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Bistability in simulated granular Aow along corrugated walls
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We investigate binary impacts of solid grains obeying a force scheme often used in the molecular
dynamics simulation of rapidly Howing granular media. A thorough analysis of the force equations
shows that the deceleration of a free grain upon grazing impact on an array of "wall grains" depends
dramatically on the initial velocity relative to the wall so that in certain situations a bistability in
the granular How appears. We explain why this is an artifact of the modelization inherent in the
force scheme and we illustrate our findings with some sample simulations.
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The flow of granular materials presents a scientific
problem of considerable technological importance. Due
to complicated interactions and strong fluctuations, no
generally accepted theory of granular flow exists so far.
Precision experiments are difBcult because granular me-
dia are not a very well-defined material and the influence
of the interstitial medium and of triboelectrification is
not easy to control. Therefore, in recent years the simula-
tion of granular flows has become a widely used research
tool. Molecular dynamics methods [1] with dissipative
two-particle forces ("granular dynamics") [2] have espe-
cially been used extensively [3].

Granular dynamics studies rely on suitable assump-
tions for the forces. It is crucial to understand the limits
of their validity in order to avoid misinterpretation of
simulation results. In the following we show that a pop-
ular implementation scheme using soft particles and cor-
rugated walls gives rise to a phenomenon not recognized
so far: Depending on the initial conditions two stationary
states with different ffow velocities may appear (bistabil-
ity). This effect is unlikely to occur in reality. However,
due to modelization, it is quite naturally encountered in
granular dynamics simulations.

For the sake of simplicity and clearness we refer to one
specific two-particle force law in two dimensions which
serves as a prototype for other similar ones and contains
the basic granular interaction properties (inelasticity and
friction). The particles are "soft," meaning that they
can penetrate into each other. Their overlap is inter-
preted as a measure of the elastic deformation of the
colliding grains. Real deformations are much more com-
plicated [4]: For instance, a head. -on collision and a graz-
ing one both with the same overlap in simulation would
produce completely diferent elastic restoring forces in re-
ality. The corrugated walls are made of grains with the
same properties as the &ee grains, but with in6nite mass.
Particle rotation is not taken into account.

Consider a collision of two grains (Fig. 1). We sep-
arate the relative velocity and the interparticle force
into normal and shear components using the unit vec-
tors n and s as de6ned in Fig. 1: v„~ ——v~n + v~s
and Fi2 ——I"~n + Fgs. If the two particles overlap

(( = r1 + r2 —~x2 —xI
~
) 0), there is a repulsive normal

force which we assume to be proportional to (. In order
to make head-on collisions dissipative, a damping term
linear to the normal velocity VN

—= ( is added, such that
for grain 1

ES = ~PFN ~sgn(vS) (2)

where p is the Coulomb coefBcient of dynamic &iction.
Other approaches to the normal force are of the general

form

+N —kN( 'YN(

where the exponents n, P, and. p depend on the physi-
cal model motivating the force. For instance, integrat-
ing Hooke's law plus a viscous damping term over the
contact area of two inelastic spheres leads to the Hertz-

FN — AN( QNmred(

The presence of the reduced mass m„d = mImq j(mI +
m2) in the damping term has the effect that collisions
with wall grains (infinite Inass) are more dissipative than
those with another &ee grain. The shear force I"s is re-
lated to the normal force by the Coulomb law of &iction
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dress: j.schaeferkfa-juelich. de FIG. 1. De6nition of quantities describing binary impact.
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Kuwabara-Kono force n = 3/2, P = 1/2, p = 1 [5). We
used this force to check the generality of our results ob-
tained with (1).

The advantage of the simple damped harmonic os-
cillator force (1) is that its analytic solution with ini-
tial overlap ((0) = 0 and initial relative normal velocity
vN ——((0) allows the calculation of useful quantities like
the collision time

kNt, i=vri
(mrea

) —1/2
+N

(4)
FIG. 2. Impact of a free grain with a grain imbedded in a

wall.

the coefBcient of normal restitution (ratio between fi-

nal and initial normal velocity) eN = vN/vN
exp( —pNt, ~/2), and the maximum overlap during colli-
sion ( „&vNt, ~/7r, where the equality holds for elastic
grains (pN = 0).

An accurate simulation reproducing the analytic re-
sults of a collision with relative errors of the order 10 4

requires a time step

At = t, )/50. (5)
According to (4) the time step At scales essentially with
1/gkN. Therefore in most simulations kN is chosen as
small as possible, but suKciently large to satisfy the con-
dition that ( „remains much smaller than the grain
diameter for the impact velocities to be expected during
the simulation. However, it should always be checked
that the simulation results do not depend sensitively on
kN. Luding et al. [6] pointed out that for dense granular
packings small values of k~ lead to qualitatively difFer-
ent behavior than realistically large ones: t, ~ becomes so
large that a column of N beads falling onto a rigid plate
behaves like an array of N —1 coupled damped oscilla-
tors rather than N distinct grains undergoing successive
collisions.

Here we consider less dense, Homing granular materials.
The phenomenon is also an effect of high collision times
due to low force constants, but related to high shear ve-
locities vp at the corrugated boundary of a granular Bow.
For illustration, we take a vertical pipe. Gravitation ac-
celerates all particles downwards in the y direction. Brak-
ing only occurs at the walls and is essential for reaching
a steady state. The braking efficiency can be quantified
by the change of the y component of the velocity, Lv„,
upon a particle-wall collision. This is the key quantity
for understanding the eKect we want to describe.

First consider the impact of a grain on one single wall
grain as sketched in Fig. 2. If we suppose the impact to
be grazing and v„' much larger than v', then Ep is mainly
responsible for braking in y direction and we may write

In summary, we find. that Lv& is proportional to vy up
to some critical v„which is proportional to gkN and
then decreases like 1/v„', i.e. , the braking eKciency goes
down. By analogous reasoning, the same holds true for
the velocity change in the x direction, Lv . We address
the linear increase as the normal regime, and the 1/v„'
decrease as the regime of soft sphere brn-ke failure

To illustrate, we simulated the impact situation
sketched in Fig. 2. Here, we used a Bee grain of diam-
eter 1 mm and mass 1 mg and a wall grain of diameter
0.66 mm. The parameter values were kN = 2000 N/m,
pN = 1.0000 s ' (m eN = 0.70), p, = 0.5, and the colli-
sion time was t, ~

——7.07 x 10 s. The initial position of
the &ee grain's center was 0.82 mm above the wall line,
and v' was set to zero, so that the &ee grain Hew on a
line parallel to the wall and the maximum linear overlap

$ of the two grains was 0.01 mm by initial condition. We
measured Lv~ and Lv~ as a function of v„'. Figure 3
shows the results. Both Lv„and Lv start ofF linearly,
then the slope decreases, the curves go through a maxi-
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In the hmit p~ ——0, the integral is equal to —2v~ and
v~ is proportional to v„', so that we have Lv„(x v„' for
low v„'. However, for higher v„', the time needed for the
two grains to traverse each other in absence of the normal
force, tq, „oc 1/v„', becomes shorter and shorter, so that
eventually the contact time t, „~ is determined by t~, in-
stead of t, ~. Thus rewriting (6) as b.v„oc tq, „Fs, where
Eg is some mean over Fg during the contact, we obtain
b.v„oc 1/v„' in the regime of high v„'. The transition
between the two regimes is determined by the condition
tq, ——t, ~, so that we have a critical velocity

q 1/2
Vgpjg OC t

$
OC kgb

Avy oc Fs(t) dt,
~cont

(6)

where t, „q is the total time of shearing contact. When
the initial velocity v„ is low, t, „& is determined by the
normal contact time t, ~ as de6ned by (4). Inserting (2)
then yields

x 02

~ 0.1

0.0
0 10 20

v„' [m/s]

30 40

Avy oc (dt.
&coI

FIG. 3. Av„and Av as a function of v„' with parameters
as given in the text.
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mum and bend back to the abscissa in a 1/v'„ fashion. In
Fig. 3, we only show the curves for one specific k~ value,
but due to the scaling properties of Ev„(v„') discussed
above, they also represent the results for kIv ——PkN by
scaling both axes with ~P. Note that what is shown in
Fig. 3 is not a time step dependent property. One can do
the same simulation with identical parameters, but with
a time step smaller by a factor 100, and get the same
results. Nor is it peculiar to the normal force (1) used
here; the general argument (7) only refers to the friction
force (2). Moreover, test simulations with other normal
forces (Hertz-Kuwabara-Kono) lead to results similar to
those of Fig. 3.

So far we have only discussed the interaction of a free
grain with one wall grain. Now we replace the single wall
grain of Fig. 2 with an array of wall beads along the y
axis. As could be seen in Fig. 3, v~ tends to zero in the
brake failure regime. Figure 3 was obtained with e' = 0;
if we let v' & 0, and have a e„' far in the brake failure
regime, it may happen that the free grain is not reflected
by the wall grain but just wanders through it. If there is
an array of wall grains, the free grain enters the next wall
grain, and possibly further wall grains until in the end it
i8 reflected. But then again, on its way through the wall
it was in shearing contact with several grains instead of
just one; and the deeper it penetrates into the wall, the
less grazing, the more head on, and therefore the more
dissipative the contacts become. Thus we expect that
with wall arrays Av„(v„') must ultimately increase again,
constituting what might be called an emergency brake.

This was checked in a simulation where free grains were
shot on an array of wall grains (setup similar to Fig. 2).
We varied v„' and v'. If we imagine the array to be the
wall of a tube, we can associate v„' with the mean axial
particle velocity and n' roughly with the standard devi-
ation of the mean particle velocity in x direction, o„,
which in turn is the square root of the granular temper-
ature in that direction. Experience shows that the axial
velocity is much higher than the mean "radial" velocity's
standard deviation, so that the range of e' is chosen from
0.1 to 0.5 m/s and the range of v„' is from 0.1 to 40 m/s.
Because the result of a test impact with fixed v' and
v„depends strongly on the initial position (which deter-
mines the contact point), we varied the initial position
of the free grain over 10 points distributed equidistantly
over a length equal to the wavelength" of the wall, along
a line parallel to the wall array. Then Av& is given by
the mean over the 10 di8'erent initial positions.

Figure 4 shows Av„as a function of v„' with the same
parameters as before, and Fig. 5 shows the mean number
of contacts as a function of v„'. The onset of the multiple
contact regime (number of contacts & 2) is observed at
a velocity of about 10 m/s, which coincides well with the
velocity at which Av„begins to increase again. As in the
case of only one mall grain, increasing k~ shifts v„;t to-
wards higher v„', so that the maximum in. the Av„(v„')
diagram gets higher and shifts right.

Characteristics of Av„(v„') like the one shown in Fig. 4
can lead to bistable behavior in a granular dynamics sim-
ulation. Consider again a vertical pipe. The velocity loss
Ae& at the walls constitutes essentially the only mecha-
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FIG. 4. Av„as a function of v„' with v' as parameter;
v' = 0.1 m/s (solid line), 0.3 m/s (dashed line), 0.5 m/s
(dot-dashed line).

nism for braking the center-of-mass motion. In a steady
state, the overall deceleration due to braking balances
the acceleration g to gravitation. This condition may be
written as

g = navy, (9)
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FIG. 5. Number of contacts (luring impact as a function of
v„' with v' as parameter; v' = 0.1 m/s (solid line), 0.3 m/s
(dashed line), 0.5 m/s (dot-dashed line).

where n is the fraction of all particles colliding with the
wall per unit time. Now we argue that the right hand side
of (9) is a monotoneously increasing function of Av„: n
is roughly proportional to o„and the volume fraction of
grains, both taken near the wall. The latter is essentially
a constant for fixed global volume fraction. Velocity Buc-
tuations are roughly proportional to Av„. This is obvious
for o. , but should also be true for cr because of "ther-
malization" inside the granular system. These crude es-
timates suggest that nLv„ increases quadratically with
Av„. Hence (9) implies that a unique value of Av„ is
required for a steady state.

The steady-state condition (9) can thus be visual-
ized by drawing a horizontal line in the b,v&(v„) dia-

gram. Its intersections with the v curves give potential
steady states. Positive slope of Av„(v„') at the intersec-
tion means that the steady state is stable; if by some
fluctuation the mean velocity gets higher, the velocity
loss Av& also increases so that the system decelerates
again. Negative slope of Av&(v'„) characterizes an unsta-
ble steady state. If a system has two stable steady states
(bistability), it depends on the initial conditions which
of them is reached.

However, stability alone does not determine which of
the steady states is selected. In Fig. 4 there is a contin-
uurn of curves Ev„(v') distinguished by different v'. As

mentioned before, v' can be associated with the velocity
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FIG. 6. Steady-state meaII velocity in a vertical tube as a
function of the coeKcient of restitution e~.

fluctuation o„or with the square root of the granular
temperature. In the steady state it should be related to
Lv&, however the precise relationship is not known. Our
simulations indicate that it is nearly the same in both
steady states lf there is a bistable situation.

As an example, we present simulation data obtained
in a two-dimensional (2D) vertical pipe of width 2 cm,
filled with slightly polydisperse grains of mean diame-
ter 1 mm which fall down due to gravitation (g = 10
m/s ). The walls were made up of grains of diameter
0.66 mm, the 2D volume &action of the beads was 0.55,
and the Coulomb coefFicient was p = 0.5. We recorded
the steady-state mean velocity of the grains as a function
of their coefFicient of restitution e~ for difI'erent values of
ktv (Fig. 6).

We first discuss the case k~ = 2000 N/m. Starting
the simulation with low initial mean velocities, we get
a branch of slow steady states on the elastic side of the
diagram (e~ near 1); this branch gets unstable at e~ =
0.85. On the other hand, starting the simulation with

high initial mean velocities = 5—10 m/s yields a branch
of fast steady states which extends over the whole width
of the diagram. For e~ & 0.85, both branches coexist,
and we have bistability. A detailed analysis which we
do not give here shows that the slow branch follows the
normal steady states, whereas the fast branch belongs
to steady states produced by the soft-sphere emergency
brake.

If kN is given a lower value (ktv = 200 N/m), the
normal branch still exists for nearly elastic grains, but it
is so short that we do not plot it here. The soft-sphere
branch shifts to lower velocities because the emergency
brake begins to function at lower v„' for softer grains.

For a larger k~ = 200000 N/m, the normal branch
extends farther into the region of inelastic grains, but
still becomes unstable at e~ = 0.7. The emergency-brake
branch lies at much higher velocities and is not plotted.
Note that with k~ = 200000 N/m, the collision time
t, ~

= 7.07 x 10 s is of the same order of magnitude as
realistic contact times [4], so that it does not make sense
to increase k~ very much above this value; furthermore,
the simulations become very time consuming.

In summary, we have discussed the "brake failure" ef-
fect due to the usage of soft spheres and the Coulomb
law of kiction in combination with a corrugated wall.
In addition to the normal steady state, it introduces
an "emergency-brake" steady state into the granular dy-
namics simulation of rapid granular flow bounded by ar-
rays of wall grains. If the fIow velocity in a granular How
along corrugated walls becomes higher than u„;t oc gkN,
the system will accelerate to the (unphysical) emergency-
brake steady state. The microscopic reason for this is
that the force equations allow two grains to traverse each
other almost without losing relative velocity, if the col-
lision is grazing and the initial relative velocity is large
compared to v„;t. With real grains, this is not possible
due to unsymmetric deformation during contact.
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