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Observation of nonlinear localized modes in an electrical lattice
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We study a discrete electrical lattice where the dynamics of modulated waves can be modeled by a
generalized discrete nonlinear Schrédinger equation that interpolates between the Ablowitz-Ladik and
discrete-self-trapping equations. Regions of modulational instability (MI) are investigated and experi-
mentally, we observe that MI can develop even for continuous waves with frequencies higher than the
linear cutoff frequency of the lattice. These results are confirmed by the observation of “staggered” lo-
calized modes. Experimentally, it is finally shown that unlike envelope solitons, which can be observed
close to the zero-dispersion point, the staggered modes experience strong lattice effects.

PACS number(s): 03.40.Kf, 84.40.Mk

I. INTRODUCTION

Ever since the discovery of solitons, there has been
considerable interest in localized modes for spatially ex-
tended systems. In this context, intrinsic collapse to self-
localized states [1-3] in nonlinear lattices is increasingly
studied because of its wide significance in a great variety
of physical systems. Contrary to the impurity-induced lo-
calized modes which can exist in linear lattices with im-
purities or disorder, these intrinsic localized modes can
exist in nonlinear lattices without defects or disorder. The
localized modes with frequencies above the band of the
corresponding linearized systems and that have a stag-
gered form, i.e, the neighboring sites oscillate out of
phase, are particularly interesting. Remarkable proper-
ties of such modes have been discussed in a number of re-
cent theoretical and numerical studies [3-7], but, to our
knowledge, only one experimental investigation has been
reported [8].

On another hand, discrete electrical transmission lines
are very convenient tools to study the wave propagation
in one-dimensional nonlinear dispersive media [9]. In
particular, they provide a useful way to check how the
nonlinear excitations behave inside the nonlinear medium
and to model the exotic properties of new systems [10].
Moreover, nonlinear transmission lines (NLTLs) are po-
tential candidates for a number of applications in the mi-
crowave range [11,12]. Like every nonlinear system, a
NLTL can exhibit an instability that leads to a self-
induced modulation of an input plane wave with the sub-
sequent generation of localized pulses. This phenomenon
is known as a Benjamin-Feir modulational instability
(MI) and it is responsible of many physically interesting
effects such as the formation of envelope solitons. In
homogeneous nonlinear systems, MI may be considered
as the leading mechanism for energy localization. In this
context, we have shown recently [13,14] that envelope
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solitons can form related to the existence of MI in a
NLTL. But, our theoretical analysis, based on the con-
tinuum limit approximation, e.g., described by a continu-
ous nonlinear Schrodinger (NLS) equation, failed to de-
scribe the dynamics of the nonlinear waves in the regions
of strong lattice effects, which may have a strong
influence on MI conditions and the existence of localized
modes.

It is the main purpose of the present paper to focus on
the influence of discreteness in an experimental nonlinear
transmission line. The paper is organized as follows. In
Sec. II, we present a nonlinear electrical lattice where, to
a first order approximation, the dynamics of modulated
waves can be modeled by a generalized discrete nonlinear
Schrodinger (DNLS) equation. This equation, which was
introduced very recently by Kivshar et al. [6] and Cai
et al. [7], interpolates between the integrable Ablowitz-
Ladik [15] and discrete-self-trapping [16] models. We in-
vestigate the modulational instability as a function of the
carrier wave frequency, in order to gain insight into the
formation of localized states [17]. In Sec. III, we present
the experimental results concerning the MI of a plane
wave and discuss the validity of the theoretical model.
Next, we study in detail the localized modes that have a
“staggered” form. We compare their propagation prop-
erties to those of envelope solitons which can be observed
for particular values of the carrier wave frequency. The
effects of discreteness on the propagation of nonlinear
wave packets are then presented. Finally, Sec. IV con-
cludes the paper.

II. THEORY

We consider a lossless nonlinear electrical lattice made
of N identical unit cells, as illustrated in Fig. 1. Each cell
contains [13] a series linear inductance L, and a linear in-
ductance L, in parallel with a nonlinear capacitor
C(V,). Denoting by Q,(t) the nonlinear electrical
charge of the nth cell and by V,(¢) the corresponding
voltage and using Krichhoff laws, we derive the system of
nonlinear discrete equations
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FIG. 1. Schematic representation of the experimental
transmission line. The network is composed of N =80 identical
cells, with two linear inductances L, and L,. The nonlinear ca-
pacitance C(V,,) consists of a varicap diode BB112 biased by a
constant voltage (2 V) and connected in parallel with a linear ca-
pacitance C; =150 pF.

d’Q, 1 1
dr? =_L_?(Vn+l+Vn—l—2Vn)—L—2Vn ’
n=12,..., . (2.1)

Furthermore, we assume (see experiments thereafter) that
the charge has a voltage dependence similar to the one of
an electrical Toda lattice [18,19]:

Qn(t)= AColn

> (2.2)
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where 4 and C, are constants. This charge-voltage rela-
tion is verified if the inverse of the nonlinear capacitance
obeys a linear relation [20]

1 A+,
C(V,)  AC,

(2.3)

From (2.1), we easily get the linear dispersion relation of
a typical bandpass filter

w2=w3+4u§sin2§ , (2.4)
where 03=1/L,C, and u3=1/L,C,. As displayed in
Fig. 2, the corresponding linear spectrum has a gap
fo=wy/27 and it is limited by the cutoff frequency
S max = @max /2T = (0} +4u2)/? /27 due to lattice effects.
We focus now on the nonlinear behavior of the lattice.
Replacing the expression for Q, (2.2) in (2.1), we obtain

aw, av,
dt? dt

2 u
0
_—_(A + Vn )2

(A+V,)

X Vn—I+Vn+1

. (2.5)

n
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In order to fully take into account the lattice discrete-
ness, we assume that the gap angular frequency w, is
large with respect to the other frequencies of the system,
i.e., w§>>4ul. This implies that, for a wave with any fre-
quency f, all its harmonics lie above the cutoff frequency
and, to a first approximation, can be neglected. Thus, re-
stricting our study to slow temporal variations of the
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FIG. 2. Theoretical (continuous line) and experimental
(crosses) linear dispersion curves. Modulational instability (MI)
appears theoretically for k > 7 /2, that is, for f > f,,, =532 kHz
(dotted line), while experimentally (dashed line), a discrepancy
of 8k=0.32 rad cell ! and 8 =(48+Af) kHz (Af =20 kHz) is
observed.

wave envelope, we look for a solution of (2.5) in the form
V,(1)=eV¥,(T)e ' +eW*(T)e Tiot (2.6)

where ¢ is a small parameter and T =¢2¢. Inserting this
expression in (2.5) and collecting dc terms of order &2, we
obtain

2
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Next, collecting terms in e ~'®, using (2.7), and setting
=u}T/20 and V¥,=®, explir(w*—wi—2ul)/ul]

yields
i dTn +[q>n+1+q)nvl]+[.u'(<pn+l+q)n—-1)
+2v®, ]|®,|’°=0, (2.8
where the coefficients p and v are given by
-1
" 4 2.9
20+ wd+2u? '
VET T 2 2
2u OA

Equation (2.8), or the so-called IN-DNLS: integrable

nonintegrable—discrete NLS equation, was recently stud-
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FIG. 3. Ratio |v| /u vs wave number k.

ied by Kivshar et al. [6] and Cai et al. [7]. It reduces to
the integrable Ablowitz-Ladik equation for v=0 and to
the nonintegrable discrete NLS equation for u=0. More-
over, it was shown [7] that (2.8) can admit staggered lo-
calized modes solutions, i.e., localized modes with the
neighboring sites oscillating out of phase. Note that for
the real lattice we study, neither u nor v can be zero be-
cause their values are determined by those of the com-
ponents. As can be seen in Fig. 3, the ratio |v|/u versus
the wave vector k varies from 3 to 7, so we are close nei-
ther to the Ablowitz-Ladik case nor to the discrete-self-
trapping case.
Equation (2.8) has an exact continuous wave solution

(I)n(,)_):q)oe—i(m‘r—kn) , (2.10)

where the angular frequency @ obeys the nonlinear
dispersion relation

@= —2 cosk —2(u cosk +v)P3 . (2.11)

To analyze MI, which is responsible for energy localiza-
tion, we seek a solution of (2.8) of the following form:

D, (7)=[Dy+u,(r)]e ek 2.12)

where u,(7)=a,(7)+ib,(7) is a small perturbation with
angular frequency ) and wave number K. Note that this
perturbation acts simultaneously as amplitude modula-
tion (a, ) and phase modulation (b, ). We then find that
MI appears only if

cosk | DA(v+pu cosk)—sin2—§(1+p,d>%)cosk >0.

(2.13)

Here, u is always positive and v is always negative. Con-
sequently, from (2.13), we see that the continuous wave
solution (2.10) will be unstable only in the region
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FIG. 4. Amplitude threshold ®, . for modulational instabili-
ty vs wave numbers k of the carrier wave and K of the perturba-
tion.

/2 <k <, provided that the amplitude ®, exceeds the
threshold @ . defined as follows:

|cosk sinX(K /2)|
|v+u cosk cos*(K /2)|

Otherwise, that is, for 0<k < /2, the plane wave solu-
tion (2.10) remains stable. It is important to note that,
contrary to what is found for the continuous NLS equa-
tion, the criterion (2.13) implies that the instability can
occur for any value of the wave number K or correspond-
ing frequency F =€ /2 of the perturbation. The MI re-
gion is indicated in Fig. 2. The evolution of the threshold
@, . versus the perturbation wave number K is presented
in Fig. 4 for any value of the wave number k of the car-
rier wave (m/2<k <). Here, we can notice that the
more discreteness effects are important (kK —k_, =),
the higher the necessary amplitude leading to MI.

> D) = (2.14)

III. EXPERIMENTAL RESULTS AND DISCUSSION

Our experiments are carried out on a nonlinear electri-
cal lattice with N =80 cells. The linear inductances are
L,=(680%14) uH and L,=(470+10) uH, whereas the
Ohmic losses and inhomogeneities are small and can be
ignored in a first approximation. The experimental ar-
rangement is similar to the one described in Ref. [13], ex-
cept for the nonlinear capacitance C (V). Indeed, the in-
verse of the capacitance versus voltage has to fit the
linear law (2.3) (see theory above). In practice, we have
to connect a linear capacitance C, in parallel with the
reverse-biased diode (BB112 Philips) previously used.
The variations of 1/[C(¥)+C,] versus the voltage are
well fitted by a straight line in the voltage range 0.5 to 4
V when 150 pF=<C, <330 pF, and we have chosen
C,=150 pF. To sum up, the nonlinearity in the lattice is
expressed by relation (2.2) with 4 =3.9 V and
Cy=(320+150) pF=470 pF.

The experimental linear dispersion curve shown in Fig.
2 agrees very well with the theoretical one, calculated
with the above physical parameters. The experimental
gap frequency f, and cutoff frequency f ., are, respec-
tively, fo=340x15 kHz and f,,, =670%30 kHz.
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A. Modulational instability

Let us now check the theoretical predictions concern-
ing the existence of MI in the system. Relation (2.13)
predicts that MI can occur for 7/2 <k <, that is, for
f>f,,=532 kHz. When launching an initial plane
wave whose frequency f is slightly modulated, we ob-
serve that if the amplitude is large enough, MI develops
in the range 484120 kHz =< f <700 kHz, as recapitulated
in Fig. 2. Now let us make the following remarks con-
cerning these results. First, the external perturbation of
the continuous wave, which becomes unstable if the MI
conditions are verified, can be an amplitude modulation
and/or a frequency modulation (see theory above). Here,
we only consider frequency modulation, but amplitude
modulation could be used (see [13]). Second, it has not
been possible to determine experimentally the value of
the amplitude threshold over which MI develops. At
last, it is important to note that MI can develop in our
system for frequencies f < f,,, =532 kHz contrary to the
theoretical predictions. Then, the agreement between our
model and our observations is not quite satisfactory. The
reason for this discrepancy can be elucidated in the fol-
lowing way. Our theoretical analysis is based on the as-
sumption that discreteness effects are strong, i.e.,
®3>>4ul, or equivalently that v, <<v, where v, =dw/dk

? g
and v =w /k are, respectively, the group velocity and the

phase‘pvelocity in the system. As can be seen in Fig. 2, the
gap o, and allowed frequency bandwidths are in fact of
the same order for our real network. Furthermore, by
plotting the evolution of the ratio v, /v, versus wave
number k (see Fig. 5), we can verify that in the vicinity of
k=1.25 radcell™!, where v, is maximum (zero-
dispersion point), the condition v, <<v, is no longer
verified. This suggests that a semidiscrete approach is
probably more appropriate to describe the dynamics of
the wave envelope in the vicinity of the zero-dispersion

0.6 T v T T

vl/v¢

0.2 -1

0.0 N N N 1 .
0 2 4
Wave vector k (rad cell™)

FIG. 5. Ratio v, /v, vs wave vector k.
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FIG. 6. Representation of the initial wave with constant am-
plitude and with f =600 kHz (point B in Fig. 2), which is slight-
ly frequency modulated (above, abscissa: 20 us/division, ordi-
nate: 2 V/division). The other oscillograms correspond to the
observation at cell n =32 of the self-modulated wave train for
different modulation frequencies: F =32, 48, and 96 kHz (abscis-
sa: 20 us/division, ordinate: 1 V/division).

point. In fact, by using such an approach, we can reduce
(2.5) to the well known NLS equation

j®r+PDy,+Q|P|?P=0, (3.1)
with  the coefficients P =(u3cosk ——vgz)/Zw and
Q=(ul/w)(v+pcosk). Then, the theoretical condition
PO >0 for the existence of MI leads to k>1.25
rad cell ! that is f >478 kHz. In the limit of our experi-
mental precision, this value agrees very well with our
measurements, since we have found that MI occurs for
f =484+20 kHz.

To sum up, in the vicinity of the zero-dispersion point
(P=0), where v, is maximum, the NLS equation (3.1) is
more appropriate than the IN-DNLS equation (2.8) to
describe the physics of the line. On the contrary, for
strong lattice effects (k — ), that is, when v, becomes
small, (2.8) is rather a good model.

Let us now examine MI for specific frequencies. For
f=600 kHz (point B in Fig. 2) MI, observed at cell
n =32, is represented in Fig. 6 for different values of the
modulation frequency: F =32, 48, and 96 kHz. This re-
sult is consistent with relation (2.13) which predicts that
MI can develop in the same way for any value of the
modulation frequency F. For f=700 kHz (above point
A in Fig. 2), MI at cell n =8 is presented in Fig. 7 for
F =900 Hz; for the sake of clarity, only one period of the
self-modulated wave train is displayed. In this case, MI
occurs for a carrier wave with frequency f > f .., and the
cells oscillate out of phase, as observed experimentally. It
is important to note that the whole Fourier spectrum is
concentrated above f,,. This is, to our knowledge, the
first observation of modulational instability outside the
linear spectrum of a real system. Our main results con-
cerning MI are also reported in Table I.
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FIG. 7. Modulational instability for f > f.x (above point 4
in Fig. 2). The initial wave with f =700 kHz is slightly frequen-
cy modulated with F =900 Hz (above, abscissa: 50 us/division,
ordinate: 2 V/division). One period of the corresponding wave
at cell n =8 is represented (abscissa: 50 us/division, ordinate:
0.1 V/division) as is also its Fourier spectrum which presents a
maximum at frequency 700 kHz (abscissa: 50 kHz/division, or-
dinate: 15 mV/division).

B. Localized excitations and lattice effects

The above MI results suggest that localized wave pack-
ets with frequency f in the range 484420 kHz < f <700
kHz probably exist. In the following, for convenience, we
will use the terms ‘“‘staggered mode” and “envelope soli-
ton” for wave packets with wave number k =w and
k =~ /2, respectively. Elsewhere, that is for 7/2<k <,
we will use the term ‘“localized mode.” From the above
MI results, we expect staggered modes above the cutoff
frequency, i.e., above point 4 in Fig. 2. Experimentally,
these modes can be created by generating an initial wave
packet of appropriate frequency at the input of the line.
Figure 8 shows the oscillograms of a staggered mode
(k =) at cells n =3 and 8. Its Fourier spectrum (at cell
n =38) is centered at frequency f =680 kHz and has full
width Af =20 kHz. As for MI, the whole spectrum is
concentrated above the linear cutoff frequency f,,, =670
kHz. Such a mode moves very slowly, with average ve-

locity v, ~0.14 cellus™!. We have further observed that
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FIG. 8. Oscillograms of a staggered mode observed at cells
n=3 and n=8 (downwards), with frequency f =680 kHz
(above option A4 in Fig. 2; abscissa: 50 us/division, ordinate: 0.2
V/division). The corresponding Fourier spectrum (at cell
n =8), with width 20 kHz, is concentrated above f,,, (abscissa:
100 kHz/division, ordinate: 15 mV/division).

it gradually slows down and decays owing to strong lat-
tice effects. The wave form recorded at cell n =8 is well
fitted by a sech function (not presented here). The tem-
poral width measured at half height is Az ~110 us. The
corresponding spatial width is An=v,Ar=16 cells.
These results, which show for k = the existence of a
sech-shaped localized mode with large width and small
amplitude, agree with the behavior predicted by the ap-
proximate solutions [7] of Eq. (2.8).

We have tried to create a narrow staggered localized
mode by launching a wave packet with initial frequency
f =680 kHz, wave number k =, and width Ar=2 us.
In this case, the initial wave packet evolves spontaneously
into a wave packet with width Az=35 us (at cell n =16),
which propagates at average velocity v, ~1 cellus ! and
has a spatial width A, =S5 cells. However, its spectrum
with central frequency f'=510 kHz (note that the initial
one was f =680 kHz) is now very large and spreads over
the whole linear bandpass. Moreover, two neighboring
cells oscillate now in quadrature, that is with wave num-
ber k'=m/2. Thus, we have not obtained a staggered
mode but a wave packet whose formation mechanism has

TABLE I. Nonlinear behavior of the specific points 4, B, and C (see Fig. 2) discussed in the text.

Point A4 Point B Point C
Specific points k=m rads™! k=2.1 rads™! k=1.4 rads™!
(see Fig. 2) [ =fmax =670 kHz f =600 kHz f =500 kHz
Theoretical model IN-DNLS IN-DNLS continuous NLS
MI yes and for f 2= f .. yes yes
Typical staggered localized envelope
wave packet localized mode mode soliton
Average velocity 0.14 cellus™! 0.7 cell us™! 1 cellus™!
Energy barrier 4 0.75 0

(arb. units)
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FIG. 9. Plot of the velocity of the “center of mass” (in
cellus™!) vs the cell number 7 of an envelope soliton (point C in
Fig. 2), a moving localized mode (point B), and a staggered
mode (point A).

not been elucidated. It is then impossible to create nar-
row staggered localized modes which cover only a few
sites, which at the same time have a Fourier spectrum
concentrated above the cutoff frequency.

Next, for f =600 kHz (point B in Fig. 2), we have ob-
served the translation of a localized mode, with average
velocity v, =~0.7 cellus™! (see velocity fluctuations here-
after), width An=11.2 cells, and a sech-shaped wave
form.

Otherwise, in the vicinity of the zero-dispersion point
(point C in Fig. 2), the physics is described by the NLS
equation (3.1) which admits envelope-soliton solutions.
Indeed, for f =500 kHz, we have observed the free prop-
agation of a sech-shaped envelope soliton with velocity
v.=1cellus~! and width An ~15.2 cells.

In order to gain insight into the discreteness effects,
which increase from point C to point A4 on the dispersion
curve presented in Fig. 2, we have carefully measured the
velocity v of the “center of mass” (which is approximate-
ly the velocity at maximum amplitude) of the moving
modes corresponding to points C, B, and 4. A plot of v
as function of cell number n clearly shows that, unlike
the envelope soliton [Fig. 9(c)] which propagates freely
with constant velocity v =v,, the velocity fluctuations in-
crease with lattice dispersion as measured for the moving
localized mode [Fig. 9(b)]. They are maximum for the
staggered localized mode with f =f_ .. [Fig. 9(a)] where
the neighboring cells oscillate out of phase, the maximum
and minimum values of the velocity being, respectively,
Umax =2 cellus ™! and v, =~0.15 cellus™'. For the sake
of clarity, these experimental results are also summarized
in Table I.

Theoretically, it was known up to now that when a
wave packet travels along a lattice, it experiences a
periodic Peierls-Nabarro (PN) potential which becomes
more and more pronounced with the increase of lattice
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effects. Here, we attribute the velocity fluctuations to the
existence of a PN potential but, as can be seen from Figs.
9(b) and 9(a), in the limit of our experimental precision, it
is not possible to detect any signature of the potential
periodicity. This results agrees with a recent study in
which Flach and Willis [21] have demonstrated that it
was generally impossible to define a Peierls-Nabarro po-
tential in order to describe the motion of a localized exci-
tation through a lattice. Nevertheless, our results are in-
dicative of an energy barrier E that we estimate to be
E=~vl, —vZ. (kinetic energy difference). Thus, we have
found E =4 for the staggered mode, E=0.75 for the
moving localized mode, and E =0 for the envelope soli-
ton [on, respectively, Figs. 9(a), 9(b), and 9(c)]. These ex-
perimental results (see also Table I) clearly indicate that
the energy barrier E increases with discreteness effects.
In other terms, the wave packet loses gradually its soliton
behavior in order to approach a localized mode behavior.

IV. CONCLUSION

In conclusion, we have studied the influence of
discreteness in a real nonlinear electrical lattice. Theoret-
ically, we have shown that the system of nonlinear equa-
tions governing the physics of the electrical network can
be approximated by a generalized discrete nonlinear
Schrodinger equation which interpolates between the
Ablowitz-Ladik and discrete-self-trapping equations.
From this analysis, the possibilities for the system to
present modulational instability have been investigated.

Experimentally, we have observed that MI can occur
in a larger region than the predicted one. The discrepan-
cy between the theoretical and experimental limits for MI
has been elucidated by using a semidiscrete approach
leading to a continuous NLS model, which is more ap-
propriate for our real network in the vicinity of the zero-
dispersion point. More importantly, we have the follow-
ing:

(i) We have observed MI for frequencies above the
linear cutoff frequency f ., of the system.

(i1) These results have been confirmed by the observa-
tion of staggered localized modes (k =) for which the
whole frequency spectrum is concentrated above f ...

(iii) Concerning the propagation of nonlinear wave
packets, we have shown that unlike the envelope soliton
which can propagate with constant velocity, the localized
modes undergo velocity fluctuations due to lattice disper-
sion when they propagate. These effects become max-
imum for the staggered localized modes which can propa-
gate only along a few cells.

Finally, our electrical network is very convenient to
study the nonlinear dynamics of nonlinear lattices.
Indeed, by an appropriate choice of the frequency, we
can shift progressively from the continuous NLS
behavior to the discrete IN-DNLS behavior. Further-
more, our results also suggest that localized wave packets
should be investigated in other systems such as atomic or
molecular lattices.
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