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We present a fast self-consistent kinetic model for an inductively coupled low-pressure rf discharge.
The electron kinetics in it is described in terms of a nonlocal electron distribution function, which
depends only on the total electron energy (kinetic plus potential one in the stationary electric
field). In this case, the Boltzmann equation reduces to a one-dimensional ordinary differential
equation in total energy. The complete model also includes the equations for ion motion, for the rf
oscillatory induction field, for the external circuit, and the quasineutrality condition. It allows us
to express all the plasma characteristics — the electron distribution function, the plasma density
profile, the profiles of the stationary and of the oscillatory electric fields, the profiles of the excitation
and ionization rates, etc.—in terms of the external characteristics—the chamber geometry, gas
pressure, frequency, and the current in the primary coil. The theoretical predictions are compared
to experimental results. An experimental investigation has been performed on an inductively coupled
low-pressure rf discharge in Ar at 13.56 MHz over a wide range of input powers at gas pressures
from 1 to 12 Pa. A satisfactory agreement with the experiment and qualitative interpretation of the
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observed phenomena is achieved.

PACS number(s): 52.80.Pi, 51.50.+v, 52.40.Hf, 52.50.Dg

I. INTRODUCTION

The problem of gas discharge modeling has attracted
considerable and increasing interest. It is connected to
the wide and growing number of applications of various
gas discharge devices in such fields as surface processing,
microtechnology, plasmachemistry, light sources, ecology,
etc. For the construction and optimization of such de-
vices effective methods of engineering calculations are
necessary [1-4].

The current work on the numerical modeling of various
types of discharges is of great scope. A number of impres-
sive results have been achieved in the past (see, for exam-
ple, [5-19]). However, the main efforts in these investiga-
tions were often concentrated on the maximal account of
the physical processes involved and on the development of
maximally accurate and fast-convergent numerical meth-
ods. In many of these studies computationally expensive
methods such as Monte Carlo schemes or time-dependent
fluid models coupled to the self-consistent solution of the
Poisson equation for the slowly varying potential fields
have been used. In any case, the great distinction be-
tween characteristic spatial and temporal scales, which
is typical for plasma problems, makes such calculations
very complicated and time consuming and demands com-
puters of high computational power. The detailed anal-
ysis of the underlying physical principles by variation of
various parameters is thus frequently not possible. Nev-
ertheless, even the quantitative accuracy of these meth-
ods may be questionable, for instance, if they are based
on inaccurate sets of cross sections. This circumstance
may be one of the main reasons for the fact that up to
now plasma technologies have been developed (and exist-
ing ones optimized) mainly empirically. In this respect

1063-651X/95/51(6)/6063(16)/$06.00 51

we are far from the ideal situation where the strategy
of technological development is chosen mainly by means
of plasma modeling and only relatively small numbers of
experiments are necessary to check the chosen approach.

On the other hand, the physical understanding of com-
plex, self-organizing, many-parameter systems such as
gas discharges is impossible without numerical exper-
iments, which are oriented towards obtaining physical
understanding of the underlying processes. Such calcula-
tions do not demand high accuracy and can be performed
for maximally simplified or, even preferably, model sys-
tems. Their main aims consist of the understanding of
the dependencies of the plasma properties from the ex-
ternal parameters, in the finding of scaling laws, and in
the development of effective approximations. For this
purpose, it is extremely desirable to stimulate the devel-
opment of simple and flexible methods for the modeling
of gas discharges. The possibility of a serious reduction
of the computational work and of the creation of such
efficient models lies, we believe, in the optimal synthesis
of numerical and analytical approaches. By performing
analytically some sort of averaging over fast plasma mo-
tions, by introducing from the beginning the division of
the whole discharge volume into the quasineutral plasma
and space charge sheaths, and by replacing the sheaths
by some effective boundary conditions, etc., it is often
possible to eliminate from the beginning the fast time
scales and the sharp transition layers of steep variation
of the plasma parameters, which are the source of a great
part of the computational problems.

A considerable step in this direction was made when
the so-called nonlocal approach [20,21] to the solution
of the electron Boltzmann equation in spatially inhomo-
geneous plasma was formulated. At relatively low pres-
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sures the spatial motion of the plasma electrons, which
are trapped by the space-charge field, is fast compared
to considerable changes of their energy. It was demon-
strated that the Boltzmann equation, which for the case
of small anisotropy of the electron distribution reduces to
a second order partial differential equation with shifted
arguments, can be averaged over these fast spatial mo-
tions. It can be reduced to an ordinary differential equa-
tion, if the total (kinetic plus potential) electron energy
is used as an argument of the distribution function, in-
stead of the standardly used kinetic energy. This fact was
checked in numerous experiments [22-25]. The efficiency
of this approach was demonstrated in the self-consistent
modeling of the dc positive column [26,27], the anode
[28,29], and cathode [30] regions, and in the accurate de-
scription of the electron kinetics in inductively coupled rf
discharges (RFI) [31,32]. In the capacitively coupled rf
(RFC) discharge the computation time could be reduced
by orders of magnitude by averaging over the fast elec-
tron motions in order to obtain the equations on the slow
ion time scale (or even the stationary one) [34-36]. This
procedure was combined with the nonlocal approach for
the description of low pressure RFC discharges [37,33].

In this paper we describe a model, which is based on
the above ideas, for the inductively coupled low-pressure
rf discharge. This discharge concept is of growing practi-
cal interest especially in the field of semiconductor etch-
ing and deposition [1,38-40]. Stable, relatively high-
density (~ 10! — 10 cm~3 [3,38,41]) plasmas can be
created in RFI discharges at pressures of the order of
10 mTorr with a low sheath bias voltage. The ion flux
to the substrate is practically monoenergetic and highly
anisotropic. The ion energies are significantly smaller
than in the RFC discharge. Accordingly, the surface
damage can be considerably reduced. The low operat-
ing pressures and the fact that the dimensions of the dis-
charge chamber are comparable to the energy relaxation
length of the electrons makes the nonlocal approach ap-
plicable with high accuracy. It was convincingly demon-
strated in [25,32]. Since the sheath voltages in these dis-
charges are of the order of the electron temperature, sec-
ondary electrons are negligible and the well-known two
term approximation for small anisotropy of the EDF can
be used instead of solving the complete Boltzmann equa-
tion or using straightforward Monte Carlo methods in a
three-dimensional velocity space. However, the princi-
pally two-dimensional character of the inductive rf field
implies the necessity of a two-dimensional formulation of
the whole problem.

An impressive attempt of straightforward modeling
of such discharges was made in [11,12]. The model
consisted of an electromagnetic module for calculating
the rf fields, a Monte Carlo electron simulation, a hy-
drodynamic description of ions and neutrals, the Pois-
son equation for the potential electric field, and even a
plasmachemical module. Concrete reactor details such
as a powered wafer electrode and a stationary multipole
magnetic field were accounted for. This program gave
rather reasonable results but the calculations were very
time consuming. On the other hand, several crude as-
sumptions could not be avoided, such as the assumption
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of a field-independent ion mobility or imposing a bound-
ary condition for the inductive field at the top dielectric
plate without accounting for the fields, which are pro-
duced by the currents in the other metallic walls. How-
ever, the most surprising result of [11,12] involves the
strong correlation between the positions of the maximal
energy input and the maximal excitation and ionization
rates.

Such a correlation seems quite natural in the fluid ap-
proach (e.g., [42]), as can be seen from the consideration
of the electron energy balance equation. The main terms
in the energy balance are the energy input by Joule heat-
ing, the energy losses by excitation and ionization and
thermal conduction, while the diffusion cooling is usu-
ally negligible [43]. Without thermal conductivity the
maxima of energy input and energy losses would coin-
cide. The thermal conductivity, however, is able only to
reduce the relative height of the energy loss density max-
imum with respect to the relative height of the power
deposition maximum, but it is incapable of shifting its
position considerably. The energy deposition and losses
are thus strongly spatially correlated in fluid approaches,
as was observed in [42]. Under low-pressure conditions,
however, the electron energy relaxation length

Ae = VAN (1)

may exceed the chamber dimensions (A is the transport
mean free path and A\* the mean free path for inelastic
collisions). In this case, the total electron energy (ki-
netic plus potential in the quasistationary space-charge
electric field) is conserved during electron spatial motion.
It means that independent of the precise position, where
any given electron gains its energy, it will lose it with
the maximal probability in the place where its kinetic
energy (at constant total energy) is maximal, namely in
the maximum of the plasma density close to the geo-
metric center of the discharge. This effect was observed
in numerous experiments in dc, RFI, and in RFC dis-
charges. With decreasing pressure the maximum lumi-
nosity in rf discharges shifts from the periphery, where
the energy input is concentrated (skin effect in RFI dis-
charges, low conductivity in RFC discharges), towards
the chamber center [44,31]. The fluid approach is not
capable of accounting for these nonlocal effects, since it
is based on the unified description of electrons: the EDF
in any place is characterized by three parameters — den-
sity, velocity, and mean energy. It implies that during its
motion a given electron “knows” about all others in this
place. Since at low pressures the spatial displacement of
electrons occurs faster than their energy relaxation, this
assumption is physically inconsistent.

In this paper we therefore present a simple model,
which is based on the kinetic description of the elec-
trons. After introducing briefly our experimental setup
in Sec. II, a detailed description of the kinetic, two-
dimensional model is presented in Sec. ITI. A comparison
and discussion of experimental and theoretical results is
given in Sec. IV, while the main results and conclusions
are summarized in Sec. V.
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II. EXPERIMENTAL SETUP

In the present experiment (for details see [25]) we re-
stricted ourselves to the case of a purely inductively cou-
pled rf discharge at a frequency of 13.56 MHz in argon
at pressures from 0.9 to 12 Pa.

The experimental setup used in this investigation is
sketched in Fig. 1. The discharge vessel had a height of
L= 6 cm and a radius of R = 7.5 cm. The side wall and
the top plate of the vessel were made of glass and the bot-
tom plate was constructed of aluminum. The rf field is
induced via a spiral coil with four turns of a bent copper
tube. The rf power was generated by a power amplifier
with a maximum output power of 1000 W. However, only
much smaller rf powers have been applied due to the con-
siderable thermal load of the coupling structure. The rf
power was coupled to the coil via a matching network.
The output power of the amplifier and the matching of
the discharge impedance to the output impedance of the
amplifier were monitored via a standing wave ratio me-
ter. Of course, the measured output power was (much)
larger than the power absorbed by the plasma. A con-
siderable part of the rf power may have been dissipated
in the matching network and the feeding cables. To de-
termine the power absorbed by the plasma as well as the
reactive power of the coil-plasma system, the rf current
and voltage had to be measured. These measurements
were performed close to the coil (after the matching net-
work) using a current transformer and a capacitive volt-
age divider. The capacitive coupling, which is usually
dominating at low input power levels, was strongly re-
duced by a Faraday shield, which enclosed the whole in-
duction coil. Its bottom plate was a radially slit copper
plate, which allowed the magnetic field to penetrate into
the plasma volume but which screened the electrostatic
field. The reduction of the capacitive power transfer was
necessary in order to reduce the disturbance of the probe
measurements caused by rf modulation of the plasma po-
tential. However, the grounded screen also introduced
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FIG. 1. Experimental setup of the inductively coupled
plasma. The height of the discharge vessel is 6 cm, its di-
ameter 15 cm.
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additional stray capacitances, so that the rf current may
partially have flown through these capacitances rather
than through the induction coil. The whole system was
evacuated by a turbo molecular pump to a basic pressure
of less than 10~ mbar. During the active plasma phase
the system was operated with a constant gas flow. In
this case, a rotary pump with small pumping power was
used.

For the measurements of the EDF a pulsed probe tech-
nique was used [45,46]. The compensation of the remain-
ing rf fluctuations of the plasma potential was achieved
by means of passive compensation [47,46]. Two coils
for the fundamental frequency of 13.56 MHz and a coil
for the harmonic frequency at 27.12 MHz were mounted
within a distance of 3 cm from the probe tip in order to
provide a high rf impedance between the probe sheath’s
impedance and the ground. A metallic cylinder was cou-
pled capacitively to the probe in order to increase the
plasma-probe capacitance and thus to diminish the probe
sheath impedance [48,49,46]. During the experimental
work it turned out that particularly at high plasma den-
sities the blocking coils are superfluous [50]. In this case,
the remaining capacitive coupling was obviously strongly
reduced so that no considerable rf distortions of the probe
measurements appeared. The probe was introduced via
a flange from the side wall and could be moved in the
radial direction. By the use of a curved probe holder,
it was also possible to perform axially resolved measure-
ments by rotation of the probe. The grounded metallic
bottom plate acted as the counterelectrode for the probe
circuit. By initially using an additional sensing probe, it
was determined that the floating (and thus hopefully also
the plasma) potential was not significantly affected by the
current drain of the measuring probe or any sources of
fluctuations (e.g., low-frequency fluctuations due to the
rf power generator).

III. THE KINETIC TWO-DIMENSIONAL
DISCHARGE MODEL

A. Solution of the Boltzmann equation

In the investigated range of parameters, as can be seen
from experiment and the presented calculations, the elec-
tron energies have not considerably exceeded 20 eV. It
implies that the electron mean free path A at all energies
of interest (with the exception of those energies close to
the Ramsauer minimum) and at all investigated pressures
was small compared to the chamber dimensions.

A complicated problem involves the interaction of the
electrons with the strongly inhomogeneous rf field. Its
characteristic scale decreases with increasing plasma den-
sity from the chamber dimension min[R, L] to the skin
layer thickness 6 due to the skin effect (see below, Sec.
ITI C). In our case, spatially propagating waves and the
associated resonance plasma heating mechanism [51,52]
are absent. As was pointed out in [53], the remain-
ing problem is reduced to the theory of the normal and
anomalous skin effect (see, for example, [54]). The main
result can be formulated roughly as follows. If w < v
and A < 6, the normal skin effect occurs with a station-



6066

ary conductivity. The transition to the anomalous one
takes place at high frequencies w > v, if the skin layer
thickness satisfies § < Av/w,A. In this case the spatial
dispersion is important and the inhomogeneity of the rf
field has to be taken into account. Here, we shall restrict
ourselves to the case

A<L,R,S. @)

In this situation the conventional two-term expansion for

the EDF is applicable:
F(r,v,t) = Fo(r,v,t) + % Fy(r,v,t) . (3)

If condition (2) holds, it is possible to neglect the colli-
sionless electron heating mechanism due to an anomalous
skin effect [53,55].

Only at the highest values of the pressures considered
is the maximal value of the inelastic collision frequency
v*, which corresponds to the maximal inverse electron
energy relaxation time over the whole EDF, comparable
to the rf angular frequency w. It means that the isotropic
part of the EDF F; can be considered time independent
[66]. (Very similar ideas with respect to the nonlocal
electron kinetics, but without solution of the total self-
J

2
-V, - (—v—V,Fo) + 2y, (V'Q%) _e 9 [_v_
3v 3m v

"~ 3mu? du

where CO(FO) = CO,elast + CO,e:cc + CO,ee»

CO,ela,st =
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consistent problem, were developed in [31,57].)

In the presence of the oscillatory solenoidal rf field
E(r,t) = Eo(r)expiwt and of the (quasi)stationary
potential electric fields, the vector part of the EDF
Fi(r,v,t) splits naturally into the oscillatory part

eE(r,t) OF,

Fi= m(iw +v) Ov

, (4)

and the (quasi) stationary part

Fy=- V.F+ 2 v,020 (5)
v my Ov

The fulfillment of (2) enables us to neglect the spatial
dispersion terms in Eq. (4) even if w > v. This case is
equivalent to the skin effect in the infrared frequency re-
gion (paragraph 87 in [54], cf. [53]). In Egs. (4) and (5)
®(r) denotes the stationary potential of the space-charge
electric field (it can also be time dependent on the slow
time scale of the ion motion), and v(v) denotes the trans-
port frequency for electron atom collisions. Substituting
Egs. (4) and (5) into the equation for the isotropic EDF
Fo(r,v) and averaging it over the rf period (keeping in
mind that Fp is time independent), we obtain

3
V:®- V. Fy

E2 l/2 aFo
2 v2 4 w?

+ 2 (wep 4 2 G| = oot ©

L2 e (o K 2E)]
v

(7)

Cosecc = — Y (uk(v)Fo(r,v) - '% Vk(v')Fo(r,v')> .

k

C(o,etast) and C(g exc) are the collision terms for elastic and inelastic electron-atom collisions, respectively, v’ =

/v 4 ux/(2m), u is the kinetic energy of electrons, v*(u) and uj are the excitation frequency and energy of the kth
atomic level, respectively, and k = 2m/M,. The expressions for the collision integral of the electron-electron collisions
Co,ce can be found, for example, in [58]. Introducing, according to [20,21], the total energy ¢ = u + e® and r as
variables (instead of {r,v}), it is possible to reduce Eq. (6) to a diffusion equation in space and total energy,

Ve (Lvem) - 2 2 [2 (BB T — e ®)

3v8 v \ 2 v2+w?) B¢
where Fy = Fy(e,r). The spatial and the energy diffusion
coefficients are equal to

[
Instead of Eq. (5) we obtain

) Fi(e,r) = —— V. Fo(e,r) .
D=_—, (9) v

(11)

It is necessary to bear in mind that the spatial deriva-
tives in Egs. (8) and (11) have to be calculated at the
constant €, instead of v, and that the coefficients here

_ (eEo)*v*v (eEe.ss[r, u(e,r)]A) v
- ’ are (e,r) dependent due to the dependencies on v(e,r)

T 6(w? 4 12) 3

(10)

€
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FIG. 2. The accessible domain for electrons in the frame
coordinate—total energy. r1(e) denotes the turning point for
electrons with the total energy e.

and Eg(r). For the electrons, which are trapped by the
space-charge field, Eq. (8) can be integrated over the part
Vac(€) of the total discharge volume Vjp, which is accessi-
ble for an electron with a given total energy e (Fig. 2).
The accessible volume is defined by

u(r) >0 or £>%(r), VrinV,, (12)

and its boundary ri(¢) is given by
u(ri1(e)) =0. (13)

The first term in the left-hand side of Eq. (8), which is
of the highest order in the ratio [A¢/(R, L)], cancels iden-
tically during the spatial averaging of the kinetic equa-
tion (8). The nonlocality condition

Ae> R, L (14)

results in an insignificant dependence of Fj on r so that in
the remaining terms of the Boltzmann equation Fy(e,r)

can be replaced by its spatially uniform main part Féo) (e)
[20,21]. One obtains

d

——  dF®
2 a1/2 0
e D,(¢)

de

= W 2C[FO(e)],  (15)

where the spatially averaged energy diffusion coefficient
(times u'/?)

1 2¢? szﬁ(r,u(r)) dv (16)

1/2 -
WD) = G 3m o vu(n) e

has been introduced. On the right-hand side the follow-
ing terms are included:
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ul/2Coep = — Y _[ul/20k(e) F{% ()
k
—ul2uk (e + uF)F{O (e + u*)) (17)
with
Wik (e) = L / Vu(r))u? () dV . (18)
Vo u(r)>uk

The averaging is performed over the region where the kth
excitation process is possible. This region is sketched in
Fig. 2 as the “excitation region.” The electron-electron,
superelastic, and ionization collision terms can be ex-
pressed in an analogous manner. The elastic collision
term is simplified by neglecting the recoil term, since the
gas temperature kT, is usually much smaller than the
electron temperature. For this case one obtains

[ d -
ul/2Cq o = E[VJ«‘é"’(s)] ,

V. = Vi / kv (u(r)e¥2(@)dV . (19)
0 ac
In this nonlocal approximation the extremely compli-
cated problem of the solution of a three-dimensional par-
tial differential equation (8) is reduced to the standard
one-dimensional problem of solving Eq. (15). Although
one unique EDF of total energy results from the solution
of (15), the spatial information is still fully retained in
it, provided the profile of the space-charge potential ®(r)
is known. The EDF of kinetic energy in any given point
of the discharge volume Fy(u,r) can be found from the

EDF Féo)(e) by a simple back substitution u = € —e®(r):
Fo(u,r) = F{"[e = u + e®(r)] . (20)

The meaning of this equation is that the EDF of the ki-
netic energy at a given position r is obtained from the
EDF of the total energy by removing the low-energy part
of the electron spectrum, which corresponds to the elec-
trons with a total energy less than the potential energy
at the position r. These electrons simply are incapable
of reaching the point of observation and they are trapped
by the space-charge field in the inner plasma region.

The ideology of the procedure of the spatial averag-
ing of the Boltzmann equation is similar to the standard
procedure of its temporal averaging, which was used to
derive Eq. (6). In both cases the fast temporal or spatial
variation of the fields results, due to the EDF’s inertia,
in a feeble dependence of the EDF on the temporal or
on the spatial coordinates, which can be neglected in the
first approximation.

A more complicated situation arises with the more en-
ergetic electrons, which are capable of abandoning the
discharge volume and to be absorbed by the walls. The
EDF for these electrons (with € > e®,,, where ®,, is the
wall potential) depends, strictly speaking, not only on
€ but also on the coordinates and even on the velocity
direction [59]. The form of the EDF in this energy re-
gion depends also substantially on the wall material. In
the case of metal walls, the value of ®,, is constant over
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the whole wall surface. Over dielectric walls a profile of
®,, arises, which is determined by the equality of the ion
and electron fluxes at every point of the wall. In our
calculations we accounted for this fact approximately by
introducing an energy-dependent escape term into the
right-hand side of Eq. (15)

e!/2F" (¢)

() (21)

Co,wall =

The wall loss time 7,(€) = 1/v,, is determined by the
diffusion and by the probability that the velocity direc-
tion of a fast electron at the plasma-sheath boundary
lies in the loss cone. If the first process dominates, the
loss time is equal to the mean diffusion time 74;5¢ which
is necessary for the electron to reach the plasma-sheath
boundary:

2
1 D _ vA ’ (22)

e 35+ %)

Taisy A2
where D is the electron diffusion coefficient (9) and A is

the characteristic scale of the discharge. In the opposite
case the mean escape frequency is equal to

1 0Q2(e) So
= — = - QB L Y5 23
Vg ™ v(e — eP@,4pn) Ve (23)
where §€(¢) is the solid angle of the loss cone
e(®y — Psp)
=2 — | 24
N =2n1{1 p— (24)

For the definition of ®,, and ®,,, see Fig. 2. Sy and
Vo are the surface area and the volume of the chamber,
respectively. In the intermediate case, a simple interpo-
lation gives

1 1
Vp = — = ——— (25)
Tw Tdiff + Ts

Since the whole consideration is performed for a typical
electron, the wall loss frequency v,, can also be considered
as a cross section averaged characteristic.

Since the escape time (25) is determined by the free
diffusion of the fast electrons, it is comparatively short
and at € > e®,, the EDF decreases rapidly. On the other
hand, in the stationary case the total ionization rate has
to be equal to the total flux of the fast electrons to the
wall. It means that in the nonlocal regime the wall po-
tential e®,, has to be close to the effective ionization
potential, which coincides with the real ionization poten-
tial, when direct ionization dominates, or it is close to
the first excitation potential, if stepwise processes supply
the main part of charged particles. If it were not so, the
exponential decrease of the EDF, which is caused by the
inelastic collisions as well as by the wall losses (25), makes
it impossible to satisfy the ionization-wall loss balance.

The spatial dependence of the EDF tail at € 2 e®,,,
which is due to the escape of the fast electrons to the
chamber walls, and at € 2 u; (the first excitation poten-

tial), which may result from the deviations from non-
locality, was neglected in Egs. (15) and (21). These
mechanisms can produce some slight additional inhomo-
geneities in the spatial profiles of the ionization rate (see
[57]), which will not be considered here.

If the profiles of the stationary potential ®(r) and of
the rf electric fields E(r,t) are given, the solution of
Eq. (15) gives the EDF Féo) (¢) in the whole discharge
volume. It is determined up to an arbitrary numerical
factor, which can be interpreted as the electron density
in the chamber center ng. The rates of all the processes,
which are stimulated by the electrons, such as excitation,
ionization, or the electron current to the chamber walls,
etc., can be derived from Fgo)(e). The density of the rf
current and the complex conductivity of the plasma can
also be expressed by means of Eq. (4) in terms of the
same EDF:

) = _2CE@mD < w2 oD
NEE = 3m ed(r) YV Hiw  Oe

=o(r)E(r,t) = (X1 — i22)E(r,t) , (26)
where X5/ ~ w/v.

B. Ion motion and the potential profile

In practically the whole discharge volume the quasi-
neutrality condition is fulfilled with a high accuracy. It
means that we can use the expression for the electron
density

n@@) = [ FO©- o (2)

e®(r)

in the balance equation for the ion density (28), which
can be treated as an equation for the potential profile
®(r). Neglecting the thermal energy of the ions in com-
parison to that of the electrons as well as their inertia, the
ion continuity and momentum equation can be combined
to

v, ( ;nnv,@) — nui(x) . (28)

Here, M; is the ion mass and v; = v;(r) denotes the
spatially dependent mean ionization frequency, which is
obtained as an integral over the EDF of kinetic energy:
Fo(u,r,z) = Féo) [e—e®(r,z)]. The mean ion-neutral col-
lision frequency v;, is considered to be velocity dependent
in the constant mean free path approximation:

21\ 1/2
M_,v ) (29)

Vin = Vin,0 (1 +a kT
g

with v;,,0 the collision frequency at zero drift velocity,
taken from [60], and e = 0.182 [61]. The boundary con-
dition for this elliptic problem is that the Bohm criterion
should be fulfilled in front of all walls. The Bohm crite-
rion is formulated in the approximate form so that the
potential drop in the plasma over the last ion mean free
path before the wall has to be equal to kT./2e, i.e.,
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kT,
5 -

The fulfillment of this boundary condition represents an
eigenvalue problem for the rf electric field strength and
thereby for the self-consistent rf coil current. On the
discharge axis the symmetry leads to the boundary con-
dition:

e]V,@[/\,' =

(30)

0P
I =0. (31)
=0

For the low pressures considered in the present work
the contribution of stepwise ionization should be negligi-
ble [62,63] so that only direct ionization has been taken
into account on the right-hand side of Eq. (28).

The boundary condition (30) is applied at the plasma-
sheath boundary. The thickness of the space-charge layer
in the RFI discharges (in contrast to the RFC discharge)
is negligible compared with the discharge dimensions.
For our discharge conditions the ion mean free path A;
was also always small with respect to R and L. Thus it
follows that condition (30) can be imposed on the cham-
ber walls. It is well known that in the collisional case the
plasma density profile is not too sensitive to the bound-
ary condition for the potential and is close to the pro-
file, which corresponds to the zero plasma density at the
chamber walls.

The question is how to define the electron tempera-
ture, which appears in the ion sound speed, for a non-
Maxwellian EDF. In this work, the so-called screening

temperature [64]
-1
) (32)
®on

kT, dlnn,
e d®

has been used. This definition relates the decrease of the
electron density at the sheath boundary to a tempera-
ture. It is thus suited to describe the physical situation
of the screening of the electrons by the sheath potential
properly. For a Maxwellian EDF this definition yields
the usual thermodynamic electron temperature.

The solution of Egs. (28)—(31) results in a potential
profile at the plasma-sheath boundary ®,p(ryeu). It
should be noted that for an arbitrary profile of the rf en-
ergy input the Bohm criterion (30) is usually not satisfied
at the chamber walls. By variation of the parameter no,
which leads to the skin effect (see below), it is possible to
satisfy (30). The reason lies in the fact that Eqs. (28)—
(31) (in close analogy to the well-known Schottky prob-
lem of the ambipolar diffusion DAn+ v;,n = 0 with zero
boundary conditions) also possesses the trivial solution.
The nontrivial, nonoscillatory solution exists only for a
unique choice of the parameter ng (it corresponds to the
choice of v; in the Schottky case).

The value of the wall potential ®,, (in the case of metal
walls) can be found from the equation

/ nl/idr——-/ dr/ Vim(u)ul/zFéo)(e)de
Vo Vo e®(r)+uion

oo
:/ dr/ uw(e)ul/zFéo)(e)de, (33)
Vo ed,,
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with v, (€) from Eq. (25), and %;on and v;,, being the ion-
ization energy and frequency, respectively. This equation
expresses the fact that the total ionization rate has to be
equal to the outflux of the fast electrons to the cham-
ber walls. The difference between ®,, and ®,; represents
the potential difference over the space-charge sheath. It
should be noted that it has nothing in common with the
standardly used value of (kT./2e)In(m/M;) and that it
is usually considerably smaller than the latter [65]. In
our calculations we used the cross-section data of the el-
ementary processes from [66].

C. Electrodynamics of the rf field
and the external circuit

The spatial distribution of the rf field E can be found
from the solution of Maxwell’s equations. By combina-
tion of Faraday’s induction law V x E = —9B/8t and
Ampere’s law V x H = 9D/0t + j, one obtains the
well-known wave equation. Since the inductive electric
field due to the symmetry of the problem has only an
azimuthal component, E = Fey, one finds [67]

V2E(r,z) = iwpoej(r, 2)
= twpo [o(r, 2) E(r, 2) + Jeoit (1, 2)] . (34)

Here, the electric vacuum displacement current has been
neglected as compared to the conduction current. The
index ¥ has been omitted at E and j. The current den-
sity in the plasma is given by Eq. (26), while the current
density in the coil winding has to be specified as an ex-
ternal input parameter. The latter represents the source
term in the above equation. From a numerical point of
view, it is quite easy to implement an arbitrary coil con-
figuration. However, for a more schematic discussion,
the coil is approximated by a flat, homogeneous current
distribution

jco’il(ra Z) = 6(zcoil)@(r - RI)G(RZ - T)IcoilM . (35)

R, and R, are the inner and outer radii of the coil, re-
spectively, © is the step function with ©(z) =0forz < 0
and ©(z) = 1 for & > 0, I o is the amplitude of the coil
current, M is the number of coil windings per unit ra-
dius, and § represents the Dirac function. According to
our experimental setup, R; = 0.5 cm and R; = 7.2 cm
have been chosen in the following.

Of course, the amplitude of the induced electric field
is proportional to the current density in the coil. The
boundary conditions for this problem are especially sim-
ple, if one assumes that the whole setup is surrounded by
a cylindrical metallic chamber. In this case, the electric
field, which is parallel to every wall, has to vanish due
to the continuity of the tangential field component. The
same boundary condition holds exactly on the coil axis.
Hence, homogeneous boundary conditions apply for the
whole range of integration 0 < r < R, 0 < z < H,
where H= 12 cm is the height of the metallic screen of
our model system: .

Elwalls =0 and E!awis =0. (36)
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Equations (34)—(36) represent a standard Dirichlet prob-
lem for the induction field E. Since the active and the
reactive (real and imaginary) parts of the rf electric field
are calculated, one can self-consistently determine the
complex impedance of the complete system plasma-coil-
discharge vessel. The knowledge of the impedance is im-
portant information for the design and construction of an
RFT device. It forms the link between the electrotechni-
cal design of the outer circuit and the kinetic properties
of the plasma. The external circuit is only sensitive to the
electromagnetic field, which is induced in the induction
coil. The induced rf voltage is given by

R;
Uina = 27 M E(r, zcou) T dr . (37)
R,

The discharge impedance, i.e., the total impedance of the
system coil-chamber plasma can thus be calculated as
Uind _ 27 M Rz

Z=-
Teoi Ieoit Jr,

E (7, zcoit) Tdr . (38)

At high pressure, when w <« v, the plasma con-
ductivity is mainly active and the whole problem of
Eqgs. (26) and (35) corresponds to the ordinary skin ef-
fect in nonuniform, nonlinear media with conductivity
Y1, which is determined by the amplitude of the exter-
nal current in the coil. At lower pressures, the reactive
(inductive) nonlinear plasma conductivity ¥, dominates
in Eq. (26), which corresponds to the account of elec-
tron inertia. As was stated before, our approximation,
Eq. (26), is applicable even in this case, if only the skin
layer is not too thin [see Eq. (2)]. In any case, the effec-
tive skin layer thickness § can be estimated as

5 ~ (now | )72 . (39)

In the semi-infinite plasma the conditions § < Av/w, A
are sufficient for the existence of the anomalous skin ef-
fect [54]. In this case the electron energy gains and losses
during the collisionless passage of the skin layer can be
treated as statistically independent and the electromag-
netic energy is transferred from the field to the electrons.
The active part of the plasma impedance X, arises even
in the absence of collisions. However, our case of a spa-
tially bounded plasma is more complicated. Situations
are possible when the energy gains and losses during the
subsequent electron passages through the skin layer are
correlated and the active part of the plasma impedance
is considerably diminished with respect to the classical
value [54].

D. Numerical scheme

From the above-mentioned system of equations, a self-
consistent set of solutions consisting of the EDF of total
energy Féo) (€), the space-charge potential ®(r), and the
profile of the rf field E(r) can be found. To cope with
the mutual interdependencies, an iterative method has
been developed, which is sketched in the flow diagram in
Fig. 3. The method takes advantage of the fact that some
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start: 1=0,k=0
no,E¥(r),®'(r)

ave. coeff.
solve BE
adjust I .4
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no

|EX(x) - BA1(x)] < 17
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end:

Féo)(f), Leoit, Q(l‘), E(l‘)

FIG. 3. Flow diagram of the two-dimensional model of a
RFI discharge.

quantities — namely the spatially averaged coefficients
in the kinetic equation (15) — depend on others only
via integral formulations. The exact shape of the spatial
profiles is therefore not of great importance. Hence, the
EDF should be not too sensitive to the exact profiles of
the rf field and the space-charge potential. It is thus
reasonable to perform the calculation of the EDF in an
inner loop and the exact determination of the field and
the potential profiles in outer loops. Changes in these
profiles affect the EDF only slightly, which guarantees a
fast and stable convergence of the iterative scheme.

The EDF at a given value of the central plasma den-
sity mo is determined via the solution of Eq. (15) (de-
noted BE for Boltzmann equation) in the interior loop.
The averaged coefficients are calculated with some start-
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ing profiles for the rf electric field and the potential, e.g.,
a flat rf field and a parabolic potential. After the so-
lution of Eq. (15) an ionization profile (33) can be ob-
tained from the EDF and the old potential profile. Equa-
tions (27) and (28) can then be integrated to find a new
potential and plasma density distribution. This proce-
dure is repeated, while varying the coil current I, un-
til the Bohm criterion is fulfilled at the position of the
wall. (The sheath is assumed to be infinitely thin, which
causes a negligible uncertainty for I..;.) The resulting
potential profile is used to reevaluate the averaged coef-
ficients. This whole loop of solving the kinetic equation,
adjusting I..i;, and calculating a new potential profile is
repeated, until convergence in the space-charge poten-
tial is achieved. Usually about four to six iterations are
sufficient to obtain a relative accuracy of the potential
of better than 0.01%. By using this procedure, a self-
consistent set of an EDF, I_,;;, and a potential profile is
obtained, with the values of R, L, the pressure p, and
ng being given. The profiles of ®(r), Eo(r), n(r), and
the value of ng can afterwards be found for the given
external parameters (R, L, p, and I..;). In the outer
loop the rf electric field distribution is determined with
the radial density profiles from Eq. (27) by integrating
Eq. (34). The loop is repeated until the rf field distribu-
tion is also self-consistently determined. Usually about
four iterations are needed to achieve a relative accuracy
of better than 0.1% for the rf field profile. The wall po-
tential ®,, and the escape term Eqgs. (33) and (34) were
not accounted for in the presented simplest calculations.

The numerical scheme presented above turned out to
be quite efficient. For one set of parameters the complete
problem is solved within typically 40 min on a 486DX
PC (66 MHz). The most serious computational difficul-
ties were connected not with the solution of the electron
Boltzmann equation, but with the ion transport equa-
tion combined with the quasineutrality condition, due
to the use of the realistic field-dependent ion mobility.
For comparison, it should be mentioned that the com-
putation times are probably some orders of magnitude
smaller than those of other Monte Carlo based [11,12] or
time-dependent fluid models [42]. From a physical point
of view, the computation time might not be a decisive ar-
gument for one model or the other. However, to obtain
a general understanding of the discharge and to design
a particular device it is necessary to perform scans over
wide parameter ranges. Examples where two parameters
have to be varied are, for instance, the simple calculations
of current-voltage characteristics of the discharge for var-
ious gas pressures. For these purposes the computation
time is of principal importance.

IV. EXPERIMENTAL AND THEORETICAL
RESULTS AND DISCUSSION

The central point of the two-dimensional (2D) model
presented consists of the description of the electron kinet-
ics. Thus it is of highest priority for the experiment to
prove or disprove its validity. In Fig. 4 the EDF's obtained
from the present model and measurements performed in
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experiment
theory

FIG. 4. Comparison between measured EDFs and results
of the 2D model in the center of the discharge.

the center of the discharge are compared. It is obvious
that a convincing quantitative agreement is obtained. In
particular, for the lower pressures the coincidence of ex-
periment and theory is excellent. For higher pressures
some deviations occur, in particular at low kinetic ener-
gies where the experimental EDF does not exhibit such
a pronounced peak as has been predicted by the the-
ory. However, it is well known that the main problems of
the experimental measurement of the EDF appear close
to zero kinetic energy. It should be mentioned that the
theoretical EDFs are normalized to the same electron
density as the experimental results. Indeed, the central
electron density is self-consistently calculated as a func-
tion of the absorbed power (or more precisely vice versa,
see Sec. III C), but it is too optimistic to expect that the
theoretical and experimental electron density would co-
incide within a few percent. This point is discussed in
more detail below. In order to judge the quality of the
electron kinetic model it is thus appropriate to normalize
experimental and theoretical results to the same density.

The qualitative behavior of the observed EDF's is quite
reasonable. It is clearly seen that the exponential de-
crease begins at € = u;. The growth of EDF at low
values of € is connected with the decrease of the spa-
tially averaged energy diffusion coefficient (10) due to
the Ramsauer effect (especially at low pressures) and to
the decrease of the accessible volume V,., Eq. (12). A
similar behavior has been observed also in [50].

A crude estimate for the EDF form can be obtained
if we neglect the variation of V., assume approximately
w < v and v ~ v3, and replace the right-hand side of
Eq. (15) by a zero boundary condition at € =~ u;. The
corresponding mean value of the kinetic energy in the
center of =~ 5 eV is very close to the observed values
(from 4.5 to 5.5 V).

In Fig. 5, experimental and theoretical results for the
axial and the radial variation of the EDF are given. For
reasons of clearness the axial variation of the EDFs is
plotted only on one side of the midplane. The behavior
of the EDF's on the other side of the midplane is identical



6072 U. KORTSHAGEN, I. PUKROPSKI, AND L. D. TSENDIN 51
10 g T ™3 10" IAARRE AR T local approach to the description of the electron kinetics,
, P 09 P03 which is one central simplification of the present model.

10 i ':: It should be mentioned that the differences between elec-

(b) tron densities obtained for the same experimental param-

27.3 mm L
— theoretical result W
105 510
& (ev
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and contains no additional information. From Fig. 5 it
is obvious that the EDF's in the radial as well as in the
axial direction can be considered dependent only on the
total energy, at least within experimental error. Further-
more, the coincidence of the measured EDFs with the
theoretical results is quite convincing. Thus the results
presented in Fig. 5 confirm the applicability of the non-
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FIG. 6. Profiles of the space-charge potential and the elec-
tron density for p = 0.9 Pa: (a) axial and (b) radial. The solid
lines represent the results of the 2D model. The circles rep-
resent the experimental electron density profile, the squares
the measured potential profile.

eters probably stem from the fact that different probes
have been used for the radial and axial scans. Changing
the probes, however, is always connected to changing the
characteristics of the probe system itself and of the whole
experiment.

Measured and calculated profiles of the space-charge
potential and of the electron density are presented in
Figs. 6 and 7. The electron densities have been obtained
by integration of the measured EDF; the space-charge
potential profile is obtained from the shift of the zero
crossing of the measured second derivatives. For both
pressures good agreement of the experimental and theo-
retical results is obtained for both the radial and the axial
variations. As expected, the density decreases faster to-
wards the walls for the higher pressure of 3 Pa. Also,
the variation of the potential is more pronounced. The
experimental results, in particular for 3 Pa, confirm that
the potential and electron density vary more strongly in
radial rather than in the axial direction due to the aspect
ratio of our discharge.

In Fig. 8 the calculated profiles of the ambipolar space
charge potential and the related electron density distri-
bution are given. It should be remembered that the elec-
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FIG. 7. Profiles of the space-charge potential and the elec-

tron density for p = 3.0 Pa. The representation and notation
are the same as in Fig. 6.
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tron density and the space-charge potential profile are
plotted up to the plasma-sheath boundary only. (The
small kinks close to the edges of the profiles at 1 Pa are
numerical “edge effects.”) The differences in the radial
and axial density distribution are clearly seen. From one-
dimensional models of the ambipolar diffusion (e.g., for a
positive column) it is well known that the density at the
plasma sheath boundary scales roughly with the ratio of
the ion mean free path to the diffusion length A;/A (e.g.,
[68]). If this scaling law is applied to the considered dis-
charge (L/2 = 3 cm, R = 7.5 cm), the differences between
the electron density at the sheath boundary on the axis (r
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FIG. 8. Profiles of the ambipolar
space-charge potential [(a), (b)] and the re-
lated electron density [(c), (d)] for p = 1 Pa
and 3 Pa.
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=0cm, z = 0 or 6 cm) and at the side wall in the midplane
of the discharge (r = R, z = 3 cm) should be of the order
of a factor 2. This is approximately fulfilled for the lower
pressure of 1 Pa. However, for the higher pressure of 3 Pa
the density at the side walls is much lower than expected
from this simple scaling law. The reason may be seen in
the fact that the ionization at 3 Pa is strongly concen-
trated in the center of the discharge, where the electron
density is maximal (see Fig. 9). Qualitatively, the situa-
tion can be understood if a point source of ionization in
the center of the discharge is considered. For the present
aspect ratio, the diffusion in the axial direction can be

FIG. 9. Spatial distribution of the ioniza-
tion frequency: (a) 1 Pa and (b) 3 Pa.
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considered as an almost one-dimensional problem. For
the radial diffusion, however, the two-dimensional effects
cannot be neglected. Ions which are generated in the
center are first of all diluted due to the geometrical ef-
fects of the diffusion in cylindrical geometry. However,
a second diluting effect is the permanent drain of ions
in the axial direction during their radial diffusion. This
effect is much less pronounced for lower pressures, where
the ionization is more homogeneously distributed across
the whole discharge. The potential profile adjusts itself
to guarantee quasineutrality, i.e., to screen the electrons
to a sufficient degree. Thus the strong dilution of ions
at high pressures during their radial diffusion requires a
strong drop of the potential in the radial direction. So,
for instance, at 3 Pa the sheath boundary potential on
the axis is —3.8 V, while at the side wall in the midplane
it is —10.0 V. Again, this effect is less pronounced for
lower pressures due to the more homogeneous ionization
profile. A similar radial decrease of the plasma density,
which was close to exponential, was observed for large
values of the R/L ratio in [69].

As was discussed in the Introduction and is seen from
the results of our model (Figs. 6-9), independent of
the energy input profile, the profiles of the plasma den-
sity n(r, z), of the stationary potential ®(r), and of the
plasma source term ny;(r) in Eq. (28) are maximal in
the discharge center in the nonlocal approximation. This
conclusion is connected with the fact that the coefficients
in Egs. (27), (28), and (33), which determine the poten-
tial profile, depend only on ®(r,2) but not on (7, z) ex-
plicitly. It results in the symmetry of the solution. The
experimental data are in reasonable agreement with this
statement. The slight asymmetry in the axial density and
potential profile in Fig. 7 can be produced by some subtle
effects, such as remnants of the locality, the asymmetry
in the high-energy part of the EDF, which is generated by
different boundary conditions on the metal and dielectric
surfaces, and a partial restoration of the fluid approach
due to the electron-electron collisions. (The most striking
peculiarity of the observed asymmetry consists of the fact
that it is practically independent of the power input.)

In [31] the existence of two maxima in the light emis-
sion was reported. The first of them was situated at the
chamber axis at z =& L/2, and the second was close to
the maximum of the rf field. The intensity of the latter
increased with pressure. This phenomenon can be also
explained as the start of the transition from the nonlocal
to the local regime.

In the nonlocal case the considerable distance between
the chamber center and the position of the maximal en-
ergy input manifests itself not in a shift of the plasma
density profile but in the formation of a cold plasma in
the center of the discharge. This phenomenon was dis-
cussed in [70,25,71,31]. It can be explained as follows.
In the scale of the full energy the electrons with small
€ are trapped by the ambipolar field in the vicinity of
the discharge center. If the rf field is maximal at the pe-
riphery, they cannot reach this region and their spatially
averaged energy diffusion coefficient D, [Eq. (10)], which
is proportional to the square of the rf field, is small. It
results in a steep decrease of Féo)(e), i.e., a low “effective
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temperature,” in the low-energy part of the EDF.

It is necessary to stress here that all these phenomena
cannot be described properly in the framework of the
fluid approach, when all the electrons are characterized
by the average values of the directed velocity and of the
mean energy [71]. In the nonlocal case, when the EDF
depends mainly on €, the source term in Eq. (15) is max-
imal in the chamber center. After inelastic collisions, the
slow electrons gain energy in the rf field due to the energy
diffusion process. The growth of the accessible volume
Vae [Eq. (12)] with increasing energy corresponds to an
outward-directed electron flux at € < u;. At higher ener-
gies, however, the intensive process of inelastic collisions
is switched on. It is maximal in the chamber center and
an inward-directed flux of the fast electrons with € > u;
arises.

The two-dimensional structure of the rf electric field is
depicted in Fig. 10 for two different central plasma den-
sities ng = 1 x 10! cm™2 (top) and np = 1 x 10*2 cm—3
(bottom). (Note that not the field lines but the lines of

active RF field (V/m) reactive RF field (V/m)
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FIG. 10. Profiles of the rf electric field: active part [(a),
(c)], reactive part [(b), (d)]. The central plasma density for
the upper figures is no = 1 x 10** cm™3 for the lower figures
no = 1 x 10'? cm™3. The thick lines represent the position of
the flat coil (Ry = 0.5 cm and Rz = 7.2 cm).
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constant field strength are plotted.) The coil is assumed
to be separated from the plasma by an infinitely thin
glass plate. The figures on the left side represent the real
(active) part of the electric field, which is shifted by —m /2
with respect to I..:1, and the figures on the right side rep-
resent the imaginary (reactive or inductive) part of the
electric field, which is the opposite of I..;. While the
reactive field is responsible for the apparent power, the
active field is connected with the absorbed power. The
latter results from the collisions of plasma electrons with
heavy particles. Considering first the reactive part of the
field at ng = 1 x 10'! cm™3, the approximate symmetry
of the field distribution in the plasma and the air is ob-
vious. In this case the electron density is still too small
to cause a considerable skin effect. The maximum of the
reactive field is, of course, found at the induction coil,
since the rf current is the source of this field component.
For the higher plasma density (no = 1 x 102 cm™3) a
strong skin effect occurs. It should be remembered that
the discharge center and thus the maximum of the elec-
tron density is located at » = 0 cm and z = 3 cm. The
density profile finds its correlation in the asymmetry of
the electric field. It is more strongly “repelled” from the
plasma close to the center than at the discharge edge,
where the electron density is small. While the reactive
part of the field is maximal close to the coil, the active
part has its maximum inside the plasma. This behavior is
quite reasonable, since the active field is associated with
the resistive part of the plasma current, i.e., that part
which is generated by collisions of the electrons with the
heavy particles. This component of the current is —m/2
out of phase with the rf current in the induction coil and
thus in phase with the reactive component of the electric
field. It is not surprising that the maximum of the active
field is found somewhere between the maximum of the
electron density (r = 0 cm, z = 3 cm) and the maximum
of the reactive field component (the induction coil). It
can be seen in Fig. 10 that with increasing electron den-
sity the maximum of the active field shifts towards the
outer plasma regions closer to the coil since the reactive
field is “pushed” out of the plasma by the skin effect. In
experiments in Ref. [72] the considerable skin effect of the
magnetic field B,, which increased with the power input,
was investigated. It is in qualitative agreement with our
calculations.

One particular interesting aspect of the discharge con-
struction is the discharge impedance and the relation be-
tween absorbed power and achieved electron density. The
first point is studied in Fig. 11. The real and imaginary
parts of the discharge impedance are plotted against the
total rf power. Both quantities have been determined
by measuring the rf current (via a current transformer)
and the rf voltage (via a capacitive voltage divider) and
the phase angle between them, using a network analyzer.
It should be remembered that the total rf power is not
equal to the absorbed power. Since the power factor
cos¢ is very small, namely < 0.02, only about 2% of
the depicted total power is really absorbed. Thus the
main part of the power is apparent power. The high
rf currents, which are connected to the high apparent
power, lead to a considerable thermal load of the electric
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FIG. 11. Real (a) and imaginary (b) parts of the discharge
impedance as a function of the total rf power Por = UI/2.
The symbols denote the experimental results: 1 Pa (o), 2 Pa
(O), 3 Pa (A), and 4 Pa (0).

circuit, in particular, of the matching network. As can
be seen in Fig. 11 the agreement between experimental
values of the impedance and the theoretical predictions
is reasonable. In particular, one has to remember that
some crude assumptions have been made concerning the
coil geometry (plane coil) and the boundary conditions
(closed metallic screen) which do not exactly correspond
to the experimental situation. Thus an accuracy of about
30% for the reactive part of the impedance is a satis-
factory result. Omne should bear in mind that the de-
termination of the inductance of a planar coil with the
present two-dimensional boundary conditions is a non-
trivial problem. The experimental values for the resistive
part of the impedance and their theoretical predictions
agree within a factor 2. The experimental results confirm
the decrease of ¥; with increasing neutral density. As
mentioned before, one reason for the deviations between
experiment and theory may be seen in the simplifying as-
sumptions used in the model. However, the experimental
errors of the active part are also surely larger than for the
reactive part, since the measured phase angles between
current and voltage have been quite close to 90° (about
87°-89°). Since the experimental accuracy of the phase
angle measurement is about 0.5°, the relative error for
the resistive part of the impedance is much higher than
for the reactive part.

Finally, the most delicate aspect of self-consistent
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plasma models should be discussed. It is well known
that even with very sophisticated self-consistent plasma
models the electron density observed in experiments is
usually not better predicted than up to a factor 2 or 3.
Recently it has been pointed out by Surendra [73] that
self-consistent models developed for one and the same
physical situation of a capacitively coupled rf discharge
(in particular, using the same cross section data) may
yield self-consistent densities which differ by more than
a factor 4. Thus no more should be expected from the
present 2D model. The experimentally and theoretically
determined electron densities as a function of the ab-
sorbed power are depicted in Fig. 12. Unfortunately, the
experimentally obtained electron densities are about a
factor of 4 lower than the theoretically predicted values.
Indeed, the measurements confirm at least qualitatively
some trends predicted by the theory. Thus the linear de-
pendence of the electron density on the absorbed power
is consistent with the measurements. Also, the increase
of the electron density with the neutral gas pressure at
constant absorbed power is evidenced by the measure-
ments. The reasons for the quantitative deviations are
numerous and can be found on both the experimental
and the theoretical sides. First of all, the experimental
density measurement is never free of some errors. In the
discussion above it has been shown that the experimen-
tal resolution of the low-energy part of the EDF dete-
riorates with increasing pressure and input power. To
correct these deviations in the low-energy range some
extrapolation of the EDF towards zero kinetic energy is
necessary. Furthermore, the temperature of the neutral
gas is another factor of uncertainty. For the compari-
son between measurements and numerical results where
the neutral density rather than the pressure is involved,
a gas temperature of 300 K has been assumed. For the
higher electron densities of the order of n, ~ 10! cm—3,
this assumption becomes questionable. When the pres-
sure is measured, a higher gas temperature corresponds
to a lower neutral density. In this case the experimental
points would have to be compared to theoretical curves
of a lower neutral density, i.e., lower pressure in Fig. 12.
This would give a correction in the right direction. An-
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other uncertain point is the assumption that the entire
amount of absorbed power measured is really absorbed
by the plasma. The electrical characteristics have been
measured as close as possible to the coil. Nevertheless,
the coil structure also absorbs some amount of the de-
livered power. At the moment no detailed information
about the fraction of power absorbed by the coil struc-
ture is available but the thermal loading of the coil is
substantial so that cooling by compressed air is neces-
sary.

Detailed measurements of the discharge impedance
were performed by Godyak et al. [55]. Their results are
more or less in qualitative agreement with our results.
At low input power the skin effect is absent and the rf
field is simply proportional to the value of I..;. Since the
plasma contribution to the total impedance is also small,
it means, that the self-sustained discharge in the absence
of the skin effect is possible only at the fixed values of
the coil voltage and current. This fact can be noticed
in the results of Ref. [55]. Their measured impedance
was close to 70 Q. It is in good agreement with the
measured value of the impedance of the unloaded coil of
85 Q. From their measurements at the low power levels
the authors estimated the ratio w/v. The power input per
electron is, according to Egs. (26) and (35), proportional
to IZ ., v/(w? + v?). It has to be equal to €y/7, where ¢,
is the ionization price and 7 the mean ambipolar elec-
tron lifetime. If we assume, in a crude approximation,
w/v = 0.017/p (for w/2r = 13.56 MHz and p in Torr)
and g = const, we obtain the following values of the ratio
Iooit(p)/Icout(p = o0): 1.05, 2.0, and 5.5 at pressures of
0.1, 0.01, and 0.003 Torr. The corresponding experimen-
tal values of [55] are 1.2, 2.1, and 2.8. The considerable
distinction in the last numbers (2.8 instead of 5.5) can be
attributed to the existence of some additional collisionless
stochastizing mechanism. However, the decrease of ¢ at
low pressures can also lead to the observed decrease of
the above-mentioned ratio. Keeping in mind also that, as
discussed above, the collisionless stochastization mecha-
nism in the spatially bounded plasma cannot be reduced
completely to the anomalous skin effect, more detailed
investigations in this direction are very desirable.

V. CONCLUSIONS

In this paper we have presented a fast self-consistent
kinetic model for the description of low-pressure induc-
tively coupled rf discharges. A high efficiency of our
model was achieved by using consistently the given phys-
ical information. By accounting for the nonlocality and
the time independence of the EDF from the very be-
ginning, it was possible to reduce the complete multidi-
mensional problem of the electron kinetics to the simple
solution of a one-dimensional ordinary differential equa-
tion. By taking advantage of the strict division of the
discharge volume into the quasineutral plasma and space-
charge sheaths we were able to avoid the complicated and
tedious straightforward integration of the Poisson equa-
tion. The obtained system of equations was compara-
tively simple and could even be solved by relatively slow
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computers such as a usual PC (486DX, 66 MHz) within
computation times of some 10 min.

The quantitative accuracy of the presented model has
been demonstrated by a number of comparisons to ex-
perimental data. In particular, the validity of the non-
local approach to the electron kinetics has been proven
by the good agreement between calculated and spatially
resolved measured EDFs. Also, for the electron density
and space-charge potential profile distribution a convinc-
ing agreement has been demonstrated.

The fact that the presented model is, by some orders
of magnitude, faster than other straightforward models
proves the value of the chosen strategy: to employ all
available physical information from the very beginning.
Such a fast and efficient model as the one presented above
offers the possibility of a thorough analysis and under-
standing of most of the physical principles by variation

of various parameters. Furthermore, keeping in mind the
present short computation times, there is still a lot of
room left for refinements as an account of deviations from
the nonlocality in a first order correction or the imple-
mentation of plasma chemistry.
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