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The optical conductance of a multiple scattering mediuxn is de6ned as the total transmitted light
of a normalized disuse incoming beam. This quantity, analogous to electronic conductance, exhibits
universal conductance Huctuations. We perform a detailed diagrammatic analysis of these Buctua-
tions. With a Kadano8'-Baym technique all the leading diagrams are systematically generated. A
cancellation of the short distance divergencies occurs that yields a well behaved theory. The analyt-
ical form of the Quctuations is calculated and the theory is applied to optical systems. Absorption
and internal reBections, which are taken into account, reduce the Huctuations significantly.

PACS number(s): 42.25.Bs, 72.20.-i,78.20.Dj

I. INTR.ODU CTION

When studying the transmission of optical waves
through random media one may consider fluctuations
in the optical conductance. Analogous to the electronic
conductance, this quantity is obtained when, erst, the
incoming beam is monochromatic and difFuse, and, sec-
ond, all outgoing light is collected. Since the electronic
conductance is known to exhibit so called universal con-
ductance fluctuations (UCF), the same fluctuations are
expected in the optical conductance. Measurements of
this quantity would constitute a cornerstone in the anal-
ogy between optical and. electronic mesoscopic systems.

We briefly review the situation for mesoscopic electron
systems [1—5]. The electronic conductance of mesoscopic
samples is known to show reproducible sample to sample
fluctuations. Since the fluctuations are a consequence of
scattering from static impurities, they are static. Their
magnitude is independent of the sample parameters, such
as the mean free path, the sample thickness, and the
average conductance. Hence they are called universal
conductance fluctuations. The mean conductance in the
considered regime comes from multiple scattered disuse
electrons. The UCF are a consequence of interference of
multiple scattered waves, causing correlations between
two disuse paths. Therefore the fluctuations are much
larger then one would obtain classically by modeling the
system by a random resistor array, in which interference
effects are neglected. That approach is valid only on a
length scale exceeding the phase coherence length, where
the fluctuations reduce to their classical value. The con-
ductance fluctuates when the phases of the waves in the
dominant paths are changed. This happens, of course, if
one changes the position of the scatterers, e.g. , by tak-
ing another sample. One may also keep the scatterers
fixed but apply a magnetic field or vary the Fermi en-
ergy. (In an optical system one can vary the frequency
of the light. ) In all these cases one modifies the phases

of scattered waves, so that different propagation paths
become dominant.

Transport through mesoscopic systems is studied not
only in electron systems, but also using multiple scat-
tered classical waves such as sound, microwaves, and,
particularly, light. The origin of the mesoscopic phenom-
ena is the interference of multiple scattered waves and
in erst approximation all systems are described by the
same equations, namely, the scalar wave equation; see,
for instance, Ref. [6] for a review. Thus one expects that
similar large fluctuations in optical systems are present
in the disuse transmission regime. An advantage of op-
tical systems over electronic ones is that optical systems
are much cleaner: no equivalents of phonons or electron-
electron interactions are present. Indeed, very accurate
measurements of the enhanced backscatter cone [7], cor-
relation functions [8,9], and intensity distributions [10]
were performed. Nevertheless, to the best of our knowl-
edge, the optical analog of the UCF has not yet been
observed in optical systems. Such experiments turn out
to be dificult. Although the magnitude of the fluctua-
tions is universal, they occur on a background of order
g, where g is the dimensionless conductance (in optical
experiments one typically has g 10s). The relative
value of the fluctuations to the background is thus 1/g,
so that the Cs correlation function is of order 1/g, typ-
ically of order 10 . For electrons this problem is absent
as moderate values of g are achievable. This is also the
reason that electrons are more easily brought near Ander-
son localization, for which g has to take a critical value
of order unity. In the electronic case the moderate values
of g, combined with very sensitive techniques for current
measurements, have led to many observations of the uni-
versal conductance fluctuations. Recent optical experi-
ments suggest, however, that the optical analog of UCF
should just be experimentally accessible, as the measure-
ment of the third cumulant in the total transmission was
reported [10]. This quantity is of the same order as the
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optical UCF, namely 1/g . It is expected that similar
techniques can be applied to measure the optical UCF.
Microwave scattering is also interesting as it combines
lower values of g with many of the advantages of optical
systems.

We are interested not only in just the size of the Huctu-
ations, but also in the somewhat more general frequency
correlation. A change in the frequency alters the inter-
ference pattern, just as occurs by changing the magnetic
Geld or the Fermi energy in the electronic case. It is
known from experiments that using the frequency as a
tunable parameter provides a good way for measuring the
fluctuations. In contrast to electronic systems, in opti-
cal systems both angular resolved and angular integrated
measurements of the transmission are possible. Therefore
various transmission quantities can be measured in op-
tical systems, each with its particular frequency correla-
tion function. In a recent review by Berkovits and Feng
[ll] the diferent correlations and their physical inter-
pretation are discussed extensively. Denoting the trans-
mission from incoming channel o, (wave coming in under
angles 0, P ) to outgoing channel 6 (waves transmitted
into angles es, Ps) as T g, the correlation functions can
be classified as [11,12]

(T s((u)T,d(u+ A(u))

(T b(~))(T (~+ &~))

The unity just comes from the product of averages. The
C» term in the correlation function is the most important
one if the angular resolved transmission T g is measured.
The reason is that C» is of order unity when both the
incoming directions a and c and the outgoing directions
6 and d are, pairwise, close to each other. When dealing
with one single monochromatic plane wave (a = c), Ci
describes the correlation of the bright and dark speckle
pattern. Diagrammatically, C» is the sum of all reducible
diagrams, that is to say, just like the unit contribution in
Eq. (1), it is equal to the product of two averages.

If, instead of measuring light in one outgoing chan-
nel, all outgoing light is integrated, the sharply peaked
and short ranged C» correlation function is overwhelmed.
By collecting the outgoing light, the total transmission
T = gbT g is measured; experimentally, this is com-
monly done using an integrating sphere [9]. In this setup
the C2 correlation function, which has a much smaller
peak value but is long ranged, contributes for all outgo-
ing angles and becomes dominant. Its long range charac-
ter arises because, due to interference of the disuse light
paths, the outgoing amplitudes are pairwise in phase.
The C2 correlation, which still depends on the angles of
the incoming beams a and c, is of order g . The C2 cor-
responds to a diagram where the two incoming difFusons
interact through a Hikami vertex.

Finally, the C~ term is dominant when the incoming
beam is diB'use, and all outgoing light is collected, so that,
just as in electronic systems, the conductance g = T =

&
T b is measured. In that measureinent contributions

t

where a and c are far apart are dominant. In contrast

to the previous case, now also these incoming amplitudes
must be pairwise in phase. This occurs in a diagram
where the two incoming difFusons interact twice, so that
a loop occurs; in principle, further loop insertions to it
also contribute. In spite of the fact that C3 is of order
g, it dominates over the C» and C2 terms as it has
contributions for all incoming and outgoing angles.

The C» and C2 correlations have been studied in detail,
both experimentally [9,13,14] and theoretically [15]. It
was also shown in experiments [16] and in theory [17,18]
that absorption and internal re8ection, neglected in the
earliest calculations, significantly reduce the correlations.
Among other methods, the C» and C2 correlations were
successfully [15,18] calculated using a diagrammatic tech-
nique based on the Landauer approach [19,20]. One
might hope that the calculation of the C3 or UCF in
this approach is also straightforward. It is well known,
however, that the calculation in the Landauer approach
is quite cumbersome, since divergencies show up on scales
of one mean kee path when the problem is treated on a
macroscopic level using difFusons.

In order to circumvent these difBculties, one is tempted
to use the Kubo approach, often used in electronic sys-
tems to calculate the UCF [2—4]. Furthermore, the re-
sults for the conductance obtained by Kubo or Landauer
formalism should be identical [21,22]. Yet the Kubo ap-
proach cannot be applied directly to optical systems,
since it is not clear how external lines should replace cur-
rent vertices, and how absorption and internal rejections
are to be included. Therefore we use the Landauer ap-
proach.

Technically, the difficulties in the Landauer approach
are caused by the vertices for partner exchange of two
diÃusons, the so called Hikami boxes. Each Hikami box
brings the square of the internal momentum, whereas
the current vertices are momentum independent in the
Kubo formula. As a result, the integral over the inter-
nal momentum of the closed loop is convergent in the
Kubo formula, while naively divergent in the Landauer
approach.

Two studies of C3 in the Landauer approach are known
to us. In the first, Kane, Scrota, and Lee [23] consider
electronic systems and make elegant use of current con-
servation to derive an expression for the correlation func-
tion. Although in optical systems the conserved quantity
is not the intensity but the energy, their prediction ap-
plies to optical systems as well, since it amounts to a re-
sult for the same sums of scattering diagrams, involving
different parameters only. This result has not been con-
Grmed by a direct derivation, however. Moreover, since
it relies on a conservation law, it is not clear what hap-
pens when absorption is present. The second study was
performed by Berkovits and Feng [11]. After giving a
very clear discussion of the problem, these authors calcu-
lated one of the macroscopic diagrams (presented earlier
by Feng, Kane, Lee, and Stone [12]) and subtracted the
divergent parts by hand. In this way the correct order
of magnitude and the qualitative frequency dependence
were obtained.

It is our goal to clarify the situation by calculating the
optical C3 diagrammatically. A complete analysis of all
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leading diagrams is needed, in which finally the divergent
parts should cancel. We specialize to the case where the
cond. uctance is measured. In this setup the amplitudes of
the incoming and outgoing diffusons are exactly in phase.
If the Cs correlation is measured as a (small) part of the
correlation in the angular transmission or total transmis-
sion, this phase condition need not be fulfilled. Other
contributions of order 1/g which are angular dependent
are then present. These contributions are both the dia-
grams presented below, with different decay rates for the
incoming and outgoing diffusons, but also new diagrams
contribute. In conductance measurements these compli-
cations do not occur. Our fundamental approach imme-
diately allows for inclusion of effects due to boundary
layers and absorption. Our calculations, although spe-
cialized to optical systems, are valid for any mesoscopic
system.

Tacitly we assumed that higher order correlations can
be neglected. Altshuler et aj. [24] have shown that for
small n the nth cumulants scale as g, so that for g )) 1.

the fluctuations have indeed a Gaussian distribution; the
far tail of the distribution is predicted to be log normal.
It would be interesting, however, to determine the full
distribution function of the fluctuations, as was done in
experiment for the angular resolved transmission [13]and
the total transmission [10], and recently in theoretical
work by Nieuwenhuizen and Van Rossum [25].

The outline of this paper is as follows. First, we in-
troduce the basics of the diagrammatic technique and
describe diffuse transport of light. In Sec. III we present
the long distance diagrams and analyze the divergencies
arising from these diagrams in the diffusion approxima-
tion in Sec. IV. Next, in Sec. V we develop a Kadanoff-
Baym theory in order to generate all relevant scattering
diagrams. In Sec. VI we show that the divergencies in-
deed. cancel if all diagrams are analyzed in detail. The
general form of the fluctuations is calculated in Sec. VII
and applied to optical systems, where absorption and. in-
ternal rejections may be present. The presentation is
closed with a d.iscussion.

II. DIFFUSE TB.ANSPOKT OF I ICHT

In this section we discuss standard aspects of diffuse
light transport, such as the amplitude Green's func-
tion, the diffuse intensity, and the transport equation.
We shall consider the situation of point scatterers in a
medium that has a dielectric constant different from its
surroundings. We employ the notation and results of the
paper by Nieuwenhuizen and Luck [26]. The main results
of the present section are the expression (37) for the Cs
correlation function, and the expression (39) for the uni-
versal conductance Huctuations. These expressions in-
volve diagrams with incoming total-Aux diffusons 8;„de-
fined in (18), outgoing total-flux diffusons 2 „& defined in
(26), and internal difFusons 2;„q defined in (35) or (36).
Readers not interested in the microscopic background of
these relations may skip the details of the present section.

We consider a quasi-one-, quasi-two-, or three-
dimensional slab of thickness L and area A = TV", with

W &) L, which contains static, isotropic point scatterers.
As usual a scalar approximation is made for the electro-
magnetic field of the light [27]. For bulk properties this
is justified since the polarization is scrambled after a few
scattering events. For other applications, such as acous-
tic waves and spinless electrons, the scalar property is
immediate. The scalar wave equation at given frequency
~ read. s

&'&(r) + , e(r—)&(r)= o (2)

eo + s4maos(e2 —eo) g,. h(r —B,), 0 ( z ( L, ,

(3a)
z(0, z &L, (3b)

where ei is the dielectric constant in the surrounding
medium. The wave numbers in the surrounding medium
and in the random med. ium are

(4)

respectively. In the bulk the average retarded Green's
function (amplitude Green's function) in three dimen-
sions with momentum p reads

G(p) = (p —k —nt) (5)

For small scatterers the scattering becomes isotropic with
an efFective strength described by the t matrix [28]

/'1 1 . L1t=
/

————i
iso 4~ )

(6)

47rk ao(e2 —eo)/3 is the bare scattering
strength and u0 is an internal parameter of the point
scatterer. The mean free path is defined as

4'
ntt (7)

in which n is the scatterer density. The metallic meso-
scopic regime is defined by kE » 1 and 8 (( L. Equation
(6) satisfies the optical theorem Im(t) = ktt/47ra, where a
is the albedo of the scatterer. The case of no absorption,
which we treat first, corresponds to a = 1. In electronic
systems absorption does not take place, but a similar
behavior arises from dephasing; in that case the phase
coherence length plays the role of absorption length and,
for our purpose, has to be larger than the system size.

For disordered electron systems one deals with weak 8-
wave scattering and the diagrammatic expansion can be
carried out in second order Born approximation. In ex-
periments on optical systems, however, efFicient scatter-
ing is achieved by taking resonant scatterers and strictly
one now has to calculate the full Born series [28]. In

where c is the vacuum speed. of light. We shall consider
a medium with dielectric constant e0 and density n of
small spheres with d.ielectric constant e2 and radius a0,
located at random positions R;. Going to the limit of
point scatterers we get
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the main part of this work we study how the cancella-
tion of some short range contributions takes place. This
we do in the second order Born approximation, where
t u + iu k/4vr and E 47r/nu . Working with the
full Born series would introduce a large number of extra
classes of diagrams so that the total number of diagrams
increases dramatically. We expect, however, that the
cancellation of divergencies, when shown in the second
order Born approximation, also holds if the full Born se-
ries is considered. It is widely expected and confirmed in
one of our earlier papers that for static quantities the dif-
ference between the two should only be a renormalization
of the mean free path in the final results [29]. We thus
continue to work with the full Born series where possible.
The cancellation of short range divergencies will only be
shown within the second order Born approximation.

Intensity transport in transmission is dominated by
ladder diagrams or diffusons. A diffuson is made up by
pairing one retarded and one advanced propagator shar-
ing the same path through the sample, as is depicted in
Fig. 1.

Although the transport deep in the bulk is accurately
described with the diffusion equation, the precise behav-
ior near the (reflecting) surface has to be derived from
the Schwarzschild-Milne integral equation [27]. Consider
a plane wave with unit flux impinging on the sample un-
der angle 0

in 'EQ~ P+'Llci cos 8~ z ~ 0
QAki cos 8

(8)

where p = cos 0' involves the angle 0' of the refracted
beam with respect to the z axis. The source is pro-
portional to the intensity transmission coefFicient of the
boundary between the two dielectrics,

(io}

where p = (z, y) is the transversal coordinate and Q
ki sino~(cosg, sing~) is the two-dimensional transverse
momentum of the incoming beam. Inside the slab the un-
scattered part of the intensity decays over one mean free
path. This is described by (5) since its pole lies slightly
away from the real axis, due to the imaginary part of
t. The source of diffuse intensity is the first scattered
intensity,

The twice scatterered intensity follows &om S as
ntt J' dr'IG(r, r') I2S (r'). The geometric sum of first, sec-
ond, third, ..., times scattered intensity is the multiple
scattered or diffuse intensity 8 . It is generated from
the first scattered intensity by the Schwarzschild-Milne
equation

L
j: (z) = S (z) + dz'M(z, z')2 (z').

0

The kernel M reads

M(z, z') = M~(z —z') + Mr, (z+ z') + ML, (2L —z —z'),

(12)

which contains the bulk term

Mgy(z —z') = ~~—
I

— 'I/~&

2p

and layer terms describing internal reflections at the in-
terfaces at z = 0 and z = L. The layer term reads

1 g
M (z+ z') = [1 —T(y)]e ('+')~"

0 2P
(14)

Here 7~ is a factor that determines the limit intensity of
a semi-infinite slab; of course, it depends on the incident
angle. The length z0 is called the "injection depth. " For
isotropic scattering one has [27] zo ——0 71048 H.owever. ,
it becomes larger when there is a mismatch of the indices
of refraction between the scattering medium and the sur-
roundings [28]. Note that (15) satisfies the diffusion equa-
tion V' 8'" = 0; the more complicated Schwarzschild-
Milne equation is needed to fix the parameters of its so-
lution.

In the electronic conductance measurements, however,
waves coming from all directions are involved. In the
Landauer formula for the conductance,

It involves the total path length of the radiation going
from depth z to the boundary at z = 0, reflected there,
and going to depth z'. In the bulk of the slab (several
mean free paths away from the boundaries) the diffuse
intensity has a simple behavior [26],

2'" z) = 4vrT(p )7;(p ) L+ zo —z

kiEm Ay, L + 2zo

0 0 0
0

0
0

0 0

FIG. 1. Left: an example of an actual scattering process; a
retarded (full line) and an advanced (dashed line) amplitude
come from the left and share the same path through the sam-
ple. Right: schematic representation of the average process,
the diffuson.

2cG= ) Ts,
ab

one needs to sum the transmission coefIicients T b of
waves with unit fIux coming in channel a and going out to
channel b. In an optical experiment, however, the incom-
ing diffuse beam may have angular weights that difFer by
a factor of order unity. When using integrating spheres
one measures the outgoing intensity, rather than the out-
going flux. As compared to the electronic case, it does
not bring a factor pb to the weight of the outgoing chan-
nel. As these differences between electronic and optical
measurements only lead to different numerical prefactors,



6162 van ROSSUM, NIEUWENHUIZEN, AND VLAMING 51

we calculate the optical UCF with the same weights as
in the electronic case. Summing (9) over the channels a
yields a source for the diffuse intensity:

diÃuson in transmission therefore reads

k z+zp
&o~(z)= t, L + 2zp

(26)

2k
S(z) =) S.=—a

This is again the input in the Schwarzschild-Milne equa-
tion (ll). In the bulk the intensity now has the difFusive
behavior

4k L+ zp —z
I +2zp

This object has been termed the incoming total flux -dif
fuson [25]. It has the same depth dependence as 8;„,but
contains a different prefactor. Defining

~T(~-)~~(l -)
k2 2g

we can verify the sum rule

d»(~)~~(~) = 1.
dzq ~T(p)7g(p) 1
271. klm p

(20)

Here we used that k = mkq, the definition p
gl —Qz/kz, and (2.30) of Ref. [26]. One thus has

Apart from a refmection, this expression differs by a factor
of 4 from (18). The prefactors would be the same if our
Green's functions were multiplied by a factor of 2; this
amounts to the same as taking a kinetic term V' /2 rather
than V, such as occurs in electronics in units where
6= m ='1.

For the outgoing intensity in the direction 6 one has,
in analogy with (21),

(z) = ebZo„~(z). (27)

(T)-b = e-eb(T)

where (T) is the average conductance

We call the incoming and outgoing diffusons external
diffusons, because they are connected to the outside of
the sample. This is in contrast to the internal diffu-
sons that begin and end at interference vertices inside
the medium. Away from the surface the internal diffu-
sons obey the well known difFusion equation 7' 2;„q(r) =
12' 6 (r —p') /P.

The result for the angle resolved transmission of
Nieuwenhuizen and Luck [26] can be written as

Z,„(z) = e 2;„(z).
k~AE

37r(L + 2zp)
(29)

G(p, z;l', Z) = —) G(z;Z;q)e*~{P-P'l,
Q

(22)

in which G(z; Z; Q) is the one-dimensional (1D) Fourier
transform of Eq. (5),

G( . Z. q)
~ iP{L z)+ip{z L)— —

P+p

On the outgoing side, radiation emitted at a point
r = (p, z) inside the slab will propagate to a point (Z, p')
outside the sample (Z ) I) as described by the Green's
function of a semi-infinite medium with dielectric func-
tion e(r) = ep for z ( L and e(r) = Ej for z ) L,

in dimensionless units. Restoring units for the electronic
case one has for the average conductance

2e k AE

h 37r(L + 2zp)
(30)

All the above can be generalized to include absorb-
ing scatterers and frequency differences between incom-
ing beams. For an electronic system the corresponding
effects would be a change in Fermi energy, rather than
a change in frequency, and the effect of a finite incoher-
ence length, rather than the effect of absorption. For this
more general case the diffusion equation reads

P = ~kz —Qz+ nt p = k~z —Qz. (23) [
—v'+ r.'+ io]z;„,(r) =, 8(r —r').

In the far field (Z )) L) the total transmitted intensity
reads

IG(&, z; t ', Z) I' =
~ ) IG(z; Z; Q) I"Q

Since p, = kqcos0 = kp, , the corresponding Aux is

The inverse absorption length v. is related to the albedo
a as K, = 3(l —a)/I; 0 = Aw/D is the ratio of the
frequency difference of the amplitude propagators and
the difFusion constant D. It holds that D = 3v~E, where
v~ is the transport speed [30]. In the slab geometry after
Fourier transform in the z direction the difFusons obey

C(z) = —) kpIG(z;Z;Q)I
Q

dye ~~- )ye~
12m

C;„,(z, z'; M) + M 2;„g(z, z'; M) = 6(z —z'),
dz

(32)

leads to a source S(z) = 4' O (z) /t' in the
Schwarzschild-Milne equation. The outgoing total-flux

where we have defined the decay rate

M =Q +K +iO. (33)
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The complex parameter M describes the exponential de-
cay 8 exp( —Mz) of the difFuse intensity in the z direc-
tion. The solutions to the diffusion equation are a linear
combination of hyperbolic sines and cosines. In conduc-
tance measurements using integrating spheres, external
diffusons with momentum or frequency terms yield no
contribution, and thus M = v for the external diffusons,
i.e.)

k sinh Kz + ~zo cosh vz
E (1 + r2zp2) sinh ~L + 2rzp cosh KL ' (34b)

whereas for the internal diffusons

4k sinh[r(L —z)] + Kzp cosh[r(L —z)]
1Xl 2 2

34a
I. (1 + r2zp) sinh rL + 2rzp cosh rt

12vr (sinh Mz + Mzp cosh Mz)(sinh[M(I —z')] + Mzp cosh[M(L —z')] )l:;„,z, z';M
(M + Mszp) sinh ML + 2M2zp cosh ML

where it is assumed that z ( z', otherwise z and z'
must be interchanged on the right-hand side (RHS). With
equal indices of re&action inside and outside the sample
the extrapolation length zo is, as stated above, 0.71041
and thus the terms involving zo yield contributions of the
order E/L For op.tically thick samples (L )) l) one has

12vr sinh Mz sinh[M(L —z')]
P M sinh ML (36)

Consistent with this expression the boundary conditions
become approximately 8;„t(0,z') = C,„t,(L, z') = 0. If
there is an index mismatch, the surfaces partially reHect
and the extrapolation length zp increases [26]. Internal
reHection becomes especially important when zo becomes
comparable to the sample thickness. Such may occur for
large index mismatch and moderate thicknesses.

The Cs correlation function, defined in (1), involves

incoming diffusons 8,„' and outgoing ones 8 '„t. Due
to the factorization of external direction dependence [see
(21), (27), and (29)], it cancels from Cs. We can write

Cs ' (r, n) = Cs(r, n) = ) I'(Q, r. , n), (37)
Q

E(0, r, n), quasi 1D
W f ~2'(Q, r, n), quasi 2D

W2 J'
(2 ~), E(Q, r, n) 3D.

(38a)
(38b)
(38c)

For electronic systems one Ands

(G(k) G(k + —,'en)) —(G(k)) (G(k + —,'~n))

f 2e2)
i

C (o, n). (39)gh)

where Q is the two-dimensional transversal momentum.
The function E is the main object to be determined in
this paper. It is thus calculated at fixed Q and with
external diffusons being total-Hux diffusons. One finds
from (1) and (37) the conductance fiuctuations

CT(r. , n) = (T(~)T(~ + A~)) —(T((u))(T((u + A(u))

= ) (T)-.(T)'C.
abed

= ) F(Q, r, n)

These results can be extended for other geometries. If
the width is comparable to the thickness of the slab, the
momentum integral discretizes into a sum over transver-
sal eigenmodes [4]. The result can be generalized further
to arbitrary geometries by taking x, y dependence into
account, and calculating the diffusons using appropriate
boundary conditions.

III. LONC RANCE DIAGRAMS

At this point we address the structure of the lead-
ing diagrams for the correlation functions, defined in (1).
For all diagrams there are two incoming advanced fields,
which we momentarily term i and j, and two retarded
ones, i* and j '. The first term on the RHS in Eq. (1)
follows from the diagram where i and i* are paired into
an incoming diffuson, and the same for j and j*. These
diffusons have no common scatterers, so for this contribu-
tion the expression factorizes into a product of averages.
For the Ci term in (1) such a factorization also takes
place [12]. However, in this term the pairings are ij * and
ji*. In the C2 correlation function there are two terms.
In the first the incoming diffusons have pairings ij* and

These diffusons interfere in some point in space,
where they exchange partners. The outgoing pairings
are thenii*, jj*. It is this term that contributes in mea-
surements of the total transmission. The time-inversed.
diagram, with the in- and outgoing part of the diagram
interchanged, also contributes to Eq. (1). However, it
does not contribute when this expression is summed over
6 and d, i.e. , in total transmission.

Interference of diffusons occurs if they exchange an am-
plitude in the presence of a common scatterer. In dia-
grammatic language this is described by so called Hikami
vertices [31,32]. They are in Fig. 2 depicted as shaded
polygons; the four-point vertex represents the interfer-
ence of four diffusons, and the six-point vertex connects
six diffusons. The shaded polygons in the figure indicate
that the vertices are dressed; in second order Born ap-
proximation the dressed four-point vertex is the sum of
three diagrams, and the six-point vertex is the sum of
sixteen diagrams [32].

In electronic experiments where one measures the con-
ductivity, and in optical experiments where one uses an
integrating sphere on the incoming side for creating a dif-
fuse beam, the two amplitudes in the diffuson must have
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(a)i (b)i I ~ I {c)i

exactly the same phase. Therefore the incoming diffu-
sons cannot have a momentum or frequency difFerence,
and the pairing must be ii* and jj*. In Fig. 2(a) the
incoming diffusons interfere somewhere in the slab. In
diagrammatic language the diffusons interchange a prop-
agator so that the pairing is changed into ij* and ji*.
Propagation continues with these diffusons, which, due
to the different pairing, can have nonzero frequency dif-
ference and nonzero momentum. But in order to be dom-
inant the outgoing diffusons can also not have a momen-
tum or frequency difference. Therefore somewhere else in
the slab a second interference occurs. Again exchanging
an amplitude, the original pairing, ii* and jj*, is restored
and the two diffusons propagate out; see Fig. 2(a)i. Some
other contributions occur as well. Whereas the incoming
and outgoing pairings are always ii* and jj*, the internal
ones may be difFerent. In Fig. 2(a)ii the first incoming
diffuson meets an outgoing diffuson and amplitudes are
exchanged. These internal diffusion lines meet at a sec-
ond point where the original pairings are restored. It
is clear that in this process the intermediate paths are
traversed in time-reversed. order. Due to time-reversal
symmetry they give a similar contribution to the pre-
vious Fig. 2(a)i. In Fig. 2(b)i, for instance, a diKuson
breaks up such that one of its amplitudes makes a large
detour, returns to the breaking point, and recombines
into an outgoing diffuson. The second incoming diffuson
crosses this excess path of the amplitude, and one of its
amplitudes follows exactly the same contour as the one
of the first difFuson. The fourth amplitude resides and
finally recombines with its original partner amplitude to
form an outgoing diffuson. Finally, Fig. 2(c) depicts the
situation where only one internal diffuson occurs. Its
end points must lie within a distance of a few mean free
paths. Because of its local character this class does not
show up in the final result; it is needed, however, in the
regularization process, since it contains terms that cancel
divergencies from the other two classes.

Due to the diffusive behavior of the internal propaga-
tors we call all these the "long range diagrams. " Their
internal lines are diffusons (ladder diagrams), that is to
say, in these lines there can be an arbitrary number of
scatterers. Note that these long range diagrams also in-
clude terms with only a small number of scatterers, e.g. ,
one or two. The latter contributions are, of course, not

really long range; however, they contribute to the ge-
ometric series that represents the ladder diagram. We
state this explicitly, since below we will discuss some un-
expected problems of these short ranged contributions to
the long range diagrams. There are also some special
short ranged contributions. Due to various subtleties,
they resist a general treatment; their calculation is post-
poned to Sec. VI.

Another class of diagrams can be constructed by taking
the upper half of Fig. 2(a)ii and combining it with the
lower half of Fig. 2(b)i. This diagram contains again
two four-point vertices and also two internal diffusons.
It is easily seen that incoming amplitudes ii* and jj* are
inixed into ij* and ji*. These new diagrams are 1/g2
corrections to the angular dependent C2 and as such do
not contribute in conductance measurements.

IV. DIVERGENCIES IN THE DIFFUSION
APPROXIMATION

The diagrams for the conductance fluctuations contain
a loop; the two internal diffusons have a free momentum,
over which one has to integrate. In Fig. 2(a) this mo-
mentum is denoted q. Physically, one expects important
contributions to the conductance Huctuations if the dis-
tance between the two interference vertices ranges from
the mean free path to the sample size. But in this sec-
tion we will show that the q integral for the long range
diagrams diverges for large momentum, i.e., when the
two interference processes are close to each other. The
standard picture of diffuse transport with diffusons and
interference described by Hikami vertices, which works
so well for loopless diagrams such as the C2 correlation
function [15] and the third cumulant of the total trans-
mission [33], now becomes spoiled by these divergencies.
In Sec. VI we solve the problem by going back to meso-
scopic scales and considering all scattering events.

The problem becomes clear if we calculate the dia-
grams of Fig. 2. First, we need the expressions for the
Hikami vertices. In order to derive the vertices, the mo-
menta are expanded to leading order in (ql). For large
qE. this is in principle not allowed, but in practice it could
still work. The four-point vertex and the six-point vertex
are found by summation of the bare vertex and its dress-
ings. The calculation has been reported several times in
the literature [11,29,32]. We include the eKects of ab-
sorption and frequency difFerences and find

(a)ii {b)ii

4
2 2H4 ——h4 —qi . qs —q2 . q4 + —) (q; + r; + iA;)

i=1
(4Oa)

FIG. 2. The leading contributions to the conductance Huc-
tuations, apart from some special short distance processes
dealt with in Sec. VI. The incoming diffusons from the left
interfere twice before they go out on the right. The close
parallel lines correspond to diffusons; the shaded boxes are
Hikami vertices; g denotes the free momentum which is to be
integrated over.

+qs qi + ) q; + —v; + —0,
2 ' 2 )

(4ob)

H6 ———66 q] .q2 + q2 -q3 + q3 .q4 + q4 q5 + q5 q6



OPTICAL CONDUCTANCE FLUCTUATIONS: DIAGRAMMATIC. . .

We call these the "invariant" forms of H4 and H6 as they
are unchanged under the shifts q; ~ q, —i P. i q~,

q; ~ q; —
s g i q~, respectively. We defined the pre-

factors as

d3
H4(q, 0, —q, 0)l.,„,(q)

g4

4k4

g5
h4 ——

48vrk2 '
$7

h6 ——
96~k4 (41)

The momenta of the difFusons that are attached to these
vertices are denoted by q;, where the diR'usons are num-
bered clockwise on the vertex and their momenta are
directed towards the vertex. In the actual calculations
the Fourier transforms in the z direction of the vertices
are used. Compared to previous results of, for instance,
Hikami [32], the vertices contain additional frequency and
absorption terms. According to the diffusion equation
(32) these extra terms together with the q terms lead
to a source b(z —z'). For external diffusons, such terms
are neglected as they bring contributions of the order
I/I. This approximation simplified the calculation of,
for instance, the long range correlation function [15]. For
the internal diKusons, however, the source terms are of
leading order and cause divergencies. They correspond
to the situation where the two interferences take place
within a distance of a few mean free paths.

As an example we calculate the diagram presented in
Fig. 2(a)i. This diagram was first depicted by Feng,
Kane, Lee, and Stone [12] and considered in detail by
Berkovits and Feng [11].These authors pointed out that
a short distance divergency appears. For the case of ex-
ternal momenta approximately zero, the Hikami box (40)
yields H4(q, 0, —q, 0) = 264q, while the internal diffu-
son has the form l:;„&(q) = 127r/(l' q ). Omitting the
external lines the diagram Fig. 2(a)i then simply leads to

I

which is indeed a cubic divergency in three dimensions,
and, more generally, a d-dimensional divergency in d di-
mensions. As it is arising from the physically innocent
situation where the two interference vertices are close to
each other, we expect that the divergency has to disap-
pear finally.

We now calculate the diagram for the slab geometry.
For simplicity we first consider a quasi-one-dimensional
system in which frequency difFerences and absorption are
absent and therefore the decay rate ("inass") vanishes,
i.e. , M = 0 for all diffusons. (Beyond quasi 1D one would
have to take nonzero M = Q and sum over the allowed

Q.) From Fig. 2(a)i one directly read off its correspond-
ing expression E,.

dzdz'l:;„(z)H4(z)l;„t(z, z')H4(z')l: „,(z).

We label the two incoming diffusons 1 and 3, the outgoing
ones 2 and 4, and the internal ones l.(zs, z7) and l:(zs, zs)
(with 5, 7 at z and 6, 8 at z'). The real space expressions
for the Hikami boxes become

H4(z) = 64[8„B„+2(B„+0„) —0, —0„], (44a)

H4(z') = 64[0„B„+2(0„+0„) —l9„—8„], (44b)

in which 0, is the derivative of the corresponding dif-
fuson; after performing the differentiation zi 3 5 7 should
be put equal to z, while z2 4 6 8 should be put equal to z'.
Keeping z2 4 6 8 Axed, we obtain for the z integral after
some partial integrations

dzH4(z)l:;„(zi) l.;„(z3)l t(zs, zs) l;„i(z7 zs)

g3
dz[ l,„ (tz, zs)b(z —zs) + 8;„t(z,zs)b(z —zs)]l:;„(z)+ 264 dzZ;„q(z, zs)l:;„i(z,zs)l. ;"„(z)

I2

g3 l:;„t(zs,zs)l:;„(zs) + l;„~(zs, zs)l:;„(zs) + 264 dzZ. ;„t(z,zs)l:;„t(z,zs)l.";„(z).

Here we also used the diffuson equation, which in this simplified case reads B,l:;„=0 and 0 l:;„q(z,z ) = 127rb(z-
z')// . Also, carrying out the z' integral we find after performing again some partial integrations

12mh4
dz'H4 (z') l: „,(z2) l: „,(z4) l:;„„(zs,zs) l:,„(zs)

12' h4+ l:;„t(zs, zs) l:,„(zs) + 264 dzl:;„I,(z, zs) l:;„t(z,zs) l:,'„(z)$3

g4

,b(0)

h4E2
+

dzl. ,„(z)l: „,(z)

dzl:;„,(z, z)[l",„(z)l' „,(z) + l:,„(z)l."„,(z) + 2l.",„(z)l."„,(z)l:;„(z)l:„,(z)]

+464 dz' dzE, „,(z, z') l.",„(z)l." „,(z') . (45)
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The spatial derivative of l:(z) is denoted l.". All diffusons
are simple linear functions in this case, yielding

S.; = —h(O)L+ —.2 8
15 45 (46)

Note that the prefactors of the diffusons and the Hikami
boxes have canceled precisely. This is closely related
to the universal character of conductance Quctuations in
electronic systems; see (39).

The term b(0) is a linear divergency, which is the cause
of all trouble. In the three-dimensional case one has to
take Q g 0. The 8(0)I term will occur also for transver-
sal momentum Q g 0, so that the Q sum yields the cubic

I

divergency

W2 8(0)L = W LSl l(0),
(2~)' (47)

as expected from the above bulk consideration.
We now give the results of all diagrams of Fig. 2. We

no longer restrict ourselves to the M = 0 case. The
expressions are labeled according to the diagrams in the
figure, I", Fb, and I",. In the diagrams of Fig. 2(a), the
decay rates of Eq. (33) for the internal diifusons are each
other's complex conjugates, M and M*. In the diagrams
of Fig. 2(b) both internal diKusons have the same decay
rate. Using the de6nition of the Hikami vertices and the
diffusion equation, we obtain

4 2

P (M) = b(0) dz8;„8 „,+ Re dzl:;„t(z, z;M) 3l.";„l „,+32;„l'„,+108;'„l''„,8;„l „t —4iOl:;„l. „,

+464 dzdz'l:;„, (z, z';M)l:;„,(z, z';M') l.",„(z)l '„,(z') + l:',.„(z)l."„,(z)l:',„(z')l '„,(z') (48a)

4 2

Eb(M) = h(0) dzl:;„l. „,+ Re dzl:;„t(z, z;M) [
—2l.';„l."„,l:;„l:~„t+l;„l:„t+l:;„l „~ —4r l:;„l' „t

1 2+—6

g4 26412
E,(M) = ——b(0) dz l:,„l „,— Re dz l.;„,(z, z; M)

x [28',„2'„,Z,„l' „,+ 8',„L „,+ l';„2'„,—(K + iO) l:;„l.2„,],

dz dz' l:,„,(z, z'; M) + l.,„,(z, z';M*) [l.;„(z)l „,(z)],—[l:;„(z')l:„g(z')], (48b)

(48c)

where we used the shorthand notation that in the single
integrals all incoming and outgoing diffusons have argu-
ment z. To obtain the variance of the fluctuations in
quasi-one-dimension, E is evaluated at transverse mo-
rnentum Q = 0. The internal momentum Q enters the
equations via the decay rate of the internal diffusons, de-
fined by M = Q +r +iO. In two and three dimensions
a sum or integral over the transversal momentum has to
be performed.

In (48a) and (48b) we can distinguish three contribu-
tions to E. In the first term, both Hikami boxes op-
erate on the internal diffusons, yielding in the diffusion
approximation a b function evaluated in zero. The re-
sulting term is independent of all the momenta of the
external diffusons. It can be seen from the diffusion
equation that a diffuson decays rapidly if its momentum
becomes large. Terms of the diffusons with few scat-

terers are dominant at large momentum; they cause the
divergence. Our present description of these processes is
incomplete. In order to see the cancellation of this di-

vergency, calculation of the long range diagrams is not
suKcient, so that the short distance processes have to
be examined in detail. This will be done in the next
section. The second term of (48a) and (48b) is a single
integral; it comes about when the boxes act on one in-
ternal and one external diffuson. This corresponds to
the case where one internal diffuson is almost empty,
while the other diffuson contains an arbitrary number
of scatterers. In two and three dimensions the mo-
mentum integral diverges, since for large Q it behaves
as f dz jd" Ql:,„,(Q;z, z) Jd" iQQ '. But when
summing the a, 6, and c contribution this term cancels.
The sum gives

E.(M) + Ib(M) + P.(M)

g4

41 4 b(0) dzl:;„l: „t

+464 dz dz' l;„(z,z'; M)l:;„(z,z'; M*) [l:',„(z)l '„(z') + l.";„(z)l." „(z)l.";„(z')l."„(z')I

2 dzdz' [l:;„,(z, z';M) + l:,„,(z, z';M*)] [l:;„(z)l:„,(z)] „[l:;„(z')l:„,(z')]. (49)
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The last two terms involve a double integral describing
interference vertices at difFerent points in space; techni-
cally it arises when both boxes act on external difFusons,
or from terms where they do so after partial integrations.
This term is absent in the expression E„which contains
only one z dependence as can be seen &om Fig. 2(c).
When performing the integral of E over the transverse
momentum Q, the double integral term behaves at large
Q as jdz f dz' f d QZ,.„,(Q z z') Jd" QQ . It
is thus convergent. One expects that finally only this
term will survive. It is also the only contribution de-
pending solely on derivatives of the external difFusons.

In the quasi-one-dimensional case where absorption
and frequency terms are absent, the expressions reduce
to

2 2
+-(o) + + (o) + +.(o) = ——b(o) L + —.

15 15 (5O)

The second part is a well known result for the UCF in one
dimension, but a singular part is annoyingly present. Be-
fore we can obtain the UCF and correlation functions, we
have to show its cancellation. We expect the unphysical
divergency to disappear by summing all diagrams and in
the next section we set out to find all leading diagrams.

V. GENERATING DIAGRAMS THROUGH
A GENERALIZED KADANOFF-BAYM

TECHNIQUE

Finding the correct and complete set of diagrams by
educated guess proves very diKcult, especially for the low
order diagrams. In this section we pursue the technique
founded by Baym and Kadanoff [34,35] to generate all di-
agrams. This method provid. es a systematic way to con-
struct the diagrams in a particular approximation. The
approximation is made on the level of a generating func-
tional. The form of this functional is guided by intuition
or by prior knowledge of the self-energy or some other
physical quantity. The theory of KadanofF and Baym, of
which the basics will be reviewed in the course of this
section, prescribes which diagrams are to be included in
the perturbation theory on any level in the hierarchy of
the many particle Green's functions. It was proven by
Baym and Kadanoff [34,35] that this procedure provides
a conserving theory in the sense that sum rules based.
on conservation of particle number, momentum, angular
momentum, or energy are fulfilled. However, it does not
guarantee that a sensible theory in a physical or even in a
mathematical sense will be produced. (The Green's func-
tions themselves may not possess the correct analytical
structure, i.e. , they may be non-Herglotz [36].)

The theory of KadanofF and Baym is defined for in-
teracting electron systems. It is our goal to describe the
scattering of light in a disordered medium. The connec-
tion between electronic and optical disordered media can
be put on a solid footing as the equations which describe
these phenomena can be mapped onto each other [6]. The
equivalence of interacting and disordered systems, how-
ever, is less obvious. Although one can rewrite models
of disorder in such a way that an efFective interaction is

Z', = bC / bG'„

Z,", = b C / (bG', 8G,'),
(51a)
(51b)

where the numbers 1, 1, 2, . . . denote the collection
of variables (kq, wq), (kz, cuz), (k2, uz), . . . and G,'
—(7 4(1)4+(I)). At this point we generalize these re-
sults to obtain irreducible three- and four-particle ver-
tices:

2'" = h 4 / (bG,' bG,' bG,'),
Zzgsg: 8 C / (8G 8G bG bG )

(52a)
(52b)

(n)

) 1

n=O

(n)

FIG. 3. The generating functional which produces dia-
grams for (a) weak localization and (b) and (c) the UCF.

present [37], the precise form of that interaction depends
on the physical quantities that are studied. Furthermore,
if one wants to represent the disorder as a two-body, cen-
tral potential, one is limited to special disorder distri-
butions (e.g. , Gaussian) or approximations (e.g. , second
order Born). However, these drawbacks do not hinder us
in using this theory in a heuristic sense.

The input of the theory is an approximate functional
C from which we may derive the perturbation theory. In
the choice we are led by the theory of weak localization
and universal conductance fluctuations (UCF). The max-
imally crossed diagrams, which are the most important
quantum corrections, are generated by the functional de-
picted in Fig. 3(a). These wheel-like diagrams are gener-
alized Fock diagrams in the sense that the first term in
the sum produces the Fock diagram for the self-energy.
The UCF d.iagrams are generated. by a functional which
may be called "generalized Hartree" in the same sense;
see Figs. 3(b) and 3(c). It turns out that the weak lo-
calization efFect and the UCF are connected and may be
generated from a single diagram [38]. This observation
leads to the conjecture that the most important contri-
butions in the intensity fluctuations stem from the same
diagrams. We thus adopt the functionals as given in Figs.
3(b) and 3(c) as the ones we start our calculation with.

I et us briefly review the aspects of the Kadanoff and
Baym theory we need. Starting with some functional
C as described above, the self-energy Z,'and the two-
particle irreducible vertex E",, may be found from
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Note that these generalizations, like the ones that will
follow, are not free from internal symmetry. Since we
are primarily interested in the structure of the diagrams,
rather than their multiplicativity, we will make no efFort
to remove this symmetry. The one-particle Green's func-
tion G', is connected to the self-energy by the Dyson equa-
tion. A two-particle Green's function G', , is connected to
the irreducible two-particle vertex by the Bethe-Salpeter
equation

G', = G', (0) + G,'(0) E', G'„ (53a)

O'„' = O', G', + O', O,' Z,",O,", ,

where G,'(0) indicates the bare propagator. Integration
over the free variables occurring as super- and subscript
is assumed. Again, we may generalize these results to
obtain a three-particle Green's function G,",', and a four-
particle Green's function G,', '„. We find [38]

Gpss (Gl Gss + Gs Gls)($5 p + y45 Gs4
) + GiGs (y45 Gsss + g456 Gss Gss)

Gisss (Giss Gs + Gis Gss + Gxs Gss + Gs Gsss)(gs gs + ass Gss)
(54a)

(54b)

where the b's are Kronecker deltas. These equations pro-
vide the full information on the fluctuations in trans-
port quantities given the exact set of irreducible vertices
Z,-', Z', » Z,",» Z,"~~~. An approximation of this set can be
found by choosing a suitable functional 4.

The functional we adopt is

where I is the scattering strength in second order Born
approximation. After differentiation of C with respect
to G ladder diagrams and maximally crossed diagrams
appear. Each element in these series has prefactor 1.
Therefore we define the full ladders in both channels as

C:= G', G', -S:;+):—.L::[ ]+;C::[-],
n=1

(55) I.'„'=S;;+S;;G',G', I„",=) I.;;[n],
n=1

(57a)

where L,",[n] and C,'s2[n] are the product of n scattering
terms in the particle-hole and particle-particle channels,
respectively. The last two terms are the ones depicted in
Figs. 3(b) and 3(c). Algebraically we have

C;; = S,';+S;;G,'G', C,'; = ) C,';[n]. (57b)

S,", = L,", [1] = C,'; [1] = 8,' I h,', (56a)
(56b)

(56c)

Systematic application of Eqs. (51) and (52) on the
functional (55) leads to the following irreducible n-
particle vertices:

y123

1234
~i~a~

G,' (I'„-'+ C,", —S,",),

+O5 O6 OV GS ( 1 L,54 L83L,72 L,16 + L,58 I 43 J 72 L,16 + 1 L58 L,47 L,32 L,16 + 1 L,57 I 32 1,14 L86
5 6 7 8 % 6 is 4'7 38 52 i4 ST 88 52 2 i4 88 't8 52 2 i3 '78 58 42

+ l Cis C."s Cs' C's + Cis Cs: Cs: C': + l Cis Cs." C:s Css + l Cis C:s Css Css))

(58a)
(58b)

(58c)

(58d)

where the operator Per,"~ " produces all the permu-
tations of its operand in the variables (1, 1), (2, 2),
. . . , (n, n), i.e., n! diagrams. Expansion of Eq. (54) us-
ing Eq. (58) is obviously a considerable task. Taking
into account that we only need those diagrams which are
different in a topological sense, the effort stays manage-
able. As usual, diagrams which contain loops do not
contribute.

To illustrate the procedure set out above we have a
closer look at two examples. First of all, part of the in-
tegral equation for G,",„is needed. The relevant part is

depicted in Fig. 4. Then, in Fig. 5(a) we start ofF with the
functional as depicted in Fig. 3(b). Successive functional
difFerentiation (cutting) as prescribed in Eqs. (51) and
(52) produces the one-, two-, three-, and four-particle ir-
reducible vertices given in Figs. 5(b), 5(c), 5(d), and 5(e),
respectively. Insertion (gluing) of the latter irreducible
four-particle vertex in Fig. 4 amounts to adding exter-
nal difFusons. Of course, more diagrams are produced in
this particular example but for the sake of simplicity no
attention is paid to these diagrams.

In the second example we start off with the diagram
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FIG. 4. Part of the integral equation from Eq. (54b). First
indicated term on the RHS produces the external ladders.
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containing the maximally crossed vertex, Figs. 6(a) or
3(c). By functional differentiation, see Figs. 6(b) and
6(c), and subsequent integration in the Bethe-Salpeter
equation (53), we obtain a contribution which consists of
two maximally crossed diagrams with a dressing. This el-
ement is the input for Eq. (54b), see Fig. 4, and generates
an important contribution to the whole set.

The set of diagrams thus generated by the Kadanoff-
Baym approach was verified using a computer program.
We developed this program to generate all diagrams with
six or less scatterers automatically. After generating
the set, the program checks it against double count-
ing. Next, momenta are assigned to all propagators such
that momentum conservation is obeyed. It then deter-
mines whether a particular diagram is of leading order
in (kI); this is the case if all propagators can have a
momentum approximately equal to k. The leading di-
agrams are expressed in terms of the standard integrals
defined in Sec. VI. The subsequent analytical calculation
and summation of diagrams were done by hand. The pro-
gram turns out to be especially useful in determining the
precise set of leading short distance diagrams, but also
the long distance diagrams of Sec. III were reproduced.
It should be mentioned that apart from the diagrams
from the Kadanoff-Baym approach we also found extra
diagrams; in Sec. VI C they are discussed and it is shown
that they cancel.

FIG. 6. Particular example of how a set of Cooper propa-
gators is produced. Functional differention with respect to G
is indicated by cutting out a line (pair of scissors) from (a) to
(e). Pasting the result in the integral equation, indicated in
Fig. 3, produces a four-particle quantity (and adds external
ladders) .

with less than four scatterers. The external diffusons
may still contain an arbitrary number of scatterers. For
simplicity the calculation in this section is performed in
the bulk and the external diffusons are not attached to
the diagrams. Since the divergency is independent of the
external momenta, the cancellation is generally proven
at zero external momentum. For simplicity we may then
consider an infinite system. As a result all factors can be
expressed in the d-dimensional momentum q = (Q, q, ).
We first look at a fixed value of the d-dimensional inter-
nal momentum q and postpone the integration. We will
show that under present conditions the integrand is zero
for all q, so that there is no divergency after integration.

All diagrams can be factorized in products of the inte-
grals

I, '"(~) = I"",.(~)

G"(p)&'(p)G (p+ q)G*"(p+ q).
(27r) s

VI. CANCELLATION OF SHORT DISTANCE
CONTRIBUTIONS

In this section we show that the strong divergence that
occurs if both Hikami boxes act on internal diffusons can-
cels. Since a diffuson decays rapidly if its momentum
becomes large, terms of the diffusons with few scatter-
ers are dominant when the momentum is large, which
causes the divergence. The cancellation is thus shown by
considering in great detail the short; distance processes.

It turned out that complications arise for diagrams

1
dp (1+Eq . p)' (7 = 1, 2, 3). (60)

In the calculation of the diffuson and the Hikami vertices
in the previous sections we expanded the integrals in q8.
Since we are after contributions for q 1/l, this expan-
sion is not allowed. We can still assume that q (( k, as
we do not need the physics on length scales comparable
to the wavelength, but comparable to one mean free path
only. The integrals needed in the calculation are given in
Table I, where A,. is an angular average defined as

The integral for i = 1 yields the diffuson kernel Az ——

~ 7 7I 7
~ ~

I7

~ ~

~ ~

~ ~

~ 7

~ ~

~ ~

i I I I
7 ~ I ~
I I I ~

I 7 I I8 77 I
77 I

I 7 I
I ~ ~

TABLE I. The short distance diagrams can be factorized
in these integrals, defined in Eq. (59); A, is defined in the
text.

(a} (b) (c) (d)

FIG. 5. Particular example of how the double diffuson
structure is produced. Functional differention with respect
to G is indicated by cutting out a line (pair of scissors) from
(a) to (e). Pasting the result in the integral equation, indi-
cated in Fig. 3, results in adding external ladders (glue).
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y072
1,1
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1 7 2
I1,0
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I1 7

1,2

—A1e
4n

e3
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—e3

16wp7—'e
Smk

, ~ „,[Ai+As]
, '„, [2Ai + A2]
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0,2

I '
171

I1,1
1,1

I0,1
1 7 2

1270
172

I27 1
1 7 2

—'e' A8mk 2

8~k
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8."~1
e3

16mp7
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) ( ) (
) (

FIG. 7. The dressings of the shaded vertices of Fig. 2 are written out explicitly; this shows the detailed structure of the long
range contributions to the conductance Quctuations. The close parallel lines, only explicitly shown in the 6rst diagram, are
the external diffusons. Figure 2(a)i corresponds to the case where 1 and 3 are incoming diffusons; Fig. 2(a)ii corresponds to
the case where 1 and 2 are incoming di8'usons. The vertical, diagonal, or curved lines linking two dots represent a common
scatterering of two amplitudes. From top to bottom the horizontal lines in a diagram are advanced, retarded, advanced, and
retarded propagators, respectively. The number of scatterers in the internal and external diKusons is arbitrary. Topological
equivalent diagrams are not shown. We number the diagrams from left to right and from top to bottom (see Table II).

arctan(qE)/qE. The internal diffuson now reads

4' 1
1 —Ag

We recover previous results by expansion in (qE) Thi. s
yields 8;„& ——12)r/(E q ) and agrees with the bulk solu-
tion of (32).

A. Short distance properties of the long range
diagrams

First, look at the long range diagrams with few scat-
terings. By writing out the dressing of the vertices one
obtains the detailed structure of the diagrams, given in
Fig. 7. In the diagrams Figs. 2 (a) i—2 (c)i, the incoming ex-

ternal diffusons are connected to 1 and 3. The diagrams
in Figs. 2(a)ii—2(c)ii are obtained by connecting external
diffusons 1 and 2 to the incoming side. If such a diagram
contains only a few scatterers, it can be grouped into one
of the classes of the long range diagrams. A simple exam-
ple is the upper left diagram of Fig. 7, drawn there with
six scatterers. Interchanging the external diffusons num-
bered 2 and 3 clearly leads to another topology. However,
with only two scatterers present, the topology does not
change under this operation, and one must be careful
not to overcount this term. Bearing this important ob-
servation in mind, we sum all long range diagrams for an
arbitrary number of scatterers. The expression for each
diagram and its combinatorial factor is given in Table II.
It is convenient to collect diagrams with an equal num-
ber m of scatterers that connect different propagators.

TABLE II. Table used in the calculation of the diagrams presented in Fig. 7 for zero external
momenta. The expression for each diagram is given in the second column and its combinatorial
prefactor in the other columns for different numbers of scatterers. The last column counts the
number of scatterers that are not included as such in the resummmation. There are six diagrams
with degeneracy lower than expected: (c)1 for n = 1, (a)1,(c)2,(c)5 for n = 2, and (c)6,(c)7 for
n = 3.
Diagram

(a)1
(a)2
(a)3+(a)4

(b)1
(b)2

(b)3
(b)4
(b)5
(b)6

()1
(c)2

(c)3

(c)4
(c)5
(c)6
(c)7

Expression

[11)1 2 Ill)0
I1,0 2 I1,0

1)1 1,1 0)1
IO 1 4 I1 0- n —4

1,1 0,1

I0,1I1,0 I1,0 ~—2
2)1 12 01

I0,1 I1)0 I1,0

I0,1 11,0$ 2 I1,0 ~ 4

I2 1 1 2 2 0 0)1
IO,OI0, 111,0 [11,0]

2)1 2)0 1)2 0)2 0) 1

12)1 [ll,o]
))

11,110,1 [11,0]
~

[I,',']'I,", [I,',']" '
IO, OI2, 0 I-l1,0-, ~—2

IO, 0I1)0I1. ) 1

IO, O IO, 010,2 [11)0$ 7I

0=4 —4

1=2 —1

0=8 —8

16

8=16 —8

0=4 —4

n&4
2n —2

8n —16

8n —24

4n —4

8n —16

4n —12

8n —16
8n —24

4n —12

16
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Scatterers on which one given amplitude scatters twice
are thus, momentarily, not counted as new scatterers.
Looking at Fig. 7, m equals the total number of scatter-
ers minus the number of scatterers indicated with curved
lines. After this resummation we find the important re-
sult that each class of "long range" terms vanishes for m
not equal to 2. Denoting the terms of Fig. 7, respectively,
by R~, Rb, and R we find R = Rb ——R, = 0, if m ) 2.
If m = 2, the classes cancel against each other, since we

e'then obtain B = Rg = —R /2 = z@, Az. This implies

R +Rb+R =O. (62)

We have thus shown that the long range diagrams for an
infinite system cancel and thus cause no divergency after
integration over g. It is essential that the degeneracy of
the low order contributions be counted properly.

Another, more standard way to verify the important
cancellation is the following. Recall that we look at a
bulk situation with fixed internal momentum q, while

I

H4(q, 0, —q, 0) = Ij ~ (q) + —1I~~ (q) } + —(I~~ (q) }
(63)

Inserting the values from Table I and doing similar but
longer calculations for two other vertices we find

H4 (0, q, 0, —q) = 2H4(q, —q, 0, 0)
e'

,Ai(1 —Ai),8~k2
g5

&6~k4
Ag(l —Ag)(1 —3Ag). (64b)Hs(0, 0, q, 0, 0, —q) =

Now the long range diagrams of Fig. 2 can be evaluated.
For the internal part one has at fixed q

the external momenta are put equal to zero. Beyond the
diffusion approximation an internal difFuson is given by
Eq. (61). We also need the Hikami boxes beyond the
diffusion approximation. It holds that

2H4(q, 0, —q, 0) 8;„,(q) + 4H4(q, —q, 0, 0) Z,.„~(q) + 2Hs(q, 0, 0, —q, 0, 0)C;„,(q)

g4 g4

4k44 (2A, + A~ + 2Ag(1 —3Ag)) =
4 (2A) —3A~). (65)

4A:4

It is essential that the denominators 1 —Ai have disappeared from this expression. As mentioned, it means that all
high order terms cancel, allowing a cancellation of the remainder by low order contributions. From Table II it is seen
that we have overcounted six types of low order terms. The correction to be subtracted is

4~ /4~) 6 P ') iZ4- —iE2 i&4

32mk44(»+»+43) +
I

~
I I ~, » ~

+8,(2»+»)»+8, (»+&»))8~k 8~k 32~k3

/4vr) iE iE —P il iE2-
+

~

—
~

8 „A&,A, +4 „,A. =,(2A, —3A', ). (66)S~k 87rk 16~k' Sark S~k Smk' 4k'

It indeed exactly cancels expression (65), which arose as
a remainder of the long range terms.

From the results of the present section one may be
tempted to conclude that the long range diagrams do not
lead to divergencies if the correct degeneracies of the low
order terms are properly taken into account. Though this
conclusion is correct, it is too early to draw it, since we
show in the next parts that some further complications
arise.

B. Extra short distance contributions

Unfortunately, we have not yet finished with the cal-
culation as other terms are also of leading order at short
distances. First, diagrams with a different topology also
occur. There are five new diagrams, all with two scat-
terers; see Fig. 8. They can be looked upon as diagrams

I

from the set of Fig. 7(a), but without any scatterers in
the ladders.

Second, diagrams can have more than one configura-
tion for a resonant arrangement of the momenta, i.e. ,
several configurations can be leading. The most impor-
tant contribution to the integral (59) arises if the am-
plitude loop momentum p is close to the wave vector
~p~

= k. With more loops present it is sometimes pos-
sible to find more than one choice for the momenta of
the amplitude propagators. This is illustrated in Fig. 9,
where the diagram of Fig. 7(a)1 is repeated. The expres-
sion for the shown diagram has contributions from three
different poles. The first arrangement of the momenta is
dominant for any number of scatterers; this one is part
of the set of long range diagrams for any number of scat-

g~ &P g&X&/ ~~ &P g&~zQ

FIG. 8. Leading diagrams with topologies not yet con-
tained in the long range diagrams. They all contain two scat-
terers.

FIG. 9. Di8'erent choices for the loop momenta, all yield-
ing leading contributions; thick and thin lines depict diAerent
large momenta, both with length k. The first diagram is lead-
ing for any number of scatterers. When only two scatterers
occur the other two diagrams are also leading.
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terers. The two configurations on the right give an extra
leading contribution. This only occurs with two scatter-
ers present; with more scatterers the two diagrams on
the right become subleading, and only the left diagram
remains. Apart from this diagram, the same thing occurs
for the diagrams of Fig. 7(c)1 and Fig. 7(c)2 also with
two scatterers, and for the diagram Fig. 7(c)6 with three
scatterers.

Also the diagrams of Fig. 8 have more than one pole:
The four left diagrams of Fig. 8 have two resonant mo-
menta configurations and the right one has three. We
sum all the contributions thus found (41 in total) and de-
note them as S for n scat terers. They are only nonzero
for diagrams with two or three scatterers, and read

2

g4

2k4 AgA2, (67a)
3 4(47r) py p2 pp

( g) 2k4

One sees that these special contributions cancel.

(67b)

C. Interference vertices without partner exchange

Apart from the diagrams generated. by the Kadanoff-
Baym approach, we found another class of leading long
range diagrams when we generated the diagrams by com-
puter. In these diagrams the two diffusons have two
scatterers in common, but no amplitude is exchanged.
They either have one internal diffuson (see Fig. 10) or
two (see Fig. 11). These diagrams are actually of simi-
lar type as Fig. 2. The diagrams with one internal dif-
fuson are analogous to Fig. 2(c)i, while the ones with
two internal diffusons are analogous to Figs. 2(a)i and
2(b)i. The equivalents of Figs. 2(a)ii, 2(b)ii, and 2(c)ii
also occur. The important difference with the previous
diagrams, though, is that at the interference vertices no
amplitudes are exchanged. In this respect they differ
qualitatively from Hikami boxes, where partner exchange
does occur. Explicit calculation shows that these terms
cancel at both zero and. nonzero external momentum; this
was also already noted by Kane, Scrota, and I ee [23] [see
their Fig. 5(c)]. These classes of diagrams can thus be
fully neglected. This cancellation is due to time-reversal
invariance. Apart from these two classes, the Kadanoff-
Baym approach, using (55), generates all presented dia-
grams as we checked with the computer program. The
generating functional for the extra diagrams of Fig. 10 is
drawn in Fig. 12.

In conclusion, the analysis of this section shows that

\ z
z r Iz ~ z

FIG. 11. Leading diagrams without amplitude exchange
with two internal di8usons. The two drawn diagrams can-
cel against each other. All diagrams of this class cancel.

when the external momenta vanish all leading terms can-
cel at fixed value of the internal momentum. Upon in-
tegration over the loop momentum one still has a zero
and, in particular, not a divergent contribution. For an
infinite system the theory is thus well behaved at short
distances. The divergence has canceled in a careful study
of the short distance process; renormalization, as known
from field theories, was not needed.

I J(M) = f dzc;*„(z) Jr, r(z)
dq

2~ 4k4

g4
b (0) dzE,.„(z)8 „,(z). (68)

This indeed cancels exactly the leading divergency that
remained in Eq. (49) for the sum of I", I"~, and I",. The
milder divergency present in the individual terms E, Eb,
and F in two and three dimensions canceled already by
summing them. Diagrammatically this can be seen as fol-
lows. The diagrams responsible for the latter divergence
contain one internal diffuson [such as in Fig. 2(c)]. For
these diagrams one does not have the complications of the
preceding section; double counting corrections, different
resonant momentum configurations, and extra diagrams
are absent. This was confirmed by our computer gener-

VII. APPLICATION OF CONDUCTANCE
FLUCTUATIONS TO OPTICAL SYSTEMS

We have now seen that in infinite systems all diver-
gent terms cancel. In realistic systems, such as a slab,
the same diagrams describe the relevant physics. They
have to be evaluated with appropriate diffuson propaga-
tors. Generally they can be written as the bulk term
with additional mirror terms. For a slab they were given
in Sec. II. Knowing that the short distance behavior is
regular, we can self-consistently consider all scattering
diagrams in the diffusion approximation. For the long
range diagrams this was done already in Sec. IV, where
all long range contributions were evaluated. The discus-
sion of the preceding section has shown that the only new
effect comes from the subtraction of Eq. (66). In the dif-
fusion limit for a quasi-one-dimensional system at fixed
transversal momentum Q, it results in a contact term,
labeled I"g..

JzzzzzI I z ~ ~ Jz Jz

FIG. 10. Leading diagrams without amplitude exchange
with one internal di8'uson. The two drawn diagrams cancel
against each other. All diagrams of this class cancel.

FIG. 12. The generating functional that has to be included
in the KadanofF-Baym approach to generate the diagrams of
Fig. 10.
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ated diagrams. The only contributions which remain in
(49) are thus the double z integrals. This finite remainder

F(Q, r. , O) = F (M) +Fs(M) + F,(M) + Fd(M)

of our theory yields the sought conductance fluctuations.
We thus obtain, with again 64 ——E5/(48vrk ),

(69a)

dz dz' l:;„t(z, z'; M) d,„t(z, z'; M') [2';„(z)l „,(z') + l;„(z)8' „,(z)8';„(z')2' „,(z') j

h2
2 2

dz dz' C;„,(z, z'; M) + 8;„„(z,z'; M*) [8;„(z)2„,(z)], [2;„(z')2 „,(z')], (69b)

in which again M2 = Q2 + K + iO. This equation
is the central result of the present paper. The upper
line of (69b) corresponds to the diagrams of Fig. 2(a),
whereas the lower line corresponds to the diagrams of
Fig. 2(b). Note that only derivatives of external diffu-
sons are present. As compared to the erst line, extra
terms are present in the second one. According to (32)
we have

I

II. First consider the case of fully transmitting surfaces;
if we neglect absorption and frequency diR'erences this
gives

3 2 + 2Q2L2 —2 cosh 2QI + QI sinh 2QI
(Q) Q. . . „ Q

(71)

dz 2 [2;„(z)Z „t(z)] = 2Z',-„(z)C'„t(z) + 2v 6;„(z)Co~&(z).

(70)

The r terms are extra terms arising when absorption
is present. Finally, with Eq. (38c) the value at van-

ishing transversal momentum gives the variance of the
conductance in one dimension, and integration over the
transversal momentum yields the correlation in two and
three dimensions.

Using the general result of (69) and (38c) various cases
are considered by inserting the di8'usons derived in Sec.

which decays for large Q as Q . In this case we recover

0.133, quasi 1D
(&2), = ( —3((3) &

= 0.116—,quasi 2D

—,'. ~' = 0.159„, 3D,

(72)
(73)
(74)

in which ( is Riemann's zeta function. These are well

known results [4]. We determine also the frequency de-

pendency of the correlation; this is important as it de-
termines the frequency range of the light needed to see
the fluctuations. Taking the frequency dependency into
account we obtain

4 (M* —M + M2M*L coth M*L —M*2ML coth ML)
L4M2 M*2(M2 —M*2)

2+ 2M I —2cosh2MI + MI sinh2MI
+Re

2M41.4 sinh MI
(75)

The correlation decays for large frequency difFerences as
0 +, as was stated by I,ee, Stone, and Fukuyarna [4].

We were unable to perform the double integral over
the position analytically in the presence of absorption.
In Figs. 13, 14, and 15 we show the one-, two-, and
three-dimensional correlation functions for various val-
ues of the absorption. It is seen that especially the top
of the correlation is reduced due to absorption.

Next we applied our theory to the case of partial re-
flection at the surfaces of the sample. We assume an
index of refraction m = geo/eq g 1. For our purpose
the internal reflections are coded in only one parameter,
the injection depth zo, see (18), (26), and (35). For opti-
cally thick samples the correlations are now determined
by zo/L. It is physically clear that the internal refiections
lead to a less steep diAuse intensity in the sample as a
function of the depth. The fluctuations are proportional
to the space derivatives and are thus reduced. The re-
sults are presented in Figs. 16—18 where the correlation
function is plotted for various values of the ratio between
extrapolation length and sample thickness. One sees that

2/15

0.10

0.05

0.00
0.0 10.0 20.0

L
30.0

FIG. 13. The correlation of the conductance as a function
of the frequency for various absorption strengths in one di-

mension without internal reQection. Prom upper to lower

curve: no absorption (K = 0), m = 1/I, and m = 2/L
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tion of the C3 correlation function. We first evaluated the
leading long range diagrams. As expected, each diagram,
but also their sum, contains a short distance divergency.
Also a subleading divergency occurs, but for a slab ge-
ometry is was found. to cancel automatically. The study
of the cancellation of the leading divergency then was the
main theme of the paper. Consistency of the approach
requires finding extra contributions that exactly cancel
the already determined divergency, and therefore serves
as proof that the set of long range diagrams exhausts all
of them.

We developed a diagrammatic method that systemat-
ically generates all leading scattering diagrams. This set
was checked by computer. A large number of diagrams
had to be considered in detail. We summed these dia-
grams for an infinite system at fixed value of the loop
momentum. It was seen that also beyond the diffusion
approximation the action of Hikami boxes on the long
range propagators is to eliminate the long range terms,
and leave only some low order contributions. Moreover,
some low order terms of diagrams with diffusons have
a lower degeneracy than their higher order equivalents.
Taking this into account led exactly to a cancellation of
all terms in an infinite system. Next we discussed that
some extra classes of leading diagrams occur, but they all
add up to zero. Thus in an infinite system all diagrams
cancel, so that, in particular, no short range d.ivergency
occurs. All short range contributions could be coded in a
contact term (68). It would be interesting to investigate
how it is derived in a nonlinear 0-model formulation of
the theory, possibly along the lines of Scrota, Esposito,
and Ma [39].

Subsequently the theory was applied to systems of fi-
nite size. Here the short distance divergencies cancel as
well, because the large scale geometry of the system does
not have inHuence on short range effects. The final re-
sult is nonzero as it describes the correlation function in
terms of derivatives of external diffusion propagators of
the geometry considered; such terms have no meaning in
an infinite system.

Our central result for the correlation function of the
conductance is given in (69). It is obtained by adding
the result of the long range diagrams (49) and the con-
tact term (68). When there is no absorption, agreement
is found with the result of Kane, Scrota, and Lee [23]. All
external diffusons are differentiated once. When absorp-
tion is present, however, their approach is no longer valid.
We found that extra terms appear where some external
diffusons are differentiated twice or are proportional to

K', see (70).
We have applied the results to realistic optical sys-

tems. The frequency dependent C3 correlation function
was calculated for the case where a diffuse incoming beam
is used and all outgoing intensity is collected. It was seen
that both absorption and internal reBections decrease the
correlations by a considerable amount. This is important
for a quantitative analysis of experimental data.

Electromagnetic measurements that involve the C3
correlation have been reported by Garcia and Genack
[40]. These authors were able to describe the data of
their infrared experiments by adding the C», C2, and C3
contributions, but they incorrectly assumed that C3 is
frequency independent. The experimental investigation
of optical universal conductance fluctuations is known to
be very difFicult. One problem is that if the incoming
beam has to be diffusive, it will have a low intensity.

We propose here a different way to measure the same
interference effect. Consider a laser beam coming in in a
given direction a and measure the frequency dependent
total transmission. Such can be done using an integrat-
ing sphere [9]. Then repeat the measurement for a very
different incoming direction c. Each of these two signals
will exhibit the large C2 correlation function [9]. How-
ever, when the directions a and c are not close to each
other, the C2 will not contribute to the cross correlation.
The cross correlation of the total transmission is much
smaller than the autocorrelations; it just represents the
typical term of the UCF in (39). As this cross correlation
is of relative order 1/g, it is of the same order of mag-
nitude as the third cumulant of the total transmission.
A very precise measurement of that quantity was carried
out by de Hoer, van Albada, and Lagendijk, and reported
in collaboration with two of us [10]. It may therefore be
expected that it is just possible to measure C3, and thus
essentially the UCF, with visible light.
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