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Modeling of microwave discharges in the presence of plasma resonances
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This study presents a kinetic model of microwave generated discharges sustained, under the
conditions of a diffusion controlled regime, by the propagation of azimuthally symmetric surface
waves. The effect of the plasma resonances, which can appear over the radial density profile in the
vicinity of the walls and lead to sharp peaks in the radial component of the high-frequency wave
electric field in the plasma, is introduced. This effect modifies the surface wave damping and results
in a collisional as well as collisionless (quasilinear) transfer of energy from the radial field component
to the plasma. In the Boltzmann equation the latter appears as a third channel of energy transfer,
which is added to the Joule heating by the axial and radial wave field components. The spatially
inhomogeneous Boltzmann equation for the electron-energy distribution function, which accounts
for the radial ambipolar field, is solved in the nonlocal approximation. A complete set of relations is
formed by simultaneous consideration of the Quid equations for the ion motion and the field equations
for the surface wave electric Geld. The problem is solved numerically. It yields self-consistent radial
electron density profiles and radial electric field distributions. The obtained solutions evidence
indeed the occurrence of plasma resonances. The study is extended also to obtaining results for the
axial variation of the (radially averaged) electron density. It turns out that the widely used concept
of approximate constancy of wave power absorbed by one electron in a diffusion controlled regime
keeps its validity also in the presence of plasma resonances and of the corresponding collisional, as
well as collisionless, power transfer to the plasma in the resonance regions.

PACS number(s): 52.80.Pi, 51.10.+y

I. INTR.ODU CTION

The surface wave (SW) sustained plasmas, developed
as a new branch of the microwave generated discharges,
have attracted steadily increasing interest [1,2] over the
20 years of their study. This type of discharges exhibits
overdense plasmas: The spatially averaged plasma &e-
quency u„is larger than the wave frequency u and this
ensures the condition for SW propagation. However, due
to a spatial (radial) plasma density inhomogeneity, local
plasma resonances [3] cu„(r= r, ) = io can occur over the
radial density profile close to the discharge walls. These
resonances can result in large and sharp peaks of the ra-
dial component of the SW electric Geld and can afFect the
wave damping [3—5].

The kinetic modeling of the discharges sustained by
SW propagation developed for the conditions of a dif-
fusion controlled regime has usually followed methods
common for describing the discharge maintenance by
high-&equency fields in general, namely, in accounting
for the collisional Joule heating by the wave field [6—12].
The modeling has been based on local and nonlocal ap-
proaches, i.e. , without and with accounting for the radial
plasma inhomogeneity and for the stationary ambipo-

lar Geld, which may be larger than the e6'ective high-
frequency field maintaining the discharges (see, e.g. , the
estimations in [13]). On the basis of these studies, the
concept of a constant average absorbed power per elec-
tron 0 [10] (along the discharge length) has emerged as
a good approximation. It has been widely used as an
empirical assumption in studies on the axial structure of
the discharges on the basis of fluid plasma models [14—17].
(In the fluid models, a constant value of the electron tem-
perature [16,18] taken as measure of the mean electron
energy is a concept equivalent to 0 = const. )

Recently [19—21] attention has been paid to the exis-
tence of plasma resonance regions over the radial density
proGle. The enhanced. radial electric field there can influ-
ence the energy balance and, therefore, should be taken
into account in the discharge modeling. The role of this
efFect on the radial temperature distributions [21], ob-
tained in the &amework of the fluid plasma model, has
recently been extended to establishing its efI'ect on the
axial density profile [22—24]. In the kinetic modeling of
the discharges, the idea for the role of the plasma reso-
nance regions has been treated up to now only analyti-
cally [19,20]. It has been shown that this efFect results
in fast electron generation [19] and, in general, in the
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appearance of a new channel of power transfer from the
wave to the plasma [20]. This mechanism is collisionless
and stems from the quasilinear distortion of the electron
velocity distribution function: an efFect discussed in the
quasilinear theory and the theory of weak plasma turbu-
lence [25]. It can be interpreted as a Cherenkov efFect
of wave-particle interactions. Since the relative efIiciency
of the difFerent heating processes may vary strongly in
difFerent regimes of SW discharges, it is important to ac-
count for all the channels of energy transfer contributing
to the formation of the electron distribution function in
the velocity space.

In the numerical model presented below the collision-
less energy transfer is included in the inhomogeneous
Boltzmann equation as a third channel in addition to
the (traditional) two channels from the collisional Joule
heating via the axial and the radial Beld component. A
fully self-consistent formulation is achieved by simulta-
neous consideration of a set of fluid equations for the
ion motion and the SW electric Beld equations. Thus,
in contrast to previous investigations where it was neces-
sary to postulate the existence of the plasma resonance
[4,19—21], the resonance of the radial field component
turns out to be a result of the fully self-consistent model
in the present study. It is the aim of this paper to in-
vestigate the influence of the plasma resonance on the
SW discharge on the basis of this self-consistent concept.
Mainly two aspects will be addressed: the importance of
the collisionless heating mechanism, which is connected
to the appearance of the resonance, and the influence of
the resonance on the axial structure of the discharge.

The paper is organized as follows. In Sec. II the formu-
lation of the kinetic model is described. At first a short
sketch of the derivation of the term on difFusion in veloc-
ity space, which yields collisionless heating by the reso-
nant electric Beld and has to be included in the kinetic
formulation, is presented. Afterwards the solution of the
spatially inhomogeneous Boltzmann equation within the
nonlocal approximation is discussed. The equations nec-
essary to set up a complete, self-contained set of equa-
tions are given in the Bnal part of Sec. II. In Sec. III
the two main aspects of the resonant interactions are in-
vestigated: namely, their influence on the mechanism of
power transfer from the wave to the plasma and their
influence on the formation of the axial electron density
profile of the discharge. The presented numerical results
are discussed, and basic features are commented on and
compared to previous analytical studies. A summary of
the main conclusions and an outlook to forthcoming work
is given in Sec. IV.

II. DESCB.IPTIC)N OF THE MODEL

where X—:X(r, v, t) is the electron velocity distribution
function, 8(r, t) is the wave electric field, and —e and m
are the electron charge and mass. The right-hand side of
the equation represents the collisional integral.

For solving (1) with accounting for the difFerent heat-
ing mechanisms, in particular the difFusion in the velocity
space due to the quasilinear collisionless efFects [20], and
the inhomogeneity in the configuration space [11] due to
the steady-state ambipolar Beld, the steps given in the
subsections below have been taken.

A. Collisianless energy transfer

The procedure for obtaining the contribution of the
collisionless energy transfer from the high-frequency wave
Beld to the plasma is based on the theory of weak plasma
turbulence [25]. Its applicability to the case of SW sus-
tained discharges is given in detail in [20]. This channel
of energy transfer stems from the plasmon-particle inter-
actions. Plasmons are generated as collective oscillations
in the region around the resonance point r = r, on the
radial density profile, where the plasma frequency equals
the wave frequency [u„(r= r, ) = w]. At the resonant
point the real part of the plasma permittivity F.„(r)be-
comes zero. The continuity of the normal component of
the dielectric displacement yieMs a sharp, resonant en-
hancement of the radial electric BeM component in this
region. The averaged quadratic efFect of the fast varying
parts of the field and of the distribution of the particles,
which are in resonance with the Beld —an averaged efFect
of phase mixing results in changes of the slowly vary-
ing part of the distribution of the "resonance" particles.
The final result is a difFusionlike term in the equation for
the distribution function which acts in the velocity range
of the "resonance" particles.

The quasilinear term for difFusion in velocity space is
in principle obtained as follows (for a more detailed pre-
sentation the reader is referred to Refs. [19,20]).

(1) The long and short scale variations (with respect
to the electron mean free path A, ) of both the electric
field E'(r, t) and the distribution function X(r, 27, t) are
separated and presented in the following form:

(2)

The discharge is sustained by a propagating surface
wave with frequency w and fieM components F„,
E, g 0. The waveguide configuration consists of a plasma
cylinder with radius a, surrounded by a glass tube with
radius 6 and permittivity eg, and vacuum.

The description of the electron kinetics is based on the
Bolt zmann equation

The first terms on the right-hand side are the slowly vary-
ing parts, which have been averagedover the short scale
variations. The second terms are the microfield and the
short scale contributions to the distribution function on
the A scale, respectively.

(2) The slow (i.e. , averaged over the SW period 2'/~)
and fast time variations are separated:
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(E(r, t)) = E(r, t) + E(r, t),

(F(r, v, t) ) = E(r, v, t) + F(r, v, t) .

Here the first terms on the right-hand side denote the
time averaged quantities. It is also assumed that the
time averaged microfield e is zero. This excludes consid-
erations of collisionless double layers.

(3) The set of equations obtained from the Boltzmann
equation (1) after making substitutions (2) and (3) yields
the quasilinear term from small scale averaging and time
averaging (denoted here by the overbar):

S~i(F) = —e .e - DfI Bv

This term stems from the short scale quantities, but it af-
fects the slowly varying part E(r, v, t) of the distribution
function. It should be added to the collisional integral in
the right-hand part of Eq. (1) for the slowly varying part
of the distribution function E(r, v, t). In fact, since the
nature of the quasilinear effect is a difFusion in the veloc-
ity space, expression (4) can be evaluated and presented
in the form (see [19])

BE
S~i(F) = —„Dqi(v,r, t)

For calculating Dq~(v, r, t), the quasilinear difFusion ten-
I

sor due to this effect, the resonantly enhanced radial elec-
tric field component associated with plasma resonances
has to be introduced in a form as given in [19]. Spec-
ular refIection near the discharge walls is the boundary
condition used for the resonant electrons [19,20]. This
quasilinear heating term tends to favor the appearance
of higher energy electrons [19].

After the introduction of the quasilinear heating term,
the ordinary procedure [26,27] for solving the Boltzrnann
equation in series expansion in spherical harmonics in the
limits of the I orentz approximation

F(r, v, t) = Fp(r, v, t) + —.E, (r, v, t)
V

(6)

~ & ve = ~vm+ vk.
k

Here v is the energy relaxation frequency, v the mo-
mentum transfer collision frequency, vA, is that of the A:th
inelastic process with threshold energy u@, m = 2m/M
is the portion of energy transferred at one electron-atom
collision, and M is the atom mass. In cylindrical geom-
etry and with u = 2mv /e, the electron kinetic energy
in voltage units, the equation for the isotropic part Eo
of the electron-energy distribution function (EEDF) be-
comes [26]

is applied. The case of sufFiciently high frequency u of
the applied field is considered:

3 3 3
2 e u~ 2 ( OEp 0
3 m v~

~ g Ou &u v~
u 2 2 2 BE() 3

&-Fp —&-
I
E. + —E. '&- Fo+ (IE.I'+E.'s)

~ + Sgl+ u ~i' Ep
&lL

=).[.( )~F.( ) — .( + .)-7 + .F.( + .)]+S.. (8)

E, is the radial dc space charge electric field, and
I

The function 'D(s) is defined as

m
(9)

is the efFective field sustaining the discharge. S, denotes
the electron-electron collision integral in the usual form
(e g. [26]).

The term in Eq. (8) which includes E,~ accounts for
the collisional Joule heating associated with the E and
E„field components.

Written in the energy scale (according to the analysis
in [19,20]), the quasilinear term takes the form

17(s) = — (1 —s) exp( —s) + s
2

= —exp( —s).
2

The argument 8 is given by

( 2me(d A ) rs=
I

'
I

=4vr —.
eu ) T

Here 4 is the resonance half-width

exp( —t) dt
J

(12)

Eo
Sqi = a~i M„,(r),

with the diffusion coeKcient for the collisionless (quasi-
linear) energy transfer

(14)

with L being the density scale length at the resonance
point

1
d inn
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v,g is an effective damping frequency, which describes the
resonance width of the field peaks and takes into account
the energy drain by collisionless heating. It is commented
on below when the additional completing equations are
discussed.

Computationally 4 is determined directly &om the
half-width of ]E,

~

peaks in the resonance case and the
width of the sharp increase of the field intensity towards
the wall in the nonresonant case. The function M, , in
Eq. (10) is defined as a step function:

M...(,) =M(
Eo

(16)

where M(x) = 0 for z & 0 and M(x) = 1 for x ) 0,
x being the argument shown on the right-hand side of
(16). This function limits the infiuence of the collisionless
heating term to the vicinity of the resonance region.

In relation (13), w = A/v is the transit time for a
single pass through the resonance and T = (iv/2vr) i is
the period of the wave. The function 'D(s) reaches its
maximum for s = 1, i.e., for w = T/47r. The energy
gain is thus particularly high if the transit time is short
compared to the Geld period. It is illustrative to insert
Eqs. (12) and (13) into Eq. (11). By introducing the
collision frequency v, = 1/w, one obtains

A is the electron mean &ee path with respect to mornen-
tum exchange, v, is defined by (7). In this case the total
energy [with C'(r) the space charge potential]

—4(r)
2c

(19)

(2o)

with ~E& ~
&& iEo )

~. Using this expansion, the solution
of the spatially inhomogeneous kinetic equation for I'0
is greatly simplified by spatially averaging via radial in-
tegration the kinetic equation over the part of the cross
section which is accessible for the electrons with a certain
total energy e. As a result the transport terms cancel out
and the following equation is obtained:

is approximately conserved during the spatial motion of
the electrons so that e is a meaningful variable. Accord-
ing to Bernstein and Holstein [28] and Tsendin [29] Po is
then a spatially (almost) homogeneous function of the to-
tal energy, where the space dependence can be presented
by a small first order correction

B. Nonlocal kinetic model

The Boltzmann equation written in the form (8) ac-
counts for the plasma inhomogeneity and the steady-
state ambipolar electric field. Its solution is obtained here
in the approximation of the nonlocal model suggested in
[28,29]. The procedure is carried out as described in the
recent studies [11,12] on SW sustained discharges based
on this model. The limits of applicability of this model
require that the characteristic length of energy relaxation
of the electrons is much larger than the plasma column
radius [30]:

A, =A ))a.
&e

(18)

7l C 'll & 7
~E, ( )~' e—exp (

—4x —
) .

(2m, ie: ) T, T

The first factor in the large parentheses is in a forin (al-
most) identical to that of the (velocity space) difFusion co-
efBcient for Joule heating in the resonant E field. Since
only the field amplitude appears, it corresponds to heat-
ing in a dc field. However, since the transit time 7 is
much shorter than the collision time 7. , the typical time
for diffusion (in velocity space) connected to 3oule heat-
ing, this term is weighted with w/w, . The exponential
factor accounts for the fact that actually a time-varying
high-&equency field is considered. The energy gain de-
creases if the electrons spend a time comparable to the
wave period in the resonance region, since they may then
be accelerated and afterwards decelerated by the revers-
ing Geld.

with the solid dashes denoting &om here on the radial
integration mentioned above,

r'(e)
u2 (r)v (u)r dr, (22)

2
~~(s) = —,

r" (e)
vg(u(r))u& (r) r dr

r (e)
D, = — D,rdr,

a (24)

with

D, = D +D„+D~). (25)

D and Dr account for the Joule heating via the axial
and radial component of the SW Geld, respectively, and
D~i for the collisionless (quasilinear) heating. Explicitly
[with (17)]

S„is defined analogously. r*(s) is the turning point
radius of electrons traveling in the space charge potential,
r" (s) the maxixnum radius for which the kth inelastic
process is possible.

Similarly the spatially averaged energy diffusion coef-
Gcient D, is given by
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;
„

l&.(r)l'
3m, 2v (u)

;
„

IE.(r)l'
3m. 2v (u)
~e „,

„

I&-(r)I'
2m. v (u)

v' (u)
v' (u) + (u2 '

v2 (u)
v' (u) + u)' '

r (u)

'" - (-'--)T

(26)

(28)

ization condition for I'0 represents a relation between
the plasma density n and the potential C'(r):

n(4(r)) = n, (4(r)) = Eo(u, r)~udu
0

E~~ ~(s) Qs+ 4(r) ds.
+(~)

C. Equations completing the closed set

Additional equations are needed to supplement Eq.
(21) towards a closed set of equations in order to achieve
a self-consistent solution of the problem.

I"irst, the simultaneous determination of the ambipolar
potential 4 is obligatory. To this end a fIuid approach
for ion dynamics can be employed. The continuity and
momentum equations for the ions are used. Assuming
quasineutrality (n = n, = n;) and neglecting the ion
temperature compared to the electron mean energy one
obtains

1 d(rnv„)
vi)

P

e d4 +(' + *')v
M, dr

(29)

where v„represents the drift velocity of the ions in the
ambipolar field, v, (r) is the ionization frequency, and v;„
is the ion-neutral collision frequency [32,33]

The spatial averaging procedure used to obtain Eq. (21)
relies on the validity of relation (18), which ensures that
the spatial motion of electrons is faster than the difFu-
sion in energy space. In this way the whole accessible
cross section of the discharge contributes to the forma-
tion of the distribution of total energy Eo l(s). From
the solution of Eq. (21) for the distribution function
of total energy Eo (E), the radially resolved distribu-(o)

tion of kinetic energy may be found by backsubstituting:
Eo(u, r) = Eo (s = u —C (r)).

The above approach may be considered a reasonable
approximation ifpa is not too large (here p is the gas pres-
sure). It has to be stressed that the validity of the non-
local averaging procedure is principally restricted only
by requirement (18) and is valid at arbitrary inhomo-
geneity of the heating electric field (including the case of
plasma resonances). The complete two-dimensional (in u
and r) numerical solution [31] of the Boltzmann equation
also shows that even in cases of strongly inhomogeneous
fields the nonlocal approach remains a good approxima-
tion, although the range of applicability is slightly shifted
towards lower pressures.

The set of Eqs. (21), (32), (29), and (30) is sufficient
to determine simultaneously and self-consistently the un-
known quantities E~~ ) (s) and thus Eo (u, r), 4(r), n(r),
and v, (r). In doing so, the Bohm criterion has to be ful-
filled, requiring the drift velocity v„to be equal to the ion
sound speed at the sheath boundary, which is assumed
for simplicity to be of zero thickness. This requirement
results in the well-known eigenvalue problem for the am-
plitude of the SW electric field strength.

It may be noted that at higher pressures and elec-
tron densities the contribution of ionization from excited
atoms may significantly contribute to the ionization &e-
quency v;(r). To account for this eKect the solution of the
Boltzmann equation has to be coupled to a collisional-
radiative model, which describes the different atomic or
molecular processes and yields information about the
population of excited species. However, in the present
study only an approximation of including the stepwise
ionization has been performed, by accounting for the
most excited state only in a very rough manner. It is
assumed that the population of this level is determined
by the balance between population &om the ground state
on the one hand and by losses due to diffusion and ion-
ization on the other hand (see [12]):

+ex
NA~O v0

n„vi+ D,„/(a/2.4) 2 (33)

(u„'(r)
4) Cd —2v~

(34)

Here N is the ground-state density, v0 the &equency for
excitation &om the ground state, v~ the loss rate by ex-
citation, D the diffusion coeFicient of metastables, andn„the electron density in the center. The approxima-
tion as given by (33) can indicate the direction of changes
to be expected due to inclusion of a collisional-radiative
model.

Secondly, the electric field profiles and intensities have
to be found self-consistently. The field intensities are as-
sumed to vary oc exp[ —I p(z') dz'] exp(iut), with p(z) =
o.+iP giving the local values of wave number and attenua-
tion coeKcient at a given position z along the plasma col-
umn. With the —radially dependent —electron plasma
frequency urz(r) = [n, (r)e /m, so]2 the plasma permit-
tivity is

1
lt' M;v2) '

v;„(v„)= v;„,I
1+0.182

Tg )
(31) The field components are then determined by the follow-

ing equations:

due to symmetric charge exchange collisions. v;, is the
value for small v„,T~ the gas temperature (in energy
units), and M; is the ion mass. Furthermore, the norinal-

d2@ (1 2 de„(v))
+ +

A ( ) ( ) d
+ A' ( )E 0 (35)
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(36)

Above the index n stands for plasma, glass, or vacuum,
respectively. For k the following definition is used (ko ——

c):

k„'(r)= kos„(r)+ p (37)

Veff = Vmmeff.

With v, ff an effective permittivity e,ff is also introduced,
using v, ff, whereas c„stilldesignates the use of vm only.
As a consequence of the above changes, the foljowing Geld
equations [replacing (35) and (36)] are now to be used for
the plasma region:

d'E. (1 &2 '.„"„'"'& dE,
dr2 I r ko2s, ~(r) + p2 s,~(r) ) dr

p has to be determined so that the continuity of the tan-
gential electric E and magnetic H~ field components is
satisfied at the plasma-glass and glass-vacuum bound-
aries. By this the dispersion relation of the surface
waves is given, i.e. , the axial wave number P and the
damping coeflicient n for various cu/w„. w„is deflned as

w2 oc gn„with n, the electron density averaged over

the discharge cross section being a function of z.
Finally, however, the effective damping frequency v, ff

introduced [relation (14)] in Sec. II A, where the colli-
sionless energy transfer is described, requires special at-
tention and modification of Eqs. (35) and (36). The
quasilinear term (10) in the Boltzmann equation. de-
scribes an additional power transfer. On the other hand,
the permittivity in Maxwell s equations, i.e. , in the field
equations (35) and (36), contains only v and thus only
the damping due to the Ohmic energy transfer. The
sharpness of Geld resonances would be overestimated.
without introduction of v, ff also there.

Therefore in the numerical procedure a larger damp-
ing frequency, a multiple m ff of v, is introduced which
accounts in a heuristic manner for the back reaction of
the energy drain from the E„Geldvia the additional col-
lisionless plasma heating and is actually used. for the cal-
culations of the fields:

collisioiiless (quasilinear) channel, when calculated with
the classical &equency vm, is equal to the pure "radial"
Ohmic power transfer using v,e. (Here "radial" means
due to the radial electric field. ) For both cases the field
profile calculation is based on Eqs. (39) and. (40) contain-
ing v ff. By this concept the broadening of the field peaks
due to the total energy drain &om the radial component
is accomplished in a consistent way. Concretely the fol-
lowing scheme has been used, where the power transfer
via a certain channel (Ohmic via r or z component, col-
lisionless) is characterized by the power absorbed by one
electron 8 (for exact definitions see below right at the
beginning of the next section).

(1) The field profile is calculated from (39) using a
starting guess for v,ff. The sum from the three transfer
channels 8 + 8„+0, ~~ i„,is calculated, employing v
and. the above field profiles.

(2) The same field distributions as in (1) are used. Now
the collisionless channel is omitted, 8, is calculated using
v, but 0„is calculated using v ff.

In order to equalize both sums obtained under (1) and

(2), respectively, v,~ has to be adjusted, which requires
an iterative procedure. As a starting value of iteration
v ff may be chosen as v times the square root of the
initial ratio of (8„+8, n i„,)/8„.

III. RESULTS AND DISCUSSIDN

A. Mean pommer absorbed per electron

In order to get an impression of the relative importance
of the three heating channels shown. in (8) and (21), the

popover shares transferred per (average) electron are cal-
culated: 8 and 8„for the two Ohmic ones connected
« ~E

~

and ~E ~, respectively, and for the added coLLi-

si,onless one, which results from the quasilinear term (10)
and is connected with ~E„~ peaks, here labeled 0, i~ ~„,.

The terms result kom the macroscopic power balance
equation. This equation is obtained by multiplying Eq.
(21) by the total energy and subsequent integration over
the whole energy space. [Note that in Eq. (21) r and s are
independent variables so that the order of integration can
be interchanged. ] For the three different power transfer
channels one obtains

koe,g(r) + p
" E, = 0, (39)- s,g(r)

dS;~'(.) )
de ( de'

(41)

E„(r)=
ko2s, g(r) + p2 dr (40)

The values of v, ff are chosen in such a way that con-
sistency between power Aux —resulting &om Maxwell's
equations —and. the power absorbed by the plasma—
based on the power transfer terms obtained from the
Boltzmann equation —is achieved. The idea is to define
the effective collision &equency in such a way that the
power transfer in the "radial" Ohmic channel and. in the

with i designating z, r, ql (coll-less), respectively, and the
D, given by Eqs. (26)—(28). The resultant three 8 terms
constitute the energy gain terms in the macroscopic en-
ergy balance of the discharge. They are indeed. in balance
with the collisional loss terms within l%%uo accuracy, as has
been checked. as a verification of the numerical method.
For the calculation of the 0 terms, of course, the self-
consistently calculated ~E (r) ~2- and ~E~(r)

~

-field con-
figurations are employed, as described above.

Figure 1 gives an example for 8, 8„,0, ~~ i „andthe
sum Oq~q~i calculated as outlined as a function of u/w„.
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FIG. 1. Porkier absorbed per average electron O~oq~~. O~,
O„represent Ohmic losses via ~E

~

and ~E„~,respectively,
O,oil ~„,collisionless contributions via ~E„~ . u„is the plasma
frequency of the electron density averaged over the discharge
cross section. u)/2m = 2.45 GHz, a = 5 mm plasma radius,
b = 6 mm tube radius (~sl ., = 4.7). Gas pressure p = 1 Torr
argon.

For the parameters considered here (w/2vr = 2.45 GHz,
a = 5mm, p = 1 Torr argon) the 8, channel loses its
predominance for cu/w„0.28, when 8, II I„,becomes
larger. It should be mentioned that the 0, channel is
usually considered as the main (or even the only) power
transfer channel over the whole length of the discharge.
Thus the predominance of 0, II I„,for the higher m/wz is
a remarkable result. It demonstrates that in this regime a
totally diR'erent physical situation due to the appearance
of the plasma resonance is found. However, the variation
of 8tot~I with w/m~ is relatively weak [34j. This "con-
stancy" of Ot t ~ is a consequence of the self-consistency
of the problem: Since the ambipolar diffusion losses,
which are governed by the ion motion, are (almost) inde-
pendent of the exact mechanism of energy transfer to the
electrons, the ionization frequency has to be independent
of this aspect, too. Therefore, in order to maintain a con-
stant ionization, the total power input into the plasma

FIG. 3. Conditions are as for Fig. 1, but radius is enlarged
to a = 9mm. p = I Torr argon.

per electron also has to remain constant.
The importance of the results for the power absorbed

per electron 0 lies not so much in the sum Oq q ~, but
rather in the distribution to all three channels obtained.
Figure 2 gives the result for the conditions of Fig. 1
if a calculation of 0, ~~ ~ „were omitted: Almost the
same values for Ot t I are obtained (as has to be ex-
pected from the discussion above), its constancy being
only slightly less pronounced and 0, loses its dominance
then at u/wz 0.34 to 0 . From diffusion theory it
can be expected that the relative radial decrease of the
electron density {in relation to the central density) scales
with the ratio A;/B. Thus the ratio of the central den-
sity to the density at the sheath transition no/n, grows
with the product of gas pressure times radius, pa. As
a consequence of an increased radial density drop, res-
onance peaks in ~E,

~

at tu„(r) = ~ become possible al-
ready at larger averaged (over the cross section) elec-
tron densities, i.e. , at lower u/u„. Indeed the example
of Fig. 3 for the same pressure p as Fig. 1, but for a
larger radius (n = 9mm) demonstrates the dominance
of 8, II I„,to start already at u/u„—0.21, as com-
pared to u/u„0.28 in Fig. 1. The lowering of pressure

0.5

statal
l

I
\

0.5

0.4

CLI3~ 0.3
3

l

1

coll-t.Q~

I' I I I I I I

2450 MHz
argon, 0.5 Torr;
a = 9 mm
b = 10 mm

statal

0.2 0.2

I I v i I
I

10 0 ( )
10

0.1

10
( V -&) 10

FIG. 2. Conditions are as for Fig. 1, but the calculation
assumes absence of the collisionless absorption channel.

FIG. 4. Conditions are as for Fig. 3, but p is reduced to
0.5 Torr argon.
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0.8
2450 MHz
argon, 1

a = 5
b = 60.6

0—vr Re "
2 (E„H*)rdr

QZ p g(dp

~l

3 0.4
OO

2 (E„H*)r dr = m.a n, O,o,~(. (43)
Rdp

0.2

0.00.1 0.2 0.3 0.4

The contribution by the first integral is expected [16j
to be negative and smaller than that of the second one.
With I„andI„asdefined in (43) one finds

2—~~e 8total

FIG. 5. u,s/~ and v /~ for conditions of Fig. 1.

to, e.g. , 0.5 Torr on the other hand as expected shifts
the beginning of dominance of 8, ll l „

to slightly higher
u/uz, as a comparison of Fig. 4 to Fig. 3 shows. More-
over, Fig. 4 demonstrates that with decreasing pressure
of course the importance of the Ohmic channels 0 and0„is reduced relatively to the collisionless one 0, ll l„.
In Fig. 4 0, ll l „actually remains the largest term up to
larger values of w/w„, whereas in Fig. 3 8, n ~„,yields
the lead to 8„atw/uz —0.41, though 8, still stays
weaker.

The strong role of the collisionless (quasilinear) en-

ergy transfer represented by 0, ll l„,is also reHected in
the increase of the effective collision frequency v,g dis-
cussed in Sec. II C exhibiting a pronounced maximum
at cu/u„0.27 in Fig. 5 (for the conditions of Fig. 4).
The slow ascent of v,a towards small w/w„ is of less sig-
nificance, since there 8, ll l „competes with 8„,but is
small compared to 0, .

B. Ax:ial density profile

dz Re (I„)+Re (I„)
The values needed are largely already available from

calculation of 0 versus u/w„. For H~ inside the plasma
we can use

Revs'ps~a' OEz
(p r

kpszs' + p c)r

or alternatively

T

H~(r) = i rs„E,dr
F

(45)

The axial density profile n, (z) is obtained with &
oc

dn(z) f ( )

dn.
(n. )

(46)

2
For the situation of Fig. 1 the resulting & is given in
Fig. 6. In Fig. 7 the related density profile n, (z) starting
at ~/~„=0.15 is shown. In Fig. 6 the absolute value of
the density slope

The dependencies of 0„8„and8, n )„,on ~/~„
shown in Figs. 1—4 indicate qualitatively the variation
along the discharge axis. For a quantitative transforma-
tion from the dependency on u~ to one on z and in order
to study the axial density profile towards the discharge
end, the Poynting vector energy transport is considered.

The total power gain per discharge cross section (per
unit length) 0& q ~era n, has to be covered by the nega-
tive divergence of (the real part of) the Poynting vector
obtained by integrating over the cross section of the guid-
ing system, with no losses present in vacuum (and glass):

div Re
~

E(r) x H*(r)
~

2—mr dr
(2

7 —4
E

I
M

CV
CV

D —8

a

'3 —12
O

CL(d&

dz dz

= 7ra n 0, , ). (42) —16
0.1 0.2 0.3 0.4 0.5

The derivative
&

of the z component of the Poynting
d 2

vector can be replaced by 8&g dz FIG. 6. du„ /dz for conditions of Fig. l.
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FIG. 7. Integration for n (z) resulting from Fig. 6, starting
at cu/w„= 0.15.

FIG. 8. Axial wave number (P) and damping coeKcient
(cr). Conditions are as for Fig. l.

increases towards larger w/wz from a relatively constant
value at smaller u/wz. The structure showing in Fig. 6 is
only partly significant, much of it stemming from numer-
ical "jitter" which, however, is of little consequence upon
the integration of the density profile, as Fig. 7 reveals.
Some comparisons to analytical approaches on n, (z) have
been given elsewhere [22].

C. Discussion of basic features

The results above are indicative of the important role
of plasma resonances in the E„field and the resultant
plasmon excitation. There are some interesting conse-
quences and basic aspects conforming well to analytical
expectations given in previous studies [16—24,35].

(1) The excitation of plasma oscillations influences the
dispersion of the SWs. Figure 8 (for conditions of Fig. 1)
depicts the corresponding real (P) and imaginary (n)
parts of the (axial) wave vector. The bends, which appear
at u/u„= 0.23, can be related to the first appearance
of the plasma resonance, which exists for w/uz & 0.23.
The dispersion modified by interaction with the plas-
mon mode showing up is of this type, which is to be
expected also from analytical consideration: Prom linear
mode interaction with the plasma mode in the low den-
sity resonance region basically the type of behavior of P
and o. as in Fig. 8 can be predicted [35]. In particular,
the "bends" can be related to the onset in formation of
plasma resonances near the wall of the plasma cylinder.
These plasma resonances then move further inwards to-
wards the plasma center with increasing u/u„. These
"bends" show up already in numerical solutions of field
and dispersion equations for Bessel profiles n, (r) of dif-
ferent steepness, whenever ~„(r)= ~ becomes possible.
It should be mentioned that the above "bends" would
be more pronounced if the additional broadening of the
resonant field peaks by the collisionless heating via v ~
were not included. The "bends" also tend to be stronger
and more complicated [35] for lower pressures p and radii
a. One example is given in Fig. S for the same pressure

0.5

0.4

0.2

0.10.0 0.2 0.4 0.6
Pa, aa 0.8

FIG. 9. n and P as in Fig. 8, but the radius is reduced to
a=3mm.

as in Fig. 8, but with the radius reduced to a = 3mm.
(2) Secondly the additional collisionless heating due to

the plasma resonances also exhibits of course an e8'ect on
the self-consistent electric field strength, which is neces-
sary to maintain the discharge. This aspect is considered
in Fig. 10 for the conditions of Fig. 1. The value of ~E,

~

at the discharge center is shown, comparing the case in-
cluding the collisionless power transfer (with 0, ii i„,)
to the case excluding this channel. In the former case
obviously less field strength is required to maintain the
plasma, since the collisionless heating represents an effec-
tive source of high energy electrons capable of ionization.
Thus only a reduced amount of Ohmic heating is needed
to maintain the same total ionization, which in turn re-
sults in lower field strengths. This interpretation is also
underlined by Fig. 11(a), where the radial distributions of
~E,

~

and (E„(are shown for cases both with and without
collisionless heating (for the condition ~/~„=0.3). The
electric field strengths in the case of collisionless heating
included are below those of pure Ohmic heating across
the whole radius (and not only in the center). It should
be pointed out that the broadening of the ~E„~peak in the
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at discharge center

(r = 0) for the conditions of Fig. 1: —.For comparison
the values in absence of the collisionless channel are shown

(as in Fig. 2): — — —.

I ' I ' I ' I ' I8

(b)—

presence of collisionless power transfer is due to this ad-
ditional power drain from the E„field taken into account
via the efI'ective collision frequency v g. The appearance
of the resonant behavior of ~E,

~

close to the wall showing
up in Fig. 11(a) is also demonstrated in Fig. 11(b) for
the same conditions, but with w/u„ increased from 0.3
to 0.4: With decreasing averaged electron density the
peak starts to shift away from the wall, the peak height
is slightly lowered, and the resonance width is enlarged.

(3) The above interpretation of the collisionless, quasi-
linear heating to be an eKcient mechanism for "hot elec-
tron generation" has already been given previously [19]
on the basis of an analytical study. Also expression (28)
above favors fast electrons. This interpretation is evi-
denced by the additional bulge of higher energy electrons,
in the vicinity of the ionization energy, in the electron-
energy distribution function as depicted in Fig. 12 for
w/wz ——0.25, the conditions being the same as in Fig. 4.
Again cases both with and without collisionless heating
are considered. It should be noted that this bulge of
hot electrons due to the collisionless heating appears al-
though the electric field strength is considerably lower
than in the case without collisionless heating. For the
same electric field the hot electron group would be much
more pronounced. However, this effect is to some ex-
tent masked by the self-consistent determination of the
electric Beld, which requires an (almost) constant total
ionization rate and thus distribution functions which are
similar in the high energy range.

(4) Finally, the numerical calculations confirm essen-
tially, as is already apparent from Figs. 6 and 7, ana-
lytical expectations (for more details see [16—18,22—24])
on the axial density profile n (z): Though the absorbed
power per electron stays largely constant, the changing
distribution between the di8'erent heating channels—
away from the E channel enforces a changed pat-
tern of power Aow via the Poynting vector. Resonance
peaks in ]E„~that appear result in changed relations be-
tween the E-Beld structure and the density profile n, (z).

E)
O

N
L-

Ld

0
0

I i I I

2 3 4 5 6
r (mrn)

FIG. 11. (a) Maintenance voltages ~E,
~

and ~E
~

as func-
tion of radius r for w/w„= 0.3. Otherwise conditions are
as in Figs. 1 and 2. As in Fig. 10 calculations are compared
with collisionless absorption included (—) and excluded (- —-).
The sharply peaked curve represents ~E„~I. (b) ~E,

~

and ~E
~

as function of radius r for ~/~~ = 0.4. Otherwise conditions
are those of Figs. 1, 2, and (a).
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PIG. 12. Electron-energy distribution function I"o, normal-
ized to the electron density no at the center of the discharge,
for the conditions of Fig. 4, with w/w„= 0.25. The two situa-
tions with collisionless absorption included (—) and excluded
(- — -) are compared.
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FIG. 13. Axial density profile n, (z) as in Fig. 7, biit the
conditions are changed to a = 9 mm and p = 0.5 Torr, starting
at ~/u„=0.19.

IV. CONCLUSIONS AND OUTLOOK

In the present investigation the existence of the reso-
nance of the radial SW electric field component has been
discussed on the basis of a self-consistent kinetic model
of the SW discharge. Thus in contrast to previous ana-
lytical studies it was not necessary to postulate the exis-
tence of the resonance or to make assumptions about the
suitable radial density profiles. Moreover the existence of
parameter ranges with a dominance of plasmon inHuence
in SW sustained plasmas is demonstrated.

The numerical calculations confirm and extend previ-
ous analytical considerations [16—24,35] in many details,
in particular concerning the role of plasmon mode exci-
tation [19—24].

The total absorbed power averaged per electron, Oq q ~,

remains more or less constant, although the single contri-
butions change drastically. This is exactly the behavior
which has to be expected, since for the maintenance of

As a consequence considerable deviations from the usual
linear profile n, (z) [16,17] appear towards discharge sec-
tions further away from the wave launcher, where n, (z)
decreases faster than linearly. Indeed this behavior has
been predicted already on the basis of analytical esti-
mates [22—24]. The density profile n, (z) is expected to
terminate its linear behavior at some position z —zi and
thus to approach a square root dependence of the form
n, (z) oc gl —const x (z —zi). This behavior is obvious
in Fig. 7 and also in Fig. 13, which gives an additional ex-
ample addressing a situation at larger radius and smaller
pressure than in Fig. 7. By comparison of both figures it
can again be seen that plasma resonance efFects are more
important for lower pressures and larger discharge tubes.
In Fig. 13 the deviation. froin a linear n, (z) starts at
about tu/w„= 0.22. The detailed structure is inHuenced
by the changes of the resonance conditions when the res-
onance moves radially inward with increasing w/w~ (de-
creasing n, ), e.g. , the changing resonance peak width D.

the plasma it should be unimportant by which channel
the energy is delivered.

In general the following conclusions on the importance
of the collisionless heating can be drawn &om a number
of calculations.

(1) The collisionless heating via the resonant E, field is
important in the microwave regime, since here low v, /w
ratios can be achieved at simultaneously high pressures.
The low v, /u assures a pronounced resonance of the E
field component.

(2) The collisioiiless heating is important for a larger
axial part of the discharge vessel for large radii and
high pressures, since both quantities affect the A;/a ra-
tio, which determines the electron density at the plasma
sheath boundary: For larger radii the range of predomi-
nant collisionless heating extends to higher electron den-
sities, i.e. , to lower w/u„. The same holds true for in-
creasing pressure, even though the relative strength of
Joule heating increases with pressure. On the other hand,
the relative strength of collisionless heating is, of course,
larger for lower pressures.

The accuracy of the nonlocal kinetic model used is,
of course, limited: Its applicability is obviously best for
not too high values of pn [12]. Otherwise the solution of
the complete two-dimensional (in u, r) kinetic equation
for the isotropic part of the distribution function is re-
quired, which is beyond the scope of the present paper.
The alternative of using a "local" model, employing the
spatially homogeneous Boltzmann equation for distribu-
tions locally in equilibrium with the electric field, is of
little interest when resonance features connected to plas-
mon interaction are addressed, since it requires higher
pressure p, the collisional damping being then too large.
Further applications of the nonlocal approach as well as
complete two-dimensional treatments in cases of rather
inhomogeneous radial electric field distributions are de-
sirable. In this context it may be mentioned that the non-
local approach has already successfully been applied to
the modeling of other types of high-frequency discharges
which are characterized by strongly inhomogeneous fields
too, such as the capacity coupled rf discharge [36,37] and
the inductively coupled rf discharge [38,39].

The overall accuracy of the absolute values of 0 pre-
sented should not be overestimated. , but is expected
to stay within about a factor 2. Ways of improve-
ment are largely obvious, e.g. , by more accurate future
two-dimensional calculations and. inclusion of more pro-
cesses (involving also more complete collisional-radiative
excitation-ionization models). Also dropping the used
simplification of a radially constant collision frequency
v would be more accurate with a view to radially vary-
ing distribution functions. Preliminary results on this
latter aspect have shown no drastic inHuence. In this ar-
ticle, however, the relative importance of various power
input channels is expected to be described reasonably
accurately, since basically a self-consistent approach is
used in the calculations in particular concerning the for-
mation of the radial density profiles. The range of impact
for plasmon interaction seems to be pointed out reliably.

The present model implies the validity of the zero order
geometrical optics approach concerning axial variations,
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since with respect to z local dispersion relations are used.
Though the axial density changes are rather slow (with
a scale length large compared to the radius), towards
the very end of the discharge the situation may become
more difEcult due to two-dimensional features. In partic-
ular, in cases as additional phenomenon the electrostatic
"system" resonances may have to be considered [5,40],
including also additional loss processes encountered then
(but neglected here), e.g. , heat conduction and diffusion
end losses. Some relevant aspects are to be considered
elsewhere.

If the usual scaling of Oq t ~ is assumed, the calculated
values are consistent with —though slightly larger than—the values given for 2.45 GHz in [41] for rather high
4)p at small a. Extension of the numerical calculations as
performed above to lower u/~„( 0.1 seem to indicate
some decrease of Ot t ~, but the accuracy of the numeri-
cal procedure in that range remains yet to be improved.
For future work comparisons with measurements are de-

sirable under conditions similar to those addressed here.
From preliminary measurements of the electric field in-
tensity inside the plasma by probe-antennas there are
first experimental hints on the existence of the plasma
resonance [42].

Finally it should be stressed that in future situations
at much lower wave frequency u must be considered in
modeling and experiment. There the role of plasmon
interaction may be different. At low u and low p plasmon
effects may be less important and other effects must be
accounted for, such as potential electrostatic resonances
[5,40].
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