so on.

This basic image is too time consuming to be imple-
mented. in an algorithm, since the number of possible con-
figurations grows exponentially with the number of active
contacts. An important ingredient of our computer pro-
gram is a relaxation scheme that converges rapidly to the
solution in the space of configurations. The method used
is to start with an arbitrary configuration when, in the
process of evolution of the system, some contact becomes
active. Then, if the selected configuration is not the right
solution, it is mapped onto the space of configurations in
order to build a new configuration to be tested. This
iterative process converges very rapidly to the solution
with the following mapping:

In order to solve the system of equations when a contact
becomes active, the three alternative configurations are
to be tried successively until the solution is found. Actu-
ally, there may be a great number of nonsliding contacts
in a granular medium at the same time. Whenever a
single contact becomes active, all the other nonsliding
contacts are to be considered as well. For p active con-
tacts, this implies 3" possible configurations. Depending
on the situation, difI'erent phenomena may take place.
When a contact becomes active, it may become nonslid-

Our simulations show that, depending on the driv-
ing force, three difI'erent regimes may occur. For small
enough values of the driving force and for most initial
conditions, some interparticle contact opens and the ar-
ray separates in two or more identical arrays. On the
other hand, for large enough values of the driving force,
some particle-plane contact may be lost and the geome-
try of the array is modified because of the rising of one
particle. In between these two limits, all contacts are
preserved. We consider only this intermediate regime,
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M= Nl. —No

L
—V.

The evolution of M for an array of 20 particles is dis-
played in Fig. 8 for eight difI'erent simulations with the
same parameters, but with difI'erent initial conditions.
The steady-state value of M is the same, although the
intermediate values before reaching the steady state are
difFerent in each case. In other words, M characterizes
the global friction of the array on the plane in a unique
way. In the simulations of Fig. 8, the values of parame-

where the driving force can be varied without causing
any modification of the geometry.

In this case, the system evolves to a steady state that
is independent of the initial conditions (i.e. , initial veloc-
ities) for a given set of parameters. Figure 6 showers the
angular accelerations of particles in an array of 15 par-
ticles at four stages of the evolution of the system. The
acceleration corresponding to the coordinate 0 stands for
the translational acceleration of the array. For difI'er-

ent initial conditions, the transient stage difI'ers from one
simulation to another, but the final state of motions is
always the same. The steady-state forces and accelera-
tions are only a function of the boundary conditions and
parameters and do not depend on the evolution.

Figure 7 shows the steady-state forces and accelera-
tions for an array of 40 particles. DifFerent motion pat-
terns appear successively along the array. A few particles,
starting from the particle in contact with the confining
block, just roll without sliding on the plane. This mode
of rotation will be referred to as phase 1. After that, we
have particles with positive rotation velocities and whit"6
slide at the same time on the plane. In this phase, which
will be referred to as phase 2, all of the contacts are slid-
ing contacts. Next, we have particles rotating in oppo-
site directions and sliding on the plane. In this phase, to
which we will refer as phase 3, all interparticle contacts
are nonsliding.

This succession of phases 1, 2, and 3 along the array is
the most typical pattern of rotation emerging from any
initial condition. It changes only quantitatively with the
parameters, so that the length of each phase may vary
and, for high enough values of the driving force, phase 1,
phase 3, or phases 1 and 2 may simply disappear. In the
same way, the angular rotations in phase 3 may vanish.
We will come back to these patterns in Sec. IV.

Let us now consider the linear acceleration of the array
on the plane. A "global coefFicient of friction, "' M, can
be de6ned for this system by the total friction force on
the plane NL, —No —Lv divided by the total weight L:
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FIG. 7. Accelerations and forces along an array of 40 par-
ticles. (a) Accelerations. The acceleration on coordinate 0
stands for the translational acceleration 6. (b) Normal forces
at the contact points. (c) Tangent friction forces at contact
points. Parameters are m& = 8.0, ~ = 0.01, I

' = 0.10, and
Np ——0.

N(i) -N(i-1)
0.04—

0.02
10 10 10 10 10

FIG. 6. Evolution of the angular accelerations of particles
in an array of 15 particles. The acceleration corresponding to
the coordinate 0 stands for the translational acceleration v.
In this simulation, p = p" = 0.05 and p' = 0.1.

FIG. 8. Evolution of the global coefBcient of friction M for
eight diferent simulations of the same system beginning with
diferent initial conditions. Parameters are p = 0.01, p, = 0.1,
NL, ——4.5, and Np ——0.05.
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ters are such that the steady-state value of M is smaller
than the particle-plane coefBcient of friction.

The global steady-state coeKcient of friction M of the
array, although independent of the initial conditions, dif-
fers &om the ordinary coefficient of friction in that it is a
function of the driving force. Figure 9 shows this depen-
dence for a system of 20 particles. M increases from zero
linearly with NL, and saturates to a value equal to the
particle-plane coeFicient of &iction. In other words, for
weak values of Nl. , the driving force is accelerating the
system less than it would if the particles were replaced
by a single block. Another eKect of the driving force is
to regulate the internal organization of forces so as to
increase its &ictional resistance. For weak enough values
of the driving force, the system is in phase 1. Dissipation
takes place only at interparticle contacts. In this regime,
M increases linearly with the driving force because, as
we shall see in the next section, in phase 1 all forces
scale with the driving force except for the normal force
on the plane. As the driving force increases, more and
more particles of phase 2 appear in the tail of phase 1
and hence the number of particles in phase 1 decreases.
Then, M is no more linear in KI, . Finally, when the driv-
ing force is high enough, phase 1 disappears completely
from the array so that all particles are either in phase 2
or in phase 3. In this regime, M is simply equal to the
particle-plane coeKcient of friction. Thus, the number of
rolling particles indicates the capacity of the system to
increase its friction. Figure 10 shows the configuration of
rotations in the steady state of a system of 40 particles
for difFerent values of the driving force. The connection
between the rotation modes and the global behavior of
the array in translation will be studied in more detail in
the next section.

0.20 ——

0.15

N =4
L

N =6
L

N, =8
N„':iO

0.10

0.05

0.00—

-0.05
0 10 20 30 40

A. Different phases

The most interesting feature of the rotation patterns
is that pure phases of rotation come one after another
without mixing. This scheme suggests that as one goes
along the array, some quantitative changes in the state
of forces are followed by qualitative changes resulting in
quite diferent behaviors. I et us consider erst the case
of rolling (phase 1).

Since all of the particles in phase 1 are rolling in the
same direction, friction forces at interparticle contacts
are fully mobilized so that the equations of d.ynamics can
be supplemented in this case by

T(i) = —pK(i).

Moreover, rolling implies

FIG. 10. Angular accelerations of particles in an array of
40 particles for diferent values of the applied force. Here,
p = 0.01, p' = 0.10, and No ——0.

IV. THEORETICAL ANALYSIS OF THE
STEADY STATE

~(i) = v. (19)

In this section we will focus on the steady state and the
mechanisms leading to the spatial patterns of rotations.
These patterns provide the key to the global description
of the array as a single object in displacement.
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PIC. 9. Variation of the global coefBcient of friction of an
array of 20 particles as a function of the driving force. Pa-
rameters are p = 0.01, p' = 0.1, and No ——0.05.

From Eqs. (12), (18), and (19) we get the following ex-
pression for the friction force at particle-plane contacts:

(20)

as well as the following limit on the value of the particle-
plane force:

p, '(1+ pii)
+ ppj

Equation (20) shows that the particle-plane friction is
mobilized progressively along the array and its direction
is opposite to that of the motion. The absolute value
of the friction force has an upper bound given by (21).
From (20) and (21) one gets the maximum number of
particles in phase 1:

(1i&I' ——1+ ln —,v+p'
&2~ 1 —»'

k1 —~)
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T(~) = —~p(j)
S(~) = —s'R(j)
~(j) ) 0.

(23)

From these and the equations of dynamics we get the
following expression for the angular accelerations:

I~(j) =—

where I q is the length of phase 1. So, the simple mech-
anisrn behind this phase is the progressive mobilization
of the friction force at particle-plane contacts up to the
maximum possible value of the friction force. Simulations
in fact confirm this simple picture; see the functions S(i)
and ~(i) in Fig. 7 from the simulation of an array of 40
particles. The contacts of the particles coming after the
particle i = Lq with the plane can no longer be nonslid-
ing and in phase 2, even if the particles continue rotating
in the same direction, all contacts are sliding contacts.

Now, let us consider the situation where all contacts
are sliding contacts and all of the particles rotate in the
positive direction (phase 2). The following equations are
then to be used to supplement the equations of dynamics:

the tangential interparticle force:

k

T(k) = T(k = 0) +—
2 2p' 1 —p')

(28)

K(k) = N(k = 0) + k(v+ p')

p Icc)+p' T(k=0)+ —+
2 2p'

( 1+@x 1 —i-
&) (29)

The interparticle friction force oscillates with a period of
two particles and grows exponentially. We remark that
this behavior of the interparticle friction force is only re-
lated to the fact that the interparticle contacts here are
nonsliding. Even in the case where ~ = 0, which is a
particular case of phase 3, this oscillating behavior is ob-
tained. In the same way, we get the following expression
for the normal interparticle force:

(24)

where j refers to the jth particle of phase 2 and K(j = 0)
is the normal interparticle force on the first partricle in
the phase. At the same time, we have

(.) p'(1+ pv)

PP
(25)

These equations show that the angular acceleration is de-
creasing linearly with the particle number while the fric-
tion force at the particle-plane contact remains constant.
However, the positivity of the angular acceleration, which
is a consistency condition, gives the maximum number of
particles in the phase:

1+u' . + u'(1+ ~)
p +v 2 2p

—(1 —p,p')N(j = 0)

S(k) = —p'R(k),
~(k) = —~(k + 1) = ~. (27)

Assuming that the first particle in this phase in contact
with the last particle of phase 2 has a negative rotation
velocity, we immediately get the following expression for

where I 2 is the length of phase 2. This simple mechanism
behind phase 2 is illustrated in Fig. 7, where T(i) and
w (i) are shown for a simulation of an array of 40 particles.
From the end of phase 2, the behavior changes again
radically as the particles can no longer rotate consistently
in the same direction.

Let us now consider phase 3, where the interparticle
contacts can no longer be sliding. The equations to be
used to supplement the equations of the dynamics are
the following:

Prom Eqs. (28) and (29) and the boundary condition
T(0) = —p,K(0), it is easy to see that ~T(k)

~

& pN(k)
for all k. The length of phase 3 is thus not limited by the
mobilization of the interparticle friction forces. However,
some limit arises from the normal particle-plane force
which, for consistency of the equations, has to be posi-
tive. The expression of the normal particle-plane force is
the following:

R(k) = 1+ (—1)"
p

2 ' p IM
T(k =0)+ —+

1 —p 2 2p
p- k —1

X
1 —p

(30)

where Ls is the maximum length of the phase and T(0)
is to be replaced with the last particle in phase 2. The
particle coming just after the particle I-i+ I2 + 13 will
rise as the reaction force on the plane vanishes.

What is the relation between ~ and v in phase 3?
There are not enough equations to relate these two accel-
erations. The answer is to be looked for in the boundary
conditions. For the array to be stable (no contact open-
ing), we should have I & Li + L2 + L3. Silppos'8 that
there is an even number of particles in phase 3 so that
the last particle is rotating in the positive direction. As
the latter is in contact with a block, with a coeKcient of

The positivity of R(k) sets an upper limit on the length
of phase 3:

1 —p' r' I~)
k + I/3 —1 + ln 1 + ~')

p, Iw (1+@l—ln T(0) + —+ —,
41 —I")

(31)
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&iction generally different from p, its angular accelera-
tion is different from that of phase 3. Simulations show
that if p" ( p, then the angular acceleration of the last
particle is greater than that of phase 3. In this case, the
contact between the last particle of the array and the last
particle of phase 3 is sliding and we have the consistency
condition T(k = Ls —1) = pN—(k = L~s —1), where L'
is the length of phase 3. This gives the relation between
u and v. As seen in Fig. 10, u decreases with the driving
force, while v increases. Figure 11 shows the angular ac-
celerations of the particles in two simulations: one with
p" = 0, the other with p" ) p. In this latter case, the
rotations in phase 3 simply vanish.
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B. Global dynamics

FIG. 12. Translational acceleration of an array of 20 parti-
cles as a function of the applied force NL, —No. Parameters
are p = 0.01, p' = 0.1, and No ——0.05.

The global behavior of the array results from the juxta-
position of the three rotation phases. By global behavior,
we mean the relation between the applied force Nl. —Np,
as input to the system, and the acceleration v, which is
a global output. In this section we will show that, as in
the case of a single particle (Sec. II), this relation can
be cast in the canonical form of the equation of frictional
motion of a single block:

1+I.) (1+p)* 1+I.Ni = No+ y — y,] (1-I )
so that the effective mass is equal to

(34)

NL, —Np —E =m v

where m*, the effective inertia and I"*,the effective fric-
tion force on the plane, are functions of the parameters
and the applied force. Figure 12 shows v as a function
of NL, —Np for an array of 20 particles. The inverse
of the slope at each point corresponds to the effective
inertia for the corresponding value of the applied force,
while the intersection with the axis of accelerations gives
the effective friction force on the array. Three different
regimes can be distinguished.

(1) Prom zero up to a critical value N' of the applied
force, the effective mass is constant. In this regime all
particles are in phase 1. From Eqs. (12), (18), and (19)
it can be shown that the normal interparticle force in
phase 1 is given by

Thus, the effective inertia in this regime can be much
greater than the real mass I of the system. It increases
rapidly with p, and for small values of p, is at least 1+I
times the real mass of the array.

From Eq. (33) we get also the following expression for
the effective friction force:

L

(35)

In Sec. III, we introduced a global coefFicient of friction
M, which is the "total" friction force E on the plane di-
vided by the real mass I of the system. Since a global
description implies analytically an effective inertia to be
introduced, a description in terms of "effective" quanti-
ties is more consistent. Hence, we introduce the effective
renormalized coeKcient of friction by

0.10,
m*' (36)

0.05
We recall that the acceleration of gravity has been set
to 1. From Eqs. (34) and (35), the expression of M* in
the regime of collective rolling is given by

0.00— 2p
Mi = 1+INp.

-0.05
10

FIG. 11. Angular accelerations of particles in an array of
ten particles for two difFerent values of the particle-block co-
efIIcient of friction p". The other parameters are p = 0.1,
p,

' = 0.2, No ——0.1, and Nl. ——2.8.

This is a simple expression in that it depends neither on
the applied force nor on the number of particles. In this
respect, Mz shows exactly all the features of a Coulom-
bian coefFicient of friction.

The confining force Np in this regime is a control pa-
rameter of M&. When Np ——0, the effective coefIIcient
of friction vanishes! The system is hence reduced to a
block with no friction on the plane and an effective mass
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greater than its real mass. This has interesting physical
implications. For instance, since the effective inertia is
greater than the real mass, the speed of sound through
the system, due to a small elasticity at contact points,
should be less by at least a factor of gl + I than when
rotations are absent. On the other hand, since the fric-
tion force for small values of p is proportional to the
number of particles I, a small change in the confining
force is amplified by a factor I to give a much larger
friction force.

(2) When the applied force is greater than N', the ef-
fective mass begins to increase with the applied force.
At the same time, the number of particles in phase 1 de-
creases and there are more and more particles in phases 2
and 3. As long as there are particles in phase 1, the efI'ec-
tive mass continues to increase. From Eqs. (12) and (23),
it can be shown that the effective mass and coefIicient of
friction in phase 2 are given by
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FIG. 13. Variation of the effective coeKcient of friction as
a function of the applied force for the system of Fig. 12.
Mr ——2y, /(1+ I)NO is the efFective coefficient of friction in
phase 1. M3 ——p' is the mean value of the coefficient of
friction in phases 2 and 3.

PP
M2 = p' (38)

where L is the number of particles in phase 2. En the same
way, for phase 3, from Eqs. (12) and (27), we obtain

m3 —L

(39)

Mq m1+Mq m~+M3 m3
m, 1+m~+m, a

As the number of particles in phase 1 decreases, the ef-
fective coeKcient of friction increases and, at the same
time, the effective inertia of the array tends to its real
mass.

(3) For a certain value N" of the applied force, there
will be no particle in phase 1 and the relation between ac-
celeration and applied force becomes linear again. ln this
regime, the effective mass is practically equal to the real
mass of the system, except for small oscillations coming
from phase 3. The effective coefficient of &iction in this
regime is equal to the particle-plane coefIicient of fric-
tion. Figures 13 and 14 display the variation of efI'ective
coeKcient of friction and efFective inertia as a function of
the applied force for an array of 20 particles. No and p
are the control parameters of the G.rst regime.

It can be seen from Fig. 13 that the necessary condition
for observing the first regime for any number of particles
is given by a simple inequality:

where L is the length of phase 3. Here we have taken w to
be an independent parameter which is related essentially
on the particle-block coeKcient of friction. The efI'ective
coeKcient of friction in phase 3 is approximately equal
to p'. The deviation from this value is of the order of p'
when the angular acceleration is zero, and of the order of
p' otherwise.

The efI'ective inertia and coefIicient of friction of the
array can be calculated from those of the phases:

m —ml + m2+ m3,

1+I p,
'

xo
2 p

(41)

When the confining force is small, the system is always
in the first regime for small enough values of the ap-
plied force. Collective rolling of particles should occur
for example at the free surface of sandpiles. Therefore,
physical effects due to this mode should be observable in
real sandpiles.

V. CONCLUSION
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FIG. 14. Variation of the effective mass as a function of the
applied force for the system of Fig. 12.

We have introduced a simple one-dimensional model
of particles where the interplay of the dynamics and the
contact law (Coulomb's law of friction) leads to a well
defined organization of the rotations of particles in the
steady state. This self-organization has been studied nu-
merically and analyzed in terms of a juxtaposition of
"pure modes. " The latter have been fully characterized
analytically and their respective lengths have been com-
puted. The agreemerit between the numerical simulations
and the theoretical analysis is perfect.
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The translational motion of the array on the plane in
the steady state can be described in terms of a global
friction force, increasing with the external driving force.
However, direct analysis shows that an e6'ective inertia
has to be introduced. This in turn requires an "effective"
coeKcient of friction to be defined, which is diferent from
the "global" coefFicient of friction in many respects.

Finally, let us stress the importance of length scales in-
termediate between the particle size and the system size
appearing in rotation modes and force patterns, which
may play a significant role in a continuum description
of granular media. While this efFect is limited here to

a one-dimensional geometry, we expect similar qualita-
tive efFects in higher dimensionalities. A two-dimensional
case is presently under study.
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