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A self-organization process in a plasma with a finite pressure is investigated by means of a three-

dimensional magnetohydrodynamic simulation. It is demonstrated that a finite pressure, non-Taylor

self-organized state is realized in which a perpendicular component of the electric current is generated

and a force-free (parallel) current decreases until they reach almost the same level. The self-organized

state is described by a magnetohydrodynamic force-balance relation, namely, jXB=Vp, and the pres-

sure structure resembles the structure of the toroidal magnetic field intensity. The non-Taylor state has

a rather universal property, for example, independence of the initial pressure value. Another remarkable

finding is that the helicity conservation, in a strict sense, is not satisfied. The magnetic helicity dissipa-

tion exhibits a critical slowing down in accordance with the stepwise relaxation of the magnetic energy.

It is confirmed that driven magnetic reconnection caused by nonlinearly excited plasma kink Aows plays

the leading role in all of these key features of the non-Taylor self-organization.

PACS number(s): 52.55.Dy, 52.25.Kn, 52.65.—y, 83.20.Hn

I. INTRODUCTION

In the last two decades, Taylor's theory [1,2] has at-
tracted considerable attention from plasma physicists, be-
cause it has been able to predict stable magnetic struc-
tures, for example, the field reversal structure of the re-
versed field pinch (RFP) and the spheromak
configuration. Taylor conjectured that a weakly resistive
magnetohydrodynamic (MHD) plasma tends to evolve
toward a minimum magnetic energy state under the con-
straint of total magnetic helicity conservation, and pre-
dicted that a self-organized state (minimum magnetic en-
ergy state) is a force-free equilibrium.

Many numerical simulations [3—10] have atteinpted to
confirm Taylor's conjecture and revealed the dynamical
behavior of the self-organization process. Through a
three-dimensional full MHD simulation study Horiuchi
and Sato [6,7] demonstrated that the nonlinear driven
magnetic reconnection plays a key role in the self-

organization process of a MHD plasma. For instance,
through the nonlinear driven magnetic reconnection pro-
cess the spectrum of magnetic energy exhibits a normal
cascade while that of magnetic helicity shows an inverse
cascade. The phenomenon that the dissipation rate of
magnetic energy is faster than the dissipation rate of
magnetic helicity is also explained in terms of the driven
magnetic reconnection.

It should be emphasized here that Taylor's theory can
only be applied to a case where the plasma pressure is
uniform throughout the whole system. In reality, howev-

er, an excess free magnetic energy is transformed into
thermal energy. In general, the released thermal pressure
has a spatia1 structure because of the spatial dependence

of the current density or resistivity. Though in plasmas
there are a few mechanisms that lead to redistribution of
thermal energy, i.e., convection, expansion, thermal con-
duction, and so on, it is not a natural consequence that
the plasma pressure becomes homogeneous. Many efforts
have been made to extend Taylor's theory to a finite pres-
sure MHD plasma [8—12]. However, most of the works
have reached Taylor's force-free state. Recently, Kondoh
et al. [13] have dealt with this problem from a different
viewpoint and asserted that the self-organized state be-
comes a non-force-free one if the electrical resistivity has
a spatial dependence. For spatially uniform electrical
resistivity, however, their state also degenerated into the
Taylor state.

In order to bring out clearly the effect of the plasma
pressure on the self-organization process of a MHD plas-
ma, we employ a three-dimensional MHD simulation
code [14] with a fourth-order accuracy in both time and

space in this paper.
The plan of the paper is as follows. In Sec. II we ex-

plain our simulation model. The simulation results are
presented in Sec. III. Section IV contains a brief sum-

mary of the present study.

II. SIMUI.ATION MODKI.

%'e consider a compressible, dissipative MHD plasma
with a finite pressure confined in a conducting cylindrical
vessel with a rectangular cross section. The basic equa-
tions are described in dimensionless form as

= —V (Fv) —Vp +jXB,

'K. Watanabe, T. Hayashi, Y. Todo, T. H. Watanabe, A.
Kageyama, and H. Takamaru.

as
Bt

=VX(vX 8—rij), (3)
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(4)

j=VXB, (5)
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and P (=pv) is the mass fiux density, p is the thermal
pressure, p is the mass density, v is the Quid velocity, 8 is
the magnetic field, j is the current density, q is the uni-
form electrical resistivity, and y (=—', ) is the ratio of the
specific heats. In general, the thermal conduction term
should be added in Eq. (4). Since we are primarily in-
terested in the structure of the plasma pressure in this pa-
per, we focus our attention on the case where the effect of
thermal conduction is discarded and the vessel is
thermally insulated.

In order to accomplish our motivation of elucidating
the physical inhuence of the thermal energy converted
from the magnetic energy on MHD self-organization, it
is required that the numerical diffusion of pressure be
suSciently small not to smear out the generated pressure
structure during the relaxation process of concern. To
fulfill this requirement, we employ a high-precision sirnu-
lation code [14] which is based on an explicit finite-
difference method with fourth-order accuracy in both
space and time. The simulation domain is implemented
on a 100X100X150 point grid. By this choice it be-
comes possible to disclose rather fine structures of pres-
sure, which were missed in the previous work based on
the two-step Lax-Wendroff scheme [8].

A Cartesian coordinate system (x,y, z) is employed.
The system is periodic along the z axis with a periodic
length L„and is surrounded by a conducting wall at
x=O and L, and y=O and L, i.e., n v=0, n X j=0, and
n. B=O, where n is the unit vector normal to the con-
ducting surface. As an initial condition we impose a
two-dimensional force-free equilibrium [7] in which the
pressure and the mass density have uniform spatial
profiles. The initial magnetic configuration is shown in
Fig. 1 where the right and left panels correspond to the
vector plots of the poloidal magnetic field and the con-
tour plots of the toroidal magnetic field intensity in the
poloidal plane (x,y), respectively.

There are three important parameters to characterize
the energy relaxation process of a MHD plasma, i.e. , (a)
the initial normalized magnetic helicity a
(=2rrL~I/' /L/P ), (b) the initial normalized magnetic en-
ergy e ( =L~ W/2K), and (c) the ratio of the side lengths
L, /L~, where I/ and W are the total magnetic helicity
and energy, respectively, and g ( =fB,dx dy) is the total
toroidal magnetic Aux. In this paper, we assume n =58.3,
@=6.7, and L, /L =3. Taylor's relaxation theory
[1,7, 15] predicts that our system relaxes to a helically
symmetric state with the toroidal mode number of n = 1.

III. SIMULATION RESULTS

Five simulation runs with different initial values of the
plasma /3 and the resistivity 71 are carried out where the
values of P and g are listed in Table I. In the following
discussion, we analyze the simulation result for case A
given in Table I unless otherwise stated.

A. Fundamental properties of energy relaxation

Previous papers [6—9] have revealed two important
characteristics of the MHD self-organization, namely, (1)
slow decay of magnetic helicity and selective dissipation
of magnetic energy, and (2) normal cascade of the mag-
netic energy spectrum and inverse cascade of the magnet-
ic helicity spectrum. Figure 2 shows, with the high-
precision simulation code, the temporal evolutions of the
total magnetic energy W (dashed line) and the total mag-
netic helicity I/ (solid line) where W and E are normal-
ized by their initial values and the time is normalized by
the Alfven transit time tz. The behavior of the magnetic
energy 8 illustrates that there appear two relaxation
phases in the temporal evolution, i.e., the first relaxation
phase (18t~ (t (25t„)and the second relaxation phase
(35t„&t&46t„).The magnetic energy dissipates rapid-
ly in the relaxation phases in the time scale comparable
to the Alfven transit time. In contrast to the stepwise re-
laxation of magnetic energy, the rate of magnetic helicity
exhibits explicitly a stepwise slowing down in accordance
with the stepwise drop of magnetic energy. This critical
slowing down phenomenon has never been proposed
theoretically [1,2, 11—13] nor discovered numerically
[3—9].

We now investigate how and why selective dissipation
of magnetic energy and critical slowing down of the dissi-
pation rate of magnetic helicity occur. From the MHD
equations (1)—(4), the total magnetic energy and the total
magnetic helicity decrease according to the following re-
lations:
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TABLE I Simulation parameters

FICx. 1. The vector plots of the poloidal magnetic field (right)
and the contour plots of the toroidal magnetic field (left) in a po-
loidal plane (x,y) at t=0 where a contour with a negative
toroidal field is plotted by a dotted line.
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first second

B are shown in Fig. 4. From this figure, one can confirm
that the first relaxation phase is caused by the helical
kink mode (n, n, n, )=(4,1,1), while the second relaxa-
tion phase is caused by the excitation of a different mode,
namely, the mode (n„n,n, ) =(2, 1,1).

B. Finite P self-organization

0 40
Time ( units of t/tA )

60 80

FIG. 4. The temporal evolution of two Fourier modes of the

y component of the magnetic field B~ in the same case as Fig. 2.
The amplitudes are normalized by the initial value of B~.

We now study the self-organized structure in a finite
pressure MHD plasma. Figure 5 shows the contour
maps of the toroidal magnetic field (top) and the pressure
(bottom) at t =19.0t„(left), t =32.4t„(middle), and
t =71.3t~ (right) for P=0.6 and g=5X10 (case C)
where the red color stands for a contour larger than the
average value of the pressure (lower part) and a positive
toroidal magnetic field (upper part). It is evident that a
clear structure of pressure is developed along the new
magnetic structure, and that the two profiles are similar.

There are two processes that lead to an increase in the
thermal pressure; the first one is the slow heating process
which is governed by the resistive diffusion process prior
to the onset of the first reconnection, and the other one is
the fast heating process which is associated with driven
magnetic reconnection. In the early phase (0( t (18t~ ),
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can evidently see that the perpendicular component in-
creases rapidly in accordance with the growth of the ideal
kink instability in the first relaxation phase. It increases
again in the second relaxation phase and reaches a value
comparable to the parallel component. The amplitude at-
tained is roughly maintained until the end of the simula-
tion run. Consequently, we can conclude that the system
relaxes to an equilibrium state and this state is absolutely
difFerent from Taylor's force-free minimum energy state
where Jz vanishes.

C. Non-Taylor relaxation

We are now in a position to elucidate the structure
which is realized in a MHD plasma in the presence of
thermal pressure and the nature of which is di6'erent
from what is predicted by Taylor's conjecture for the
pressureless case. Figure 8 shows a three-dimensional
display of the isosurfaces of the toroidal magnetic field

(left) and the thermal pressure (right) at t=O, t =19.Otal,
t =32.4t~, and I; =71.3tz for case C, where the yellow
and red isosurfaces stand for the positive value and the
negative value, respectively. There exist five positive Aux
tubes and four negative flux tubes at t=O. This spatial
structure is deformed into an intermediate one with one
negative helical Aux tube and four positive Aux tubes
through the driven magnetic reconnection process in the
first relaxation phase. Finally, the system self-organizes
into a helically symmetric state of the toroidal mode
number n=1 in which one positive helical Aux tube and
one negative Aux tube exist. At a glance, this simulation
result appears similar to the self-organized state expected
from the relaxation theory for the pressureless plasma
[15]. As mentioned above, however, the spatial structure
of the thermal pressure is not uniform even at the final
stage and hence the final equilibrium state is considered
to be di6'erent from the force-free one.

In order to identify what kind of state is achieved at
the final state of the present simulation, we have exam-

FICx. 8. A three-dimensional display of the isosurfaces of the toroidal magnetic field and the pressure at t=0, t =19.0t~,
t =32,4t~, and t =71.3t& for case C.
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ined the spatial structures of the pressure gradient and
jXB force and confirmed that the achieved state is al-
most a force-balanced equilibrium where jX8=Vp is
satisfied at every point in the system.

Figure 9 shows the temporal evolution of the total
kinetic energy. This figure clearly indicates that the
kinetic energy increases in good coincidence with the first
and second relaxation phases and vanishes toward the
end of the simulation run. This feature, along with the
existence of a sizable pressure gradient, gives another evi-
dence that the self-organized state is a force-balanced
equilibrium.

+MH
R (T)=

+ME

BBd x

2q Ij jd'x,
A.Bd x

+MH
2g jBd x

(9)

(10)

One can see that all the results are essentially superim-
posable with the exception of a slight delay in the onset

D. Independence of the initial plasma P

The existence of a finite thermal pressure makes the re-
laxed state different from Taylor's force-free one. We
have examine the dependence of the deviation from the
Taylor structure on the initial p value. Figure 10(a)
shows the temporal evolutions of the parallel component

J~~ and the perpendicular component Jj of the electric
current for three cases with different initial p given in
Table I, namely, for case B (P=0.6), case D (P=0.4), and
case E (p=0.2). As a whole, no significant difFerence is
observed among the three cases except that the onset
time of the relaxation phase is slightly delayed as p in-
creases. The perpendicular component, which is generat-
ed during the two relaxation phases, remains finite even
in the final equilibrium state and the amplitude is compa-
rable to that of the parallel component regardless of the
value of p for p=0.2—0.6. Figure 10(b) shows the tem-
poral evolution of the time scale function R (t) for the
same cases as Fig. 10(a). R (t) is the ratio of the time
scale for the magnetic helicity dissipation ~MH to the time
scale for the magnetic energy dissipation ~ME, where
R (t), rME, and rMH are defined by
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FIG. 10. (a) The temporal evolutions of the normalized
parallel component J~~ and the normalized perpendicular com-
ponent Ji of the electric current for case B (P=0.6), case D
ip=0.4), and case E (p=0.2), respectively. (h) The temporal
evolutions of the function R (t), where R (t) is the ratio of the
time scale for the magnetic helicity dissipation to the time scale
for the magnetic energy dissipation.
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times of the first and second relaxation phases for a high
initial P plasma. Thus it is concluded that both the plas-
ma behavior in the relaxation phase and the final relaxed
state are almost independent of the initial amount of
thermal pressure. This conclusion can be understood as
follows. There are two physical processes that make the
pressure uniform. One is expansion and the other is con-
vection. For the case with finite pressure, both of them
are very weak compared with the fast heating process.
Consequently, we can conclude that in the absence of
some rapid process which pumps out the produced
thermal energy the system will experience a non-Taylor
(non-force-free) self-organization.

IV. SUMMARY

With a three-dimensional simulation study we have in-
vestigated the self-organization process of a finite pres-
sure MHD plasma under the condition that the plasma is
thermally insulated perpendicular to the magnetic field.
It is confirmed that driven magnetic reconnection plays a
crucial role in the self-organization process. It is driven
magnetic reconnection that actuates the selective dissipa-
tion of magnetic energy. The present elaborate study has
revealed that during the two-step relaxation process sub-
ject to driven reconnection the decay rate of magnetic
helicity is critically slowed down. This implies that heli-
city conservation is not a substantiated property for
MHD self-organization, though this has been widely be-
lieved so far.

It is also found that the onset time of driven magnetic
reconnection is almost independent of the electrical resis-
tivity. For a case with an exceptionally large electrical
resistivity, the magnetic reconnection process becomes
not so conspicuous because most of the free magnetic en-
ergy dissipates before the first magnetic reconnection
takes place and the process becomes almost diffusive.
This indicates that a "weak electrical resistivity" condi-

tion, or a collisionless condition, is necessary for a clear-
cut self-organization to take place.

We have demonstrated that a finite pressure MHD
plasma system relaxes toward a state with a minimum
magnetic energy which is similar to the pressureless case.
This is because the most important physical process in
self-organization is the driven magnetic reconnection
process and the pressure is not the primary cause of
reconnection. However, the magnetic field configuration
is not described by Taylor's farce-free minimum energy
state. The driven magnetic reconnection process pro-
duces an extremely heated plasma in the vicinity of a
reconnection point. The locally heated plasma modifies
the magnetic field. As a result of the produced pressure
gradient, the perpendicular electric current is generated
to balance the pressure gradient force. It is confirmed
that the new self-organized state of a finite pressure
MHD plasma is a MHD equilibrium jXB=Vp, instead
of Taylor's minimum energy state. We have also
confirmed that there is no significant effect of the initial
plasma P on this conclusion. This suggests that, as long
as the thermal energy produced by the relaxation process
is confined within a system where neither fast thermal
conduction nor radiation cooling exist, the MHD plasma
does not obey the Taylor relaxation process, but experi-
ences a non- Taylor process which leads to a force-
balanced minimum energy state.
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