## Bistability in simulated granular flow along corrugated walls

Jochen Schafer\* and Dietrich E. Wolf

Höchsfleistungsrechenzentrum, Forschungszentrum Jülich, 52425 Jülich, Germany

(Received 31 October 1994)

We investigate binary impacts of solid grains obeying a force scheme often used in the molecular dynamics simulation of rapidly Howing granular media. A thorough analysis of the force equations shows that the deceleration of a free grain upon grazing impact on an array of "wall grains" depends dramatically on the initial velocity relative to the wall so that in certain situations a bistability in the granular How appears. We explain why this is an artifact of the modelization inherent in the force scheme and we illustrate our findings with some sample simulations.

PACS number(s): 46.10.+z, 05.60.+w, 83.70.Fn, 02.70.Ns

The flow of granular materials presents a scientific problem of considerable technological importance. Due to complicated interactions and strong fluctuations, no generally accepted theory of granular flow exists so far. Precision experiments are difficult because granular media are not a very well-defined material and the influence of the interstitial medium and of triboelectrification is not easy to control. Therefore, in recent years the simulation of granular flows has become a widely used research tool. Molecular dynamics methods [1] with dissipative two-particle forces ("granular dynamics") [2] have especially been used extensively [3].

Granular dynamics studies rely on suitable assumptions for the forces. It is crucial to understand the limits of their validity in order to avoid misinterpretation of simulation results. In the following we show that a popular implementation scheme using soft particles and corrugated walls gives rise to a phenomenon not recognized so far: Depending on the initial conditions two stationary states with different ffow velocities may appear (bistability). This effect is unlikely to occur in reality. However, due to modelization, it is quite naturally encountered in granular dynamics simulations.

For the sake of simplicity and clearness we refer to one specific two-particle force law in two dimensions which serves as a prototype for other similar ones and contains the basic granular interaction properties (inelasticity and friction). The particles are "soft," meaning that they can penetrate into each other. Their overlap is interpreted as a measure of the elastic deformation of the colliding grains. Real deformations are much more complicated [4]: For instance, a head-on collision and a grazing one both with the same overlap in simulation would produce completely diferent elastic restoring forces in reality. The corrugated walls are made of grains with the same properties as the free grains, but with infinite mass. Particle rotation is not taken into account.

Consider a collision of two grains (Fig. 1). We separate the relative velocity and the interparticle force into normal and shear components using the unit vectors  $\vec{n}$  and  $\vec{s}$  as defined in Fig. 1:  $\vec{v}_{rel} = v_N \vec{n} + v_S \vec{s}$ and  $\vec{F}_{12} = F_N \vec{n} + F_S \vec{s}$ . If the two particles overlap  $(\xi \equiv r_1 + r_2 - |\vec{x}_2 - \vec{x}_1| > 0)$ , there is a repulsive normal force which we assume to be proportional to  $\xi$ . In order to make head-on collisions dissipative, a damping term linear to the normal velocity  $v_N \equiv \xi$  is added, such that for grain 1

$$
F_N = -k_N \xi - \gamma_N m_{\rm red} \dot{\xi} \ . \tag{1}
$$

The presence of the reduced mass  $m_{\text{red}} = m_1 m_2 / (m_1 +$  $m_2$ ) in the damping term has the effect that collisions with wall grains (infinite mass) are more dissipative than those with another free grain. The shear force  $F<sub>S</sub>$  is related to the normal force by the Coulomb law of friction

$$
F_S = -|\mu F_N| \text{sgn}(v_S) \tag{2}
$$

where  $\mu$  is the Coulomb coefficient of dynamic friction. Other approaches to the normal force are of the general form

$$
F_N = k_N \xi^{\alpha} - \gamma_N \xi^{\beta} \dot{\xi}^{\gamma}, \qquad (3)
$$

where the exponents  $\alpha$ ,  $\beta$ , and  $\gamma$  depend on the physical model motivating the force. For instance, integrating Hooke's law plus a viscous damping term over the contact area of two inelastic spheres leads to the Hertz-



<sup>\*</sup>Permanent address: FB 10, Theoretische Physik, University of Duisburg, 47048 Duisburg, Germany. Electronic address: j.schaefer@kfa-juelich.de FIG. 1. Definition of quantities describing binary impact.

Kuwabara-Kono force  $\alpha = 3/2, \beta = 1/2, \gamma = 1$  [5]. We used this force to check the generality of our results obtained with (1).

The advantage of the simple damped harmonic oscillator force (1) is that its analytic solution with initial overlap  $\xi(0) = 0$  and initial relative normal velocity  $v_N^i = \dot{\xi}(0)$  allows the calculation of useful quantities like the collision time

$$
t_{\rm col} = \pi \left( \frac{k_N}{m_{\rm red}} - \frac{\gamma_N^2}{4} \right)^{-1/2}, \tag{4}
$$

the coefficient of normal restitution (ratio between final and initial normal velocity)  $e_N \equiv v_N^I/v_N^i$  =  $\exp(-\gamma_N t_{\rm col}/2)$ , and the maximum overlap during collision  $\xi_{\text{max}} \leq v_N^* t_{\text{col}} / \pi$ , where the equality holds for elastic grains  $(\gamma_N = 0)$ .

An accurate simulation reproducing the analytic results of a collision with relative errors of the order  $10^{-4}$ requires a time step

$$
\Delta t \approx t_{\rm col}/50. \tag{5}
$$

According to (4) the time step  $\Delta t$  scales essentially with  $1/\sqrt{k_N}$ . Therefore in most simulations  $k_N$  is chosen as small as possible, but sufficiently large to satisfy the condition that  $\xi_{\text{max}}$  remains much smaller than the grain diameter for the impact velocities to be expected during the simulation. However, it should always be checked that the simulation results do not depend sensitively on  $k_N$ . Luding et al. [6] pointed out that for dense granular packings small values of  $k_N$  lead to qualitatively different behavior than realistically large ones:  $t_{\rm col}$  becomes so large that a column of  $N$  beads falling onto a rigid plate behaves like an array of  $N-1$  coupled damped oscillators rather than  $N$  distinct grains undergoing successive collisions.

Here we consider less dense, Homing granular materials. The phenomenon is also an effect of high collision times due to low force constants, but related to high shear velocities  $v<sub>S</sub>$  at the corrugated boundary of a granular flow. For illustration, we take a vertical pipe. Gravitation accelerates all particles downwards in the y direction. Braking only occurs at the walls and is essential for reaching a steady state. The braking efficiency can be quantified by the change of the y component of the velocity,  $\Delta v_y$ , upon a particle-wall collision. This is the key quantity for understanding the effect we want to describe.

First consider the impact of a grain on one single wall grain as sketched in Fig. 2. If we suppose the impact to be grazing and  $v^i_u$  much larger than  $v^i_x$ , then  $F_S$  is mainly responsible for braking in  $y$  direction and we may write

$$
\Delta v_y \propto \int_{t_{\text{cont}}} F_S(t) dt , \qquad (6)
$$

where  $t_{\rm cont}$  is the total time of shearing contact. When the initial velocity  $v_y^i$  is low,  $t_{\text{cont}}$  is determined by the normal contact time  $t_{\text{col}}$  as defined by (4). Inserting (2) then yields

$$
\Delta v_y \propto \int_{t_{\rm col}} \ddot{\xi} \, dt. \tag{7}
$$



FIG. 2. Impact of a free grain with a grain imbedded in a wall.

In the limit  $\gamma_N = 0$ , the integral is equal to  $-2v_N^i$  and  $v_N^i$  is proportional to  $v_y^i$ , so that we have  $\Delta v_y \propto v_y^i$  for low  $v_y^i$ . However, for higher  $v_y^i$ , the time needed for the two grains to traverse each other in absence of the normal force,  $t_{\text{trav}} \propto 1/v_v^i$ , becomes shorter and shorter, so that eventually the contact time  $t_{\rm cont}$  is determined by  $t_{\rm trav}$  instead of  $t_{\text{col}}$ . Thus rewriting (6) as  $\Delta v_y \propto t_{\text{trav}}\overline{F}_S$ , where  $\bar{F}_S$  is some mean over  $F_S$  during the contact, we obtain  $\Delta v_y \propto 1/v_y^i$  in the regime of high  $v_y^i$ . The transition between the two regimes is determined by the condition  $t_{\text{trav}} = t_{\text{col}}$ , so that we have a critical velocity

$$
v_{\rm crit} \propto t_{\rm col}^{-1} \propto k_N^{1/2}.
$$
 (8)

In summary, we find that  $\Delta v_y$  is proportional to  $v_y^i$  up to some critical  $v_y^i$  which is proportional to  $\sqrt{k_N}$  and then decreases like  $1/v_y^i$ , i.e., the braking efficiency goes down. By analogous reasoning, the same holds true for the velocity change in the x direction,  $\Delta v_x$ . We address the linear increase as the normal regime, and the  $1/v<sub>y</sub>$ decrease as the regime of soft-sphere brake failure.

To illustrate, we simulated the impact situation sketched in Fig. 2. Here, we used a free grain of diameter 1 mm and mass 1 mg and a wall grain of diameter 0.66 mm. The parameter values were  $k_N = 2000 \text{ N/m}$ ,  $y_N = 10000 \text{ s}^{-1} (\Rightarrow e_N = 0.70), \mu = 0.5, \text{ and the collision.}$ sion time was  $t_{\rm col} = 7.07 \times 10^{-5}$  s. The initial position of the free grain's center was 0.82 mm above the wall line, and  $v^i_n$  was set to zero, so that the free grain flew on a line parallel to the wall and the maximum linear overlap  $\xi$  of the two grains was 0.01 mm by initial condition. We measured  $\Delta v_y$  and  $\Delta v_x$  as a function of  $v_y^i$ . Figure 3 shows the results. Both  $\Delta v_y$  and  $\Delta v_x$  start off linearly, then the slope decreases, the curves go through a maxi-



FIG. 3.  $\Delta v_y$  and  $\Delta v_x$  as a function of  $v_y^i$  with parameters as given in the text.

mum and bend back to the abscissa in a  $1/v_y^i$  fashion. In Fig. 3, we only show the curves for one specific  $k_N$  value, but due to the scaling properties of  $\Delta v_y(v_y^i)$  discussed above, they also represent the results for  $k_N = \beta k_N$  by scaling both axes with  $\sqrt{\beta}$ . Note that what is shown in Fig. 3 is not a time step dependent property. One can do the same simulation with identical parameters, but with a time step smaller by a factor 100, and get the same results. Nor is it peculiar to the normal force (1) used here; the general argument (7) only refers to the friction force (2). Moreover, test simulations with other normal forces (Hertz-Kuwabara-Kono) lead to results similar to those of Fig. 3.

So far we have only discussed the interaction of a free grain with one wall grain. Now we replace the single wall grain of Fig. 2 with an array of wall beads along the y axis. As could be seen in Fig. 3,  $v_x^f$  tends to zero in the brake failure regime. Figure 3 was obtained with  $v_x^i = 0$ ; if we let  $v_x^i > 0$ , and have a  $v_y^i$  far in the brake failure regime, it may happen that the free grain is not reflected by the wall grain but just wanders through it. If there is an array of wall grains, the free grain enters the next wall grain, and possibly further wall grains until in the end it is reflected. But then again, on its way through the wall it was in shearing contact with several grains instead of just one; and the deeper it penetrates into the wall, the less grazing, the more head on, and therefore the more dissipative the contacts become. Thus we expect that with wall arrays  $\Delta v_y(v_y^i)$  must ultimately increase again, constituting what might be called an emergency brake.

This was checked in a simulation where free grains were shot on an array of wall grains (setup similar to Fig. 2). We varied  $v_y^i$  and  $v_x^i$ . If we imagine the array to be the wall of a tube, we can associate  $v_y^i$  with the mean axial particle velocity and  $v_x^i$  roughly with the standard deviation of the mean particle velocity in x direction,  $\sigma_{v_{\ast}}$ , which in turn is the square root of the granular temperature in that direction. Experience shows that the axial velocity is much higher than the mean "radial" velocity's standard deviation, so that the range of  $v_x^i$  is chosen from 0.1 to 0.5 m/s and the range of  $v_y^i$  is from 0.1 to 40 m/s. Because the result of a test impact with fixed  $v_x^i$  and  $v<sub>y</sub><sup>i</sup>$  depends strongly on the initial position (which determines the contact point), we varied the initial position of the free grain over 10 points distributed equidistantly over a length equal to the "wavelength" of the wall, along a line parallel to the wall array. Then  $\Delta v_y$  is given by the mean over the 10 different initial positions.

Figure 4 shows  $\Delta v_y$  as a function of  $v_y^i$  with the same parameters as before, and Fig. 5 shows the mean number of contacts as a function of  $v_y^i$ . The onset of the multiple contact regime (number of contacts  $\geq 2$ ) is observed at a velocity of about 10 m/s, which coincides well with the velocity at which  $\Delta v_y$  begins to increase again. As in the case of only one wall grain, increasing  $k_N$  shifts  $v_{\text{crit}}$  towards higher  $v_y^i$ , so that the maximum in the  $\Delta v_y(v_y^i)$ diagram gets higher and shifts right.

Characteristics of  $\Delta v_y(v_y^i)$  like the one shown in Fig. 4 can lead to bistable behavior in a granular dynamics simulation. Consider again a vertical pipe. The velocity loss  $\Delta v_y$  at the walls constitutes essentially the only mecha-



FIG. 4.  $\Delta v_y$  as a function of  $v_y^i$  with  $v_x^i$  as parameter;  $v_x^i = 0.1$  m/s (solid line), 0.3 m/s (dashed line), 0.5 m/s (dot-dashed line).

nism for braking the center-of-mass motion. In a steady state, the overall deceleration due to braking balances the acceleration  $g$  to gravitation. This condition may be written as

$$
g = \dot{n} \Delta v_y \t{,} \t(9)
$$

where  $\dot{n}$  is the fraction of all particles colliding with the wall per unit time. Now we argue that the right hand side of (9) is a monotoneously increasing function of  $\Delta v_y$ : *n* is roughly proportional to  $\sigma_{v_x}$  and the volume fraction of grains, both taken near the wall. The latter is essentially a constant for fixed global volume fraction. Velocity Buctuations are roughly proportional to  $\Delta v_y$ . This is obvious for  $\sigma_{v_y}$ , but should also be true for  $\sigma_{v_x}$  because of "thermalization" inside the granular system. These crude estimates suggest that  $\dot{n}\Delta v_{\nu}$  increases quadratically with  $\Delta v_y$ . Hence (9) implies that a unique value of  $\Delta v_y$  is required for a steady state.

The steady-state condition (9) can thus be visualized by drawing a horizontal line in the  $\Delta v_y(v_x^i)$  diagram. Its intersections with the  $v_x^i$  curves give potential steady states. Positive slope of  $\Delta v_y(v_y^i)$  at the intersection means that the steady state is stable; if by some fluctuation the mean velocity gets higher, the velocity loss  $\Delta v_{v}$  also increases so that the system decelerates again. Negative slope of  $\Delta v_y(v^i_w)$  characterizes an unstable steady state. If a system has two stable steady states (bistability), it depends on the initial conditions which of them is reached.

However, stability alone does not determine which of the steady states is selected. In Fig. 4 there is a continuum of curves  $\Delta v_y(v_y^i)$  distinguished by different  $v_x^i$ . As mentioned before,  $v_x^i$  can be associated with the velocity



FIG. 5. Number of contacts during impact as a function of  $v_v^i$  with  $v_x^i$  as parameter;  $v_x^i = 0.1$  m/s (solid line), 0.3 m/s (dashed line), 0.5 m/s (dot-dashed line).



FIG. 6. Steady-state mean velocity in a vertical tube as a function of the coefficient of restitution  $e_N$ .

fluctuation  $\sigma_{v_x}$  or with the square root of the granular temperature. In the steady state it should be related to  $\Delta v_y$ , however the precise relationship is not known. Our simulations indicate that it is nearly the same in both steady states, if there is a bistable situation.

As an example, we present simulation data obtained in a two-dimensional (2D) vertical pipe of width 2 cm, filled with slightly polydisperse grains of mean diameter 1 mm which fall down due to gravitation ( $g = 10$  $m/s<sup>2</sup>$ ). The walls were made up of grains of diameter 0.66 mm, the 2D volume fraction of the beads was  $0.55$ , and the Coulomb coefficient was  $\mu = 0.5$ . We recorded the steady-state mean velocity of the grains as a function of their coefficient of restitution  $e_N$  for different values of  $k_N$  (Fig. 6).

We first discuss the case  $k_N = 2000 \text{ N/m}$ . Starting the simulation with low initial mean velocities, we get a branch of slow steady states on the elastic side of the diagram (e<sub>N</sub> near 1); this branch gets unstable at  $e<sub>N</sub> \approx$ 0.85. On the other hand, starting the simulation with high initial mean velocities  $\approx$  5–10 m/s yields a branch of fast steady states which extends over the whole width of the diagram. For  $e_N > 0.85$ , both branches coexist, and we have bistability. A detailed analysis which we do not give here shows that the slow branch follows the normal steady states, whereas the fast branch belongs to steady states produced by the soft-sphere emergency brake.

If  $k_N$  is given a lower value  $(k_N = 200 \text{ N/m})$ , the normal branch still exists for nearly elastic grains, but it is so short that we do not plot it here. The soft-sphere branch shifts to lower velocities because the emergency brake begins to function at lower  $v_u^i$  for softer grains.

For a larger  $k_N = 200000 \text{ N/m}$ , the normal branch extends farther into the region of inelastic grains, but still becomes unstable at  $e_N \approx 0.7$ . The emergency-brake branch lies at much higher velocities and is not plotted. Note that with  $k_N = 200000 \text{ N/m}$ , the collision time  $t_{\rm col} = 7.07 \times 10^{-6}$  s is of the same order of magnitude as realistic contact times [4], so that it does not make sense to increase  $k_N$  very much above this value; furthermore, the simulations become very time consuming.

In summary, we have discussed the "brake failure" effect due to the usage of soft spheres and the Coulomb law of friction in combination with a corrugated wall. In addition to the normal steady state, it introduces an "emergency-brake" steady state into the granular dynamics simulation of rapid granular flow bounded by arrays of wall grains. If the fIow velocity in a granular How along corrugated walls becomes higher than  $v_{\text{crit}} \propto \sqrt{k_N}$ , the system will accelerate to the (unphysical) emergencybrake steady state. The microscopic reason for this is that the force equations allow two grains to traverse each other almost without losing relative velocity, if the collision is grazing and the initial relative velocity is large compared to  $v_{\text{crit}}$ . With real grains, this is not possible due to unsymmetric deformation during contact.

This work was supported by Grant No. Wo577/l-l of the Deutsche Forschungsgemeinschaft.

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

[2] P. A. Cundall and O. D. L. Strack, Géotech. 29, 47 (1979).

[3] G. Ristow, in Annual Reviews of Computational Physics I, edited by D. Stauffer (World Scientific, Singapore, 1994); H. 3. Herrmann, in 3rd Granada Lectures in Computational Physics, edited by P. I. Garrido and J. Marro (Springer, Heidelberg, 1995).

- [4] K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1989).
- [5] G. Kuwabara and K. Kono, Jpn. J. Appl. Phys. 26, 1230 (1987).
- [6] S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran, Phys. Rev. E 50, 4113 (1994).