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Linear and nonlinear modes in nonrelativistic electron-positron plasmas
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A comprehensive two-Quid model is developed for collective modes in a nonrelativistic electron-
positron plasma. Longitudinal and transverse electrostatic and electromagnetic modes, both in
the presence and absence of a magnetic field, are studied. Wave properties are discussed in terms
of dispersion relations, wave normal surfaces, and Clemmow-Mullaly-Allis diagrams. The results
are extended to include the two-stream instability and ion acoustic solitary waves. For the two-
stream instability, a similar result is found as in the electron-ion plasma. For ion acoustic solitary
waves, only subsonic solutions are found to exist. Furthermore, their width is proportional to their
amplitude, unlike the electron-ion plasma case, where the speed is proportional to the amplitude.

PACS number(s): 52.25.—b, 52.35.Hr, 52.35.@z, 52.35.Sb

I. INTRODUCTION

Recent progress in the production of pure positron
plasmas [1—3] now makes it possible to consider perform-
ing laboratory experiments on electron-positron (here-
inafter referred to as e+e ) plasmas. Indeed, e+e plas-
mas represent the larger class of equal-mass plasmas, a
class of plasmas that may ofFer plasma physical proper-
ties quite di8'erent &om those of conventional ion-electron
plasmas. In the analysis of conventional plasmas, the
ratio of electron mass m, to ion mass m,. is exploited
to great eKect leading one to distinguish, for example,
between high (electron dominated) and low (ion domi-
nated) frequency motions. Conversely, with both con-
stituent species possessing the same absolute charge to
mass ratio, important symmetries manifest themselves,
leading to considerable simplifications in the mathemati-
cal description of equal-mass plasmas. Theoretical inter-
est in e+e plasmas has focused largely on the relativistic
regime, since such plasmas are thought to be produced
naturally under certain astrophysical conditions [4—9].
However, nonrelativistic plasmas are also of astrophys-
ical interest: as has been widely noted, electron-positron
plasmas radiate very e8'ectively by cyclotron emission
and must, therefore, cool eventually. Despite this, the
nonrelativistic regime has received less theoretical atten-
tion. Tsytovich and Wharton [10) presented preliminary
theoretical results as well as an idea for a magnetic mirror
device in which to perform e+e experiments. More re-
cently, Iwamoto [11]presented a kinetic theory treatment
of waves in an e+e system, while Stewart and Laing [12]
used a multiBuid description to study certain aspects of
wave propagation. Recent studies have also treated some
nonlinear phenomena [13] and transport issues [14].

Clearly, a careful and comprehensive analysis of the
elementary plasma properties of an e+e system is de-
sirable, both to extend and complement existing theory
as well as to provide guidelines for planned experiments.

In this paper, we investigate a simple multiBuid d.escrip-
tion of an e+e plasma in a manner that reveals clearly
the natural symmetries inherent in the system.

A number of experimental approaches have been pro-
posed for studying e+e plasmas in the laboratory and
several of these are now being actively pursued. Early
experiments trapped relativistic positrons directly into a
magnetic mirror &om radioactive neon gas [15,16], al-
though the positron density was too low for positron
plasma studies. Tsytovich and Wharton [10] proposed
trapping positrons in a magnetic mirror from a LINAC
source. More recently, Boehmer [17] has employed cy-
clotron heating to trap moderated positrons from a ra-
dioactive source and to heat the trapped positrons to rel-
ativistic energies [17]. Another approach that is currently
being tested experimentally is to trap positrons &om a
LINAC source into a Penning trap by a gate-switching
technique [18,19]. Electron-positron plasma experiments
using the cold, trapped positrons could then be accom-
plished in a transient fashion using multiple electrostatic
wells. Yet another approach to confining both electrons
and positrons simultaneously is to employ the Paul trap
[20]. This technique has already been applied to ion plas-
mas with opposite signs of charge but there have been no
experimental demonstrations for positrons and electrons
where rf heating of the con6ned plasmas is a potentially
serious obstacle.

The most successful experimental approach to ob-
taining positron plasmas is by scattering &om a bu8'er
gas into a Penning trap. Up to 10 positrons can
now be stored at densities of more than 2 x 10 cm
These clouds of positrons constitute robust plasmas in
which collective plasma modes can be excited easily, and
electron-positron plasma experiments are now being pur-
sued by injecting a low-energy electron beam into the
positrons [21].

In electron-positron plasmas, pair annihilation can
take place. This process is analogous to recombina-
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tion in electron-ion plasmas. A requirement for collec-
tive plasma efFects to play a role is that the annihilation
time scale should be much longer than the time scale
for plasma e8'ects, which is typically the inverse of the
plasma frequency. Pair annihilation can take place by
a number of processes, the most important of which are
annihilation in two-body collisions and annihilation via
positronium atom formation. In addition, at very high
densities, induced annihilation has been predicted, with
possible application as a p-ray laser. Positron annihila-
tion in e+e plasmas has been treated in detail by many
authors (see, e.g. , Refs. [22] and [23]) and so only a brief
resume is given here. At low energies, positronium atom
formation by radiative recombination dominates the loss
process. The singlet state of the positronium atom de-
cays in about 10 s while the triplet state decays in
about 10 s. At 300 K the recombination rate is about
10 cm s, so that for a realistic plasma density of
10 cm, the annihilation time from positronium atom
formation would be about 10 s while the direct annihila-
tion time would about 100 s. Both of these time scales
are many orders of magnitude larger than the plasma
period of 10 s so that long-time-scale plasma physics
experiments should be possible.

For energies above 100 eV, direct annihilation domi-
nates the loss process. For example, for 10-keV positrons,
the direct annihilation rate is about 10 cm s, i.e. ,
even lower than at low energies, so that once again, long-
time-scale experiments should be possible

This paper is structured as follows. Section II deals
with the multifiuid equations. In Sec. III, the wave prop-
erties of the plasma are discussed in terms of dispersion
relations, wave normal surfaces and Clemmow-Mullaly-
Allis (CMA) diagrams. A beam-plasma system is dis-
cussed in Sec. IV, while results for stationary solitary
wave structures are presented in Sec. V. The paper is
summarized in Sec. VI.

II. MULTIFLUID EQUATIQNS

The multiBuid equations appropriate to an e+ e
plasma consist of the usual continuity and momentum
equations for each species, supplemented by Maxwell's
equations. We assume that the pressure p~ (j = e, p) is
isotropic and satisfies p~ = pKT~n~ where nz —number
density of species j, p is the ratio of speciGc heats, v is
Boltzmann's constant, and T~ is the species temperature.

Since it is easier to transfer momentum between parti-
cles of equal mass than between particles of unequal mass
(momentum transfer per collision is proportional to m/M
when m, ( M), the equilibration time scales for electrons
and positrons are equal. Consequently, both species will
reach a self-equilibrium together, and a global equilib-
rium will result at the same time. Hence, we may take
the temperatures of both species to be equal the first
of the important simpliGcations arising from symmetries
associated with an e+e plasma.

The model equations are, therefore,

Bn~'

&t
' + V' (n~u, .) = 0,

(Ou,
mn, !

~ +u,. V'u,
!

1
pi+Qini

I
E+ ui .x B!, (2))

E = 4vre (n„—n, ),

1BBV'xE= ——
t" Ot

4' 1 BEV'xB= —3+—
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V' B=O, e (npup neue) &

where q~ denotes the charge (either e or —e, j = e, p),
u~ the Quid velocity, t- the speed of light, m the elec-
tron mass, and E and B the electric and magnetic fields,
respectively.

III. LINEA& WAVE PROPAC ATION

By linearizing Eqs. (1)—(6) about an equilibrium state,
we can investigate the propagation of small amplitude
waves in an e+e plasma. The results presented here
complement and extend those presented by Iwamoto [ll]
and Stewart and Laing [12].

A. Electrostatic modes with H = 0

In the absence of an applied magnetic Geld and mag-
netic fluctuations, and linearizing about a homogeneous
unbounded plasma (using nz ~ N~ + n~, u~ —+ 0 + u~,
N, = N„= N and T, = T„= T), we can reduce Eqs.
(1)—(6) to the coupled linear wave equations

I „-&.'&' I(-.+-.) =0,
(0'

—C, V + 2(u„! (n, —n„) = 0.

(7)

2 +2I 2

=Ck +2~S p)

(9)
(10)

plots of which are illustrated in Fig. 1. These modes

The acoustic speed C2 = pKT/m and plasma frequency
4~e2N/m have been introduced. Equation (7),

for the sum of the electron and positron Quctuations,
describes the propagation of acoustic waves. The dif-
ference n, —np in density fluctuations propagates as a
Langmuir wave and the combined contribution &om both
electrons and positrons yields the fundamental plasma
frequency for the system as ~2m„. For perturbations
oc exp[i(ut —k x)], the dispersion relations associated
with (7) and (8) are simply
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((u —C k —0 ) +C 0 k cos 0=0 (13)

(&u
—2~)(~ —Ck —0 )+C Ok cos 0=0,

(14)

2
k/k

FIG. 1. Dispersion relation for electrostatic waves with
B' = 0, showing the acoustic and Langmuir branches. In
practice, the acoustic branch is heavily damped.

where we have introduced the hybrid frequency 0&
2M +0

The dispersion relation (13) is plotted in Fig. 2(a) for
various values of 8 from 0 to vr/2. The modes shown cor-
respond to acoustic and cyclotron waves in an electron-
ion plasma. Similarly, Eq. (14) is plotted in Fig. 2(b),
which shows modes that correspond to Langmuir and
(upper) hybrid waves. It is instructive to tabulate (Table
I) the various electrostatic wave modes for propagation
parallel and perpendicular to the applied magnetic 6eld.
For comparison, we also list the nomenclature used for
the equivalent mode in an ion-electron plasma. Not sur-
prisingly, there are no angular limitations on the propa-
gation of cyclotron modes, unlike the lower hybrid modes
in an ion-electron plasma —a conclusion similar to that
obtained in Ref. [10].

By introducing the refractive index vector n = C,k/w,
we rewrite (13) and (14) as

are simply the acoustic and Langmuir waves, respec-
tively. Tsytovich and Wharton have pointed out that the
acoustic wave is heavily damped in e+e plasmas having
T, = T„. This phenomenon arises from Landau damping,
which is maximized for waves traveling at speeds where
the slope of the distribution function is maximum, i.e. ,
at (u/k = C, .

B. Electrostatic modes with B g 0

Consider a nonzero applied magnetic field Bp g 0 but
for which magnetic fluctuations bB = O. Without loss
of generality, suppose Bo ——Boi and introduce the gy-
rofrequency Bz = eBp/rnc. After lineariziiig (1)—(6), we
derive the coupled wave equations

k/ko

— 0
5

. - 6

82 cl2

—C,O„(n —n„) = 0, (12)
k/ko

FIG. 2. Dispersion relation of electrostatic waves with
H g 0 for various angles of propagation showing, (a) the
acoustic and cyclotron branches and (b) the upper hybrid
and Langmuir branches. Solid lines, 8 = 0; dashed lines,
0 = 7r/20; chain curve, 8 = vr/8; double chain curve 0 = n'/4;
dotted line, 8 = vr/2.

where, once again, the symmetries inherent in an equal-
mass plasma lead to considerable simplifications in the
analysis and yield the above factorization. On using
the convention k—:(O, sin&, cos0) together with n~ cc.
exp[i(ut —k x)], we obtain the dispersion relations gov-
erning magnetostatic modes in an e+e plasma,
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TABLE I. Summary of electrostatic modes.

Dispersion relation
= C, k

2 2= 0„

cc) = C~ k + 2(dp

Identification

acoustic wave
cyclotron oscillation

upper hybrid oscillation
Langmuir waves

Identification

nonpropagating
cyclotron waves

upper hybrid wave
Langmuir oscillation

8 = vr/2
Dispersion relation

Cd=0

2 C2k2+ 2 2+ g2
2 2

hp = 2cop

~2 —Q2 1 Y2
p

p

(1 —2(d /&d ) (1 —2td /cd —0&/cd )
1 —2~d2/id2 —02/Id2 cos2 9p

(1 —X)(1 —X —Y2)
1 —X —Y2 cos2 8

where, following Clemmow and Dougherty [24], Y
The resonances are sensitive

to the magnetic field and are found at u = Op cos an
td = (2rd + 0 cos0 0) r 2 while cutoff frequencies are o-

= ~ 2u 0 ) and Op, . A convenient characteri-
zation of the general wave properties of the magne os a '

+ l is to plot n (Id)—illustrated forInodes in an e e p asma is o p
(d = Op/2 in lg.p('

' F' 3 The low-&equency curve in the up-
f F 3 rresponds to the acoustic mode,per left corner of Fig. 3 correspo

which disappears as 0 ~ ~,0 7t/ 2e
~ ~

The Clemmow-Mullaly-Allis, or CMA, diagram is a
cold lasma. Fromuse u oo orf l t l for classifying waves in a cold p

and Y can be(15) and (16), the two free parameters X and
h d'fF t topologies of the refractiveused to collate t e i eren

For the dispersion relation (13), one canindex surface. or e
easily sketch the re&active index surface n~ &

or e
0 Y ( 1 [Fig. 4(a)] and Y & 1/cos0 [Fig. 4(b)]...at a nor-The usefulness of the refractive index curves is t .a

oint P on the surface represents the irectionmal to a poin on
of energy How for a plane wave propaga ing in

'Y ' de icted intion OP. The critical angle 0—:cos
Fig. 4(b), defines the asymptote to the hyperbolic re&ac-
tive index sur ace. ef The CMA diagram corresponding to

i Y&1oru&
(cyc 0 ron ) ll
which wave propagation is forbidden, an iii e
frequency band Y & 1/cos0, i.e., id ( B„cos9 (acoustic

Tu '
w to the dispersion relation (14), similar

a oug1th h now with a plasma frequen y pc de endence. The
. 5 c andappropria et CMA diagram is illustrated in Fig. ( ),

(b)

e,
0

0

Q coss 32co 2+A 2coss
P p P

'It' I(

1
cos 9

COS2 0

/I,

J2MP QP

Fla. 3. Refractive index curves for electrostatic waves with
BQO.

2fOP ling

FIG. 4. Properties of electrostatic waves with B 0.
Wave normal curves for (a) the acoustic and e cyb the c clotron
b hes of the dispersion relation. (c) CMA iagram s ow-ranc es o
lng es op ath t band where waves are evanescent a c e
insets are po ar p o s o1 1 t f the inverse of the wave normal curves
shown in (a) and (b).
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we see that X & 1 is necessary for wave propagation. The
curved boundaries of Fig. 5 are defined by the cutoK at
X+Y = 1 and the resonance X+Y cos 0 = l. Waves
in the region bounded by these curves are evanescent,
hence wave propagation is restricted to the regions (i)
X & 1, X+ Y & 1, i.e. , 0„& ~2, and (ii) X & 1,
K+ Y2cos20 ) 1 or 2~2 ( ~2 2~2+ g2 cos2 g ) ~2

C. Electromagnetic mades

Let us now consider both an applied magnetic field
Bp = B'pz and magnetic field fluctuations. For reference,
the full set of linearized equations is written down, where

B = Bp+B,
Bn& + NV'. u~
Ot

Oll~mN + pKTV n~Bt
V' ~ E

V'xE

VxB

0,

qadi E+ —u~ xBp i,c
47re (n„—n, ),

1 19B

c Bt
4' 1 BE—eK (u„—u, ) +-
a " cOt

Some straightforward algebra then yields two coupled lin-
ear wave equations in the electron and positron densities,

8' ( cl' l ( 0'
clt2 qBt2 ") (Bt2

—c +2ld

The electromagnetic e+ e dispersion relation, therefore,
admits the bicubic (in w ) factorization '(b)

~2 (~2 c2k2 2~2) (~2 C2k2)
0&-x-y'

2

—O„((u —C. k cos tl) (ur —c k ) = 0, (19)

((u —c k —2(u„) (~ —C, k —0„)
0

0 0&-x
Il)(

' ec
0

+O„C,k cos 0 (w —c k —2u c /C, ) = 0. (20)

For the purpose of identifying the respective modes, it
is useful to factorize the bicubic dispersion relations (19)
and (20) for the special cases of wave propagation parallel
and perpendicular to the applied magnetic field.

Consider first Eq. (19). For perpendicular propaga-
tion, this equation reduces to the biquadratic

cos 0

ur [ur —(ck +C, k +O„)~

+C'k' (c'k'+ 2~2) + g c k2j

or

((d —QJ~ ) ((d —M~+) = 0,

where we have introduced

(21) 0
0

2(u~~ ——(c + C. )k + 0„
(c2k2 + C2k2 + Bq2) 2 + 8~202. (22)

Observe that for k = 0, u&+ ——0, 0& and, as k ~ oo,
the u~~ are asymptotic to the lines ck and C,k. Conse-

FIG. 5. Properties of electrostatic waves with B g 0. Wave
normal curves for (a) the Langmuir and (b) the upper hybrid
branches of the dispersion relation. (c) CMA diagram show-
ing the stop band (hatched) where waves are evanescent. The
insets are polar plots of the inverse of the mave normal curves
shown in (a) and (b).
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quently, the w~+ mode is analogous to the extraordinary
mode. As noted by Iwamoto [11],the extraordinary mode
is purely transverse in nature. However, the w~ mode
is rather diferent from the usual extraordinary mode in
that the cutoff occurs not at urL, g 0 (see, for example,
Ref. [25], pp. 154—156) but at cu (k = 0) = 0 and is
asymptotic to C,k rather than to the upper hybrid fre-
quency. A further point to note is that the low-frequency
limit of the biquadratic yields

or

= 0) (d = c k +2Mp) =CA +2(u +0S P P'

((u —c k —2cu„) ((u —C, k —Oi, )

and we see that (28) effectively admits an ordinary wave
and an upper hybrid wave.

For parallel propagation, Eq. (20) reduces to

or

ri = 1+260 /0
+O„C,k (~ —c k —2~„c /C. ) = 0. (29)

(V~/2) k

1+ (V~/2) /c' (23)

((u' —C,'k') [(u' —(2cu„'+ n„'+ c'k') u)'+ n„'c'k' = 0,

(24)

It has been assumed, for simplicity, that C, /c (( 1
and the factor 2 appears because we have defined V&—
4nmK/Bo rather than using Vz ——47rm2%/Bo. Expres-
sion (23) is simply the cold magnetosonic dispersion re-
lation for waves propagating across the applied magnetic
Geld.

For parallel propagation, (19) reduces to

For k = 0, this equation gives w = 0, v 2w„, Bg, while for
k + oo, ~2 m 02, c2k2, C2k2. Equation (20) is plotted
in Fig. 6(b) for various values of 0 between 0 and 7r/2 and
the asymptotes derived above for k —+ oo are apparent.
Figures 6 are to be contrasted with standard dispersion
relation plots for electron-ion plasmas (e.g. , [25]).

It is useful to collate the parallel and perpendicular
wave modes in a table as before (Table II). Clearly, a sim-
ple one-to-one correspondence does not exist, but analogs
can generally be drawn between e+e modes and those
found in an electron-ion plasma. However, the mode ad-
mitted by the dispersion relation (29) asymptotic to C, k
does not admit an obvious correspondence.

which can be expressed as

(25)

where we have introduced

2M~~~ =c k +Bi + (c k +2Ld —0 ) +8Ct) 0

The similarities betvreen the parallel (22) and perpen-
dicular (26) results are apparent. For k = 0, we have

= 0, 0& and as A: M oo, w is asymptotic to either ck
or B~. The usual I and B modes are indistinguishable
in an e+e plasma and the nil corresponds to the elec-
tron cyclotron mode. However, the absence of a point of
inIHection on the electron-cyclotron curve indicates that
a whistler mode does not exist, as noted by Iwamoto
[ll] and Stevrart and Laing [12]. By considering the lovr-

frequency limit of (24), vre find that

k/ko

0
4

(V„'/2) k'
1+ (Vw/2) /c

which is now the dispersion relation for Alfven waves
propagating parallel to an applied magnetic G.eld in an
e+e plasma. Equation (19) is plotted on Fig. 6(a) for
various values of 0 between 0 and vr/2.

Novr turning to Eq. (20), we find that for perpendicular
propagation this equation reduces to

(~ —c k —2~„) ((u —C. k —2(u„—0„)= 0,

PIG. 6. Dispersion relation for electrolnagnetic maves vrith
R g 0. Here (a) corresponds to Eq. (19) and (b) to Eq.
(20). Solid lines, 9 = 0; dashed lines, 0 = vr/20; chain curve,
0 = 7r/8; double chain curve 0 = m/4; dotted line, 8 = n/2.
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TABLE II. Summary of electromagnetic plasma modes. An asterisk (') denotes a solution to
Eq. (29).

Dispersion relation
2 +2k2

S

(d = ~~~+

Cd = CcP]

Gd = (d2

(d = CO3

Identification

acoustic
R/I mode
cyclotron

electron/cyclotron

R/I mode

8 = 7r/2
Dispersion relation

(d = 4P~

(d=O
(d = C k +2(dp=Ck +0

Identi6cation

nonpropagating
extraordinary
magnetosonic

nonpropagating
ordinary wave

upper hybrid wave

To investigate the properties of waves in an e+e
plasma further and to derive the appropriate CMA di-
agrams, we need to rewrite the dispersion relations (19)
and (20) in terms of the ref'ractive index

n=t-k ~.

(Note the definition here difFers from that of Sec. III B.)
To simplify the analysis further, we make the reasonable
assumption that C, /c « 1. We then obtain

2Cd /Mn2 =1 — P =1—
1 —02/(u2 1 —Y 2 '

(1 —2~„'/ur') (1 —2cu„'/~' —0„'/(u2)
1 2~2/~2 Q2/~2 + 2w2Q2/w4 cos2 8

(1 —X)(1 —X —Y2)
1 —X —Y2+ XYcos20'

(30)

(31)

Observe that in the low-frequency limit, (30) reduces to

n = 1 + 2(u„/0„= 1 + 2c /V~,

i.e. , to (27).
Equation (30) admits resonances at ~ = +A„while

cutofFs are found, from n = 0, at ~ = +Oh. A plot of

the refractive index surface as a function of u is given
in Fig. 7, illustrating that wave propagation for &equen-
cies satisfying Op & u & Oy, is evanescent, at least for
those modes governed by Eq. (30). The CMA diagram
appropriate to this case is shown in Fig. 8 where we have
superimposed the wave normal surfaces corresponding to
each parameter regime. The evanescent regime Y ( 1
and 1 —X ( Y in the CMA diagram is simply that
found above.

The second factor, Eq. (31), admits much more com-
plicated wave behavior. Resonances are de6ned at

2~+ ——Oz 6 (2~2 —02) + 8ur202 sin 8, (32)

which, for 8 = 0 implies resonances at ~~ = ~2~„, 0„
whereas 8 = m/2 implies &u~ = 0, Og (cf. u~~). The reso-
nances are found in the frequency ranges 0 & ur & v 2u„
and O„& ~+ & Oh, , &om which we determine the refrac-
tive curves illustrated in Pig. 9. Note the resemblance of
these curves to the well-known plot of n (~) for the ex-
traordinary wave (e.g. , Swanson [261, p. 35) although in
the limit of 8 = 7r/2, the lowest-&equency mode is absent

Q2
h

Q
P

0
0

2m& /m

FIG. 7. Refractive index curves for electromagnetic waves.
FIG. 8. CMA diagram for electromagnetic waves with

B g 0 [corresponding to Eq. (30)j.
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0& & (d & ~2ldp,

&2Ld& & ld & Ap cos 0,

( (d ( Oh,

M ( Op cos 0 and (d ( cd+.

(33)

(34)
(35)
(36)

Qh

Q cos 6

t is im ortant to remember that, although Fig. 10 in-
nc arameter space

does not support wave propagation, is appthis a lies only to
the factored dispersion relation 31 . On using both Figs.
8 and 10 together, we see that the only regimes com-

e 33 and 35 of the listpletely inaccessible to waves are
above.

IV. THE THE TWO-STB.EAM INSTABILITY

I(

4 203

FIC. 9. Refractive index curves for elr electroma netic waves.g

f h + lasma. Waves are evanescent inin the case of the e e p a
2~ and sr+ & ur & Oh, ,the frequency ranges cu

d thth latter being similar to the stop band associate wie a e
modes is shownFig. 8. e. Th CMA diagram for these wave mode

F' 10. Clearly, the curve defined by

1 —Y2

1 —Y2 cos2 0

the CMA diagram. The hatcheddefines a resonance in e
re ions n (re ions o ig.f F 10 correspond to evanescent regions n (

h t ropagation is inadmissible0~& and it is seen that wave pro
an one of the followingfor those &equencies u satisfying any

conditions:

Consi er now wC d two unbounded, uniform interpenetrat-
s of electrons and positrons. This mo e s, oring streams o e ec r

h a ositronl an electron beam passing throug a pexamp e, an e ec
plasma confined in a Penning trap. In the absenence of an

fi ld the linearized e+e equations canapplied magnetic e, e ine
be combined as

2

Dt2
—C V' +co

~ ~

—C, V' +~„~n„
r &

= (up ~„n„, (37)

. For the present, we do not assume

ties for the electrons and positrons, althoughequal densities or e e ec r
The dis ersionequal temperatures are again assume

relation is then

2 2 2 2 2-'-C'k'--. ' - -C.k --., =-",'1 s p~

(38)

~]2=~]2U .k~ h' h can be rewritten in the classical
form

2
(Op

(d~ —Ui . k

2
pp+ —U2 k

(39)

1

cosO I

We investigate two cases, (i) the cold limit with N, g K„,
and (ii) the warm plasma case with N, = N~ =

A. The caid Quid limit

The analysis in this case is entire yirel standard. Define

(dpe , =1
2

((u —lJi k) ((u —U2 k)
(4o)

0
0 1

cos2 8
2&op /6)

d without loss of generality, suppose Ui .eU k)U2 k.
The condition for instability is then simp y g'

FIG. 10. CMA diagram for electromagna netic waves with
H 7C 0 [corresponding to Eq. (31)].

i)3 '~2(~„l"
I(U —U ) kI & l +

I ~"
I

(dp
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B. Vfarm plasma case the wave number of the most rapidly growing mode is

—2 (V +C, )k +(u„

+ (V' —C,') k' (V2 —C2) k2 —2~2 = 0, (42)

where ur = a —Uk, U = (U& + U2)/2 and V =— (Ui
U2)/2. It is evident that to have a zero of (42) for which

I2
& 0, we require positive values of A: to satisfy

8&
k2 ( p

(Ug —U2) 2 —4C2 (43)

The condition for such A: values to exist can also be de-
rived graphically, viz. , Uq —U2 ) 2C, . Since

= ur„+ (V + C, )k + u)„(u„+4(V —C, )k

We turn now to the warm case and, supposing N
Np = N, consider the interesting case of wave propa-
gation such that U'q 2 ~~

k. Let Uq ) U2. The in-
troduction of the phase velocity V~ = ur/k shows that
two cases need be considered. The Brst corresponds
to the case U~ —C, ) U2 + C„and the second to
Uq —U2 ( 2C, . Thus, as is well known, the two-stream
instability is quenched when the relative streaming sat-
isfies Uq —U2 & 2C, . To determine the most unstable
wave number A: and the maximum growth rate, rewrite
(39) as

2

A:
4 V2 —C2'

for which

~15+2 +2 (45)

giving a maximum growth rate of tuz/2. In Fig. 11, we
show the real and imaginary part of the mode frequencies
for a range of beam energies.

These results are similar to the usual two-stream in-
stability in an electron-ion plasma except that the factor
(m, /m, )~~s (where m; is the ion mass) multiplying the
growth rate is unity for the e+e case, leading to sub-
stantially larger growth, as first pointed out by Tsytovich
and Wharton [10].

V. SOLITARY WAVES

Low-&equency ion-acoustic waves can propagate as
solitary waves in an ion-electron plasma. The situa-
tion for an e+e plasma is complicated by the pres-
ence of equal-mass species, which prevents one from ap-
proximating the electrons by an isothermal Boltzmann
distribution n, = no exp [eP/rT], where P denotes the
electrostatic potential [27]. Consider the two-Quid equa-
tions in the absence of a magnetic Beld and introduce
the following normalizations (based on the Debye length
%~2 ——pKT/4vrNe ), where N = N, = N„ is the undis-
turbed equilibrium number density. Then, using

tC,
t =

AD'

3
3
8
Q)

CC

pKT
yields the normalized one-dimensional (1D) equations

0
0 20 40

U/C,
60 80

t9n~ 8
(n, u, )Ot Bx

(Bu, Bu, )
mn,

J

'+u,
( Bt Bx)

02

Bx

=0,

+ qn~E,
Dp~

Bx

= 4vre(n, —n~),

(46)

0.4—
3
8
E 0.2—

where, for convenience, the bars have been dropped. We
introduce the comoving Mach number M of the propa-
gating disturbance such that ( = x —AA. On seeking
stationary structures subject to the usual boundary con-
ditions n„(+oo) = n, (+oo) = 1, u„(koo) = u, (+oo) = 0
and P(Woo) = 0, we obtain

0.0
0 20 40

U/C,
60 80

FIG. 11. Dependence of mode frequency on beam velocity
for waves in a beam-plasma system, showing the unstable
region that occurs when the Langmuir mode of the plasma
couples with the Doppler-shifted mode of the beam.

d fM) 'dP
+n.

~

=n. „
d /M2 l dP

p I
—

p~(
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(1
inn, +

/

——1
/

t'1 ) M'
inn„y

/

——1
/(n2 ) 2

Q(2
AQ Ap)

Equations (47) are integrated easily, yielding

aP ——bo ——1, cp ——0. (53)
(48)

From the O(1) recursion relation, we find

Cy

1 —M2' (54)

The reason for our expanding in powers of sech@( is ap-
parent from the symmetry conditions imposed by the
boundary conditions above and, clearly,

but this approach, which is exploited in ion-electron plas-
mas, is not particularly helpful here. Instead, we utilize
an approach suggested by Huibin and Kelin [28], which
is to expand the plasma variables as a power series in
sech@(, i.e. ,

which implies that

(55)

n, = ) a, sech*@(,

n„= ) b;sech'y, (,
i=p

(49)

P = ) c;sech'p(.
i=p

By substituting (49) into (47), we obtain the following
recursion relations for the coeKcients a;:

To ensure that ci 7L 0 (otherwise ai ——bi ——0, from
which all higher order terms in the expansion are iden-
tically zero), we require p = 2/(1 —M ) and p ) 0.
Thus, a necessary (although not sufficient) condition for
the existence of stationary solitary wave structures in an
e+e plasma is that they be subsonic with respect to the
electron-positron sound speed, i.e. , M = V„/C, ( 1, in
contrast with electron-ion plasmas where both subsonic
and supersonic propagation are possible. The choice of cq
reQects the imposition of the initial condition that would
ordinarily be required to solve (47) and (48) directly. It
can be shown that c2 ——0 and that

(ae —M ) ai = aoci, a,=, (1 —18M'),
12 1 —M~

2aeai + 2 (ao —M ) a2 = 3aeaici + 2aec2,

n(a', —M') a„+ )
rn+ j+C=n

e&~

amagEae
b2 —— (17/6 —3M ),

and in general, for n & 2,

3= naOC +

for the 6;,

(b,'-M') b, = -b', c„

E+rn+ j+p= n
e&~

a a~apEcr) (50)

a„=
E+rn+j +p= n

E&n

&n

1 M2

ama~ ap/cg — 0 a~Sag
E+rn+j =n

e&~
n (1 —M2)

b b~ bpEcg — ) b b, Ebg

2bobi + 2 (be —M ) b2 ———3abebici —2bec2,

E+rn+j+~=n

6„=———
E+rn+j =n

g&n

n (1 —M2)

n (b', —M') b„ + ) b b, Eb,
rn+j+L=n

e&n

Cn

1 M2

n —2 a„(1—M2)
n+1 " 2(n' —1)

b„(1—M )
2(n2 —1)

(56)

E+rn+j +p= n
e&~

b b~ b„Ecr, (51)

and for the ci,

ap ——b
2

P Cy =Gy —6y,

4P, C2 ——a2 —62,2

[n c„—(n —l)(n —2)c„2I = a„—b„. (52)

These relations can be used to compute solitary wave
solutions to (47) recursively. In Fig. 12, examples of
diferent amplitude solitary waves for a Mach number
of 0.5 are presented. The smaller the amplitude of the
solitary wave, the more closely it is approximated by a
leading order sechp( or a sech p( solution. We find nu-
merically that P = eP/pKT has a maximum amplitude
of 0.2. The eKect of varying the Mach number of the
solitary wave is illustrated in Fig. 13. The wider pulse
corresponds to a wave propagating with a Mach number
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0.20—

0.15—

0.10—

0.05—

0.00
-4

FIG. 12. E. Examples of solitary waves of difFerent amplitudes
which correspond to a Mach number of 0.5.

VI. CONCLUSIONS

I inear and nonlinear collective modes in a nonrela-
tivistic electron-positron plasma h bma ave een investigated

0.010—

0.008—

0.006—

0.004—

0.002—

0.000
-4 -2

FIG. 13. Exam lamples showing the variation of solitary wave
structure with Mach number M = 0.2 and 0.8~ ~

M = 0.2 whereas increasing M to M = 0.8 narrows the
pulse significantly, although the amplitude is unchanged

hese properties distinguish solitary waves in an e+e
plasma from those found in a conventional ion-electron
p asma.

Berezhiani et al. have i.nvestigated solitary waves in
relativistic plasmas [4]. Their treatment is quite unlike
ours in that they assume the plasma to be cold. Conse-
quently, acoustic modes are absent ' th 1in eir anaiysis and
they focus exclusively on magnetic e8'ects. The appropri-
ate analog of our results are the well-known ion-acoustic
solitary waves that can exist in - 1 t 1

(Refs. [27] and [28]).

on the basis of a simple two-fluid model. This problem
ecen progress ma e inis particularly timely in view of recent

t e production of pure positron plasmas in the labora-
tory. Thus, laboratory experiments on electron-positron
p asmas are already under consideration. Among the
experiments that could be undertaken are instabilities
in the beam-plasma system, studies of Faraday rota-
tion where one could change continuousl f 1 ft
rig an polarization by changing from a pure electron
plasma through a neutralized electron-positron plasma

e ectron-positron plasmas are a potentially rich Geld of
study. Solitary wave structures in the beam-plasma sys-
tem are now experimentally accessible. Transport stud-
ies are also of interest: The electron-positron plasma in a
magnetic field is unique in that b tho species are equally
and strongly magnetized.

Another approach to the study of e+e plasmas is the
use of numerical simulations. These techniques have al-
ready been applied to relativistic e+e plasmas. For
example, Gallant et al. used a 1D particle-in-cell sim-
ulation to investigate relativistic perpendicular shocks in
e+ e plasmas. They found e-mode radiation and dis-
cussed their results in relation to observed centimeter
wave emission from compact extragalactic r d'

Recently, Zhao et at. [29,30] have used a 3D fully elec-
tromagnetic and relativistic particle-in-cell code to ex-
plore nonlinear Alfven waves and particle acceleration
in t e relativistic electron-positron beam- 1 tearn-p asma system.
Such techniques could also be applied to nonrelativistic
e+e plasmas. A problem that is of current interest is

the growth and saturation of instabilities and processes
that lead to plasma heating. Other problems of interest
are the nonhnear phenomena wher + 1e e e pasmas i er
most from electron-ion plasmas. These include solitary
wave structures in stationary plasmas and in the beam-
plasma system, cross-field transport, and the phenomena
of holes and clumps [31].

In this paper, we have exploited the equal-mass char-

mode analysis. Many of the phenomena found in conven-
tional electron-ion plasmas exist in modified form, while
others, notably the whistler wave, the lower hybrid wave
and Faraday rotation, are absent. As the simplest ex-

the two-stream instability, finding that it is similar to the
electron-ion case, except that the efI'ective growth rate is
considerably larger because the ratio m 't .io m I, is unity.

The nonlinear analysis, on the other hand, is compli-
cated by the equal-mass character of the plasma and re-
quires an approach rather di8'erent from that used con-
ventionally in an electron-ion plasma. For solitary wave
structures, some interesting difI'erences from the electron-
ion case emerge. Notably, only subsonic solutions are
found to exist, while the pulse width, rather than its am-
plitude, is related to the wave speed.

Clearly, this paper only hints at much of the intrigu-
ing plasma physics yet to be discovered in equal-mass
plasmas and planned experiments could provide many
surprises.
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