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Electric and thermal resistivities in dense high-X plasmas
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Analytic expressions for the electric and thermal resistivities in dense high-Z plasmas have been ob-
tained. The expressions incorporate phase-shift calculations of high-Z ion-sphere-model cross sections
as well as existing quantum-mechanical transport calculations for hydrogen plasmas, and are applicable
to Quid plasmas with 1 ~ Z ~26; strong-coupling effects between electrons and ions are particularly
clarified. It has been shown that the heat capacity for a dense plasma may have a considerable effect,

modifying the rate of therma1 conduction. The results are compared with other theoretical predictions
for those plasma parameters appropriate to degenerate stars.

PACS number(s): 52.20.—j, 52.25.—b, 72.15.Cz, 97.20.Rp

I. INTRODUCTION

Astrophysical dense matter [1,2] found in the interior
of a white dwarf or in the outer crust of a neutron star
may be regarded as an electron-ion two-component plas-
ma in which the ionic charge number Z may take on a
value greater than unity. Electric and thermal resistivi-
ties in dense high-Z plasmas are physical quantities that
are essential in the description of the structure and ener-

gy transport in such degenerate stars. These issues are
also involved in the experimental study of transport prop-
erties in dense plasmas produced by intense laser irradia-
tion [3].

In an earlier investigation, Tanaka, Yan, and Ichimaru
[4] performed microscopic calculations of the electric and
thermal resistivities in dense hydrogen plasmas through
solution to quantum-mechanical transport equations for
the electrons [5,6]. Strong interparticle correlations were
treated rigorously in terms of the local-field corrections
[5] obtained through a set of integral equations based on
the hypernetted-chain (HNC) modified convolution ap-
proximation (MCA) scheme [4]. It has thus been found
that in the vicinity of the metal-insulator boundaries,
strong Coulomb coupling between electrons and ions
brings about an "incipient Rydberg state (IRS)" for the
electrons, and acts to enhance the resistivities beyond the
Born approximation. Accounting for these strong
electron-ion (e-i) coupling effects was the feature in the
HNC MCA scheme [4], improving significantly over the
existing theories [6—8] that had treated the e-i interaction
only through a mean-field theoretic scheme such as the
random-phase approximation [9].

Analytic formulas for the resistivities have then been
derived on the basis of such an IRS representation of the
microscopic plasma states [1]; the results have contribut-
ed significantly to our understanding of the physics con-
tents of the formulas over those derived in the earlier ex-
pressions [4,6] on the basis of Pade approximants alone.
It has also been shown [1] that those formulas accurately
reproduce the numerical results [4] for hydrogen plas-
mas.

In this paper, we extend those results of hydrogen plas-

mas to the cases of high-Z plasmas, guided by an addi-
tional calculation of Z-dependent e6'ects in the Coulomb
cross sections for such plasmas. Transport cross sections
for quantum-mechanical e-i scattering and their Z depen-
dence are calculated in the strong-coupling regime by the
phase-shift analyses with the aid of the ion-sphere model
[9,10]. We then rederive analytic formulas for the elec-
tric and thermal resistivities in high-Z plasmas, in which
the ion-sphere cross sections evaluated in the ion-sphere
model are physically incorporated; again no Pade-like pa-
rametrizations have been employed. It is shown through
comparison with the Coulomb logarithms of hydrogen
plasmas computed in the HNC MCA scheme that the
enhancement of resistivities arising from the strong e-i
coupling is properly taken into account in the formalism.
It is also demonstrated that the heat capacity in a dense
plasma may introduce a substantial modification in the
rate of thermal conduction.

In Sec. II, the phase-shift analyses of the cross section
for the ion spheres are described. Parametrized formulas
for the electric and thermal resistivities are presented in
Sec. III. In Sec. IV, thermal resistivities in dense helium,
carbon, and iron plasmas calculated by the present for-
mulas are illustrated and compared with other theoretical
predictions. Concluding remarks are given in Sec. V.

II. SCATTERING CROSS SECTIONS
FOR THK ION SPHERES

(Ze )

akBT

k~T0= 2mk~ T

A(3~n, )
~

We consider a fully ionized plasma consisting of ions
(charge number Z; number density n;) and electrons
(mass m; number density n, =Zn; ) at temperature T. A
Coulomb-coupling parameter I for the ions and a
Fermi-degeneracy parameter 0 for the electrons may be
defined as
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3Za=
4mn,

(3)

Ze ——+1 3

U(r) = r 2a

0, for r&a .

2

2a
for r &a,

(4)

The range of the electrostatic potential for an ion with
charge Ze is thus confined within the radius a.

Electric and thermal resistivities are proportional to
the transport cross section Q (k~) for those electrons on
the Fermi surface with the wave number k~ = (3m n, )'~ .
The cross section may be calculated as

is the ion-sphere radius [9].
The ion-sphere model, originated by Salpeter [10],

offers an essentially correct description of the interionic
correlation in a strongly coupled (I & 1) plasma. In this
model one regards an ion as being surrounded by a
sphere of uniform negative charges with the radius a.
Physically, the ion sphere represents a Coulomb hole
stemming from exclusion of other ions around a given
ion, caused by strong Coulomb repulsion at short dis-
tances.

To investigate how the resistivities may depend on the
ionic charge number Z in the strong-coupling (I & 1) and
degenerate (0« 1) regime, we adopt the ion-sphere
model and calcu1ate the quantum-mechanical transport
cross sections for the electron-ion scattering, in the ion-
sphere potential given by

where j&(x) and ni(x) are the spherical Bessel function
and the spherical Neumann function, respectively, of or-
der I. Figure 1 plots the values of Q (k~) in Eq. (5) for
Z=1, 6, and 26, obtained through a numerical solution
to the Schrodinger equation (6) for 0 & r & a with the
boundary conditions (7), as functions of the electron den-
sity parameter,

r =a /ag

where a, =(3/4mn, )'~ .
When the Fermi energy EF=(irtkF) /2m of the elec-

trons is much greater than a characteristic energy for the
electron-ion interaction, mZ e /2A', the scattering po-
tential may be looked upon as a weak perturbation; the
Born approximation applies. One thus finds

Q ""(kr ) = f d8 sin8(1 —cos8)
~ U(q) ~2,27'

where

U(q)= Jdr U(r)exp( —iq r)

4+Ze 3
1 — [sin(qa) —qa cos(qa)] . ,

q (qa)

and q is a scattering vector which satisfies
q =2kFsin(8/2). We then find that numerical results of
Eq. (10) can be parametrized in an analytic expression of
r, and Zas

4~
Q (kr)= g(l+1)sin (5i —5(+,),

kp i=o
Q BQIll( k ) =9.09X10 r Z exp( —1.47Z' ) .

4@a
(12)

where 51 is the phase shift in the radial wave function
Ri(r ) for a scattered electron with orbital angular
momentum I in the potential (4). The wave function may
be determined by a solution to the Schrodinger equation,

Fitting errors of this formula are confined within 5% for
1 & Z &20. Values of Q ""(kr ) so obtained are also ex-
hibited in Fig. 1 for the density range r, & (9~/4)'~ /Z,
which is identical to

+-
dr r dr

& mz e /2irt (13)

l(1+ 1)+ k 2mU(r)
( )

$2
(6)

under the short-range boundary conditions,

Ri'(r)
lim
r (r i)

Z
for l =0,

ag

limRi(r ) =Cr' for I & 1 .
r~o

(7)

Here a~ is the Bohr radius, C is a constant, and the prime
denotes a dNerentiation with respect to r.

Since U(r)=0 at r &a, the phase shift for a partial
wave may be calculated as [11]
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FIG. 1. Transport cross sections of scattering between elec-
trons and ion spheres. Dots, squares, and triangles are the re-
sults obtained in the phase-shift analyses for Z = 1, 6, and 26, re-
spectively. Solid curves denote the corresponding results in the
Born approximation, Eq. (12).
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In fact, this is a condition for the plasma to be in a fully
ionized state, which we assume in the present theory of
Coulomb resistivities.

In such a high-density domain, we therefore observe
that the results of the phase-shift analyses agree well with
those of the Born approximation. Equation (12) thus
correctly represents the scattering cross section of an ion
sphere in a strongly coupled degenerate plasma for
1&Z &26.

III. ELECTRIC AND THERMAL RESISTIVITIES

The electric and thermal resistivities pE and pT due to
electron scattering may be expressed as [1]

8
'"Z'e'm '"n

(14a)
n(k T) i

c~ ' 52(2~)i~2 Z e m' n;

n, k, (k, T)'" (14b)

where LF and LT are the generalized Coulomb loga-
rithms. Here cz and c&

' refer to the specific heat at con-
stant pressure for the plasma and that for the ideal gas of
electrons, respectively, per unit volume.

An expression for the thermal resistivity, such as Eqs.
(47) and (49) in Ref. [4], has been derived through a solu-
tion to a quantum-mechanical transport equation [5,6]
for an ideal gas of electrons; in such a calculation, only
the heat energy carried by the ideal-gas part of the elec-
tronic specific heat, cI, 'T, would be involved. The factor
cp '/cp has been introduced in Eq. (14b) under the as-
sumption that the plasma as a whole couples strongly
with its partial component of the electrons, which them-
selves form a system of interacting, nonideal-gas parti-
cles. Under these circumstances, we expect that the elec-
trons may transport heat energy by the amount cI, T per
unit volume, as in Eq. (14b), rather than by the amount
cz"'T, as in Eqs. (47) and (49) of Ref. [4].

In a classical (0))1) and weak-coupling (I (&1) lim-
it, both Lz and LT approach their Debye-Huckel (DH)
limiting value [6],

L = ——'in' ——y+ —ln(Z+1) +O(g),1

2 Z
(15)

pE m k~T

p~ 3e
(16)

holds true.
Tanaka et al. [4] performed a set of microscopic calcu-

where g=fi (Z+1)kD, /8mkiiT, kD, =(4vrn, e /
ktir)'~, and y=0. 57721. . . is Euler's constant. Equa-
tion (15) was first derived by Kivelson and DuBois [12]
with the aid of the quantum-mechanical version of the
Balescu-Guernsey-Lenard equation [13].

For a degenerate (0 &(1)plasma with strong coupling
(I ) 1), we expect that both pz and pT may be propor-
tional to the ion-sphere cross section, Eq. (12). In fact, in
such a quantum limit, the Wiedemann-Frantz relation
[14],

lations for LE and LT in hydrogen (Z = 1) plasmas by
solving the quantum-mechanical transport equations for
electrons [5,6]. The eff'ects of electron screening, ion-ion
correlation, and local-field corrections, which are the
functions accounting for the strong Coulomb coupling
between charged particles beyond the random-phase ap-
proximation [1], have been all taken into consideration
through numerical solutions to the HNC MCA integral
equations in the density-response formalism; values of LE
and LT are available for parametric combinations of I
and 0 in the ranges 0.01&0&10and 0.05&I &43.441
[4]

Taking account of the limiting behaviors exhibited in
Eqs. (12) and (15), the Wiedemann-Frantz relation (16),
and the raw data obtained in the HNC MCA theory [4],
we now derive the analytic expressions for the Coulomb
logarithms LE and LT, applicable over 1&Z &26. The
results are expressed in the parametrized formulas as

1
LE =

—,
' ln I+a@

DH

1+tanh
Born

L

X [1+AExi, exp( —Cr, )

+Bzxb [exp( —Cr, )] ], (17a)

1LT= —,
' ln I+aT

DH

1+tanh
Born

X [ 1+A Txb exp( Cr, )—
+BTxb [exp( —Cr, )] J . (17b)

Here aE = 1, a T
=75/13~, and we have introduced di-

mensionless parameters,

(Z+1)'+' expy I e
kDH

( 12 2)i/3

1

KO" Z exp( —1.47Z' )

with I,=e /a, k TB;

(18)

(19)

xb = . r, tanh
1/2

21T $ /3

mk~ T (20)

represents the IRS fractional parameter [1], which we
shall discuss shortly. In these formulas, the parameters
take on the values 3~=0.42, BE=0.063, AT=0. 38,
BT=0.049, C =6 X 10,D =2, and K =2. 5, which have
been determined by fits to the values of Coulomb loga-
rithms obtained in the HNC MCA calculations for hy-
drogen plasmas [4].

The parameter cxT has been determined on account of
Eq. (16). The parameters, Eqs. (18) and (19), have
stemmed from Eqs. (15) and (12), respectively. The prin-
cipal logarithmic factors in the Coulomb logarithms, Eqs.
(17a) and (17b), do not therefore involve any adjustable
parameters; only the curly-bracketed factors describing
an IRS effect contain adjustable parameters, which have
been fitted to the raw data with the HNC MCA analyses.
%'e stress the significance of these physical determina-
tions, in contrast to arithmetic Pade fits in the Coulomb
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logarithms of Refs. [4] and [6].
The parametrized formulas thus retain the following

features:
(i) In the classical (0)&1) and weak-coupling (I « 1)

regime, where (DH«1 and (B„„«1,Eqs. (17) repro-
duce the Debye-Huckel values, Eq. (15).

(ii) In the degenerate (O«1) and strong-coupling
( I &) 1) regime, where 1 « g~«„& gDH, we have LE
=a@/2$B„„and Lr =az/2$. ~,« We. thus find in this re-
gime that a transport cross section Q (kz) derived from

pE or p T via a relation of the Drude type,
2nee pg

Q (k~) =
An, kF

(21)

becomes proportional to Q ""(k~) of Eq. (12). Conse-
quently, Eqs. (17) correctly account for the Born scatter-
ing of ion spheres via the parameter gB„„.

(iii) The Wiedemann-Frantz relation, Eq. (16), is ap-
propriately satisfied.

When the density and/or temperature are lowered to-
ward the vicinity of metal-insulator boundaries, given by

Z~e pyg /2g =/ Z e I /2g =k T

Coulomb coupling between electrons and ions becomes
significant; probabilities of electrons assuming IRS need
to be taken into consideration [1,4]. These states
represent those of the electrons being scattered repeated-
ly in the short-range fields of the ions and thereby act to
enhance the resistivities over those in the Born approxi-
mation.

Strengths of such an e-i coupling may be measured by

the IRS fractional parameter xb of Eq. (20). It is a pa-
rameter representing a ratio of Rydberg energy to an
average kinetic energy of the electrons; in the classical
and quantum limits, respectively, we find

X4=
b

e /2az
(36m )'i

' 2/3
9~ e /2az
4 E~

for O»1,

for 0" ((1
(22)

As the system approaches the metal-insulator boundaries,
values of xb may exceed unity and consequently Eqs. (17)
may take on values enhanced over the Born resistivities.

It should be remarked, however, that the probabilities
of electrons assuming an IRS should vanish in the low-
density (r, )&1) limit, since the electrons may rarely be
found within a Bohr radius of an ion or an atom in these
circumstances. The factor exp( —Cr, ) accounts for such
an e6'ect.

In Table I, the values of L,E and I-T evaluated with
Eqs. (17) for Z = 1 are compared with those in the HNC
MCA calculations; the accuracy of the analytic expres-
sions (17) is clearly manifested. The formulas (14) and
(17) are applicable for those high-Z plasmas with
1 ~ Z & 26 over the entire parameter regime in the Quid
phase.

It should also be remarked in these connections that, in
the classical limit of 0))1, Eqs. (14a) and (14b) take on
values 1.97 and 1.66 times as large as the Spitzer values
[15,16], respectively, for Z = 1. The origin of the
discrepancies may be traced to the microscopic calcula-
tions [4], in which it has been assumed that the deforma-

TABLE I. Generalized Coulomb logarithms for hydrogen plasmas in the HNC MCA theory
(LE and LT ) compared with those of the fitting formulas (17) (LE and LT) at selective
combinations of 0 and I .

0
10
10
10
10

5
5
5
1

1

1

0.27151
0.27151
0.27151
0.1

0.1

0.1

0.01
0.01
0.01
0.01

0.05
0.1

0.2
0.35
0.1

0.3
0.5
0.1

0.5
1.1
0.2
1.0
2.5
0.5
2.0
5.4301
5.4301

10.0
30.0
43.441

0.565
0.800
1.131
1.496
0.659
1.142
1.474
0.388
0.867
1.286
0.312
0.698
1.104
0.303
0.606
0.999
0.316
0.429
0.743
0.894

LHNC MCA

2.732
2.710
3.295
8.041
2.097
2.506
5.002
0.956 0
0.707 3
0.9144
0.231 4
0.144 8
0.146 6
0.046 18
0.029 71
0.026 63

7.062 X 10
5.776X 10
4.450X 10
4.483 x 10-'

LE

2.803
2.716
3.129
7.758
2.128
2.311
5.202
1.132
0.707 8
0.940 0
0.365 2
0.143 4
0.121 9
0.075 30
0.029 62
0.022 52

9.600 x 10-'
6.805X 10
4.967 x 10-'
4.973X 10

LHNC MCA

2.363
2.256
2.557
5 ~ 573
1.725
1.853
3.384
0.750 7
0.483 6
0.582 8
0.165 7
0.093 25
0.090 61
0.028 79
0.01795
0.015 80

4. 130 x 10-'
3.377X 10
2.601 x 10-'
2.619X 10

2.473
2.330
2.530
5.480
1.795
1.770
3.485
0.884 7
0.484 0
0.5704
0.241 9
0.086 44
0.069 58
0.045 17
0.01728
0.012 77

5.592 x 10-'
3.952 X 10
2. 850X 10
2.829X 10
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FIG. 2. Thermal resistivity of He plasmas at T =10 . K in
various theories. "K8r,I (with cz)" represents the present result
with Eqs. (14b) and (17b); "K8cI (without cp)" is the result in
which cp =cp is assumed.

log«p „(g/cm')

FIG. 4. Thermal resistivity of ' Fe plasmas at T=10 ' K in
various theories.

tion of the electron distribution is of a dipole shape corre-
sponding to the adopted single Sonine polynomial ap-
proximation, while the Spitzer values have efFectively tak-
en into account all the terms in the Sonine polynomial ex-
pansion. In the application of Eqs. (14) for classical plas-
mas, the corrections arising from these considerations
should be taken into account.

IV. COMPARISON WITH OTHER THEORIES

K&I (with c )

-6

—7
Q„

C)

CDo

E =mZ2e4/2h2
—9— r =~00&,

8=0.0~

4 5

log, p (p „(g/cm )

FIG. 3. Thermal resistivity of ' C plasmas at T=10 K in
various theories.

Hubbard and Lampe [17] computed the thermal resis-
tivities for stellar matter over a wide range of density,
temperature, and charge-number parameters. In the
weak-coupling regime, the Chapman-Enskog method was
used for the calculations. The resistivities in the solid
phase were calculated by assuming plane waves for the
Bloch states and Einstein oscillators for the ionic lattice
vibrations. In the strong-coupling Quid regime of
105 I ~ 100, these authors then interpolated between the
weak-coupling Quid and strong-coupling solid calcula-
tions.

Itoh et al. [18] calculated the resistivities in dense stel-
lar matter on the basis of a relativistic version of the Zi-
man formula [19], in which they took into account the
dielectric function for relativistically degenerate electrons
in the random-phase approximation and the ionic struc-
ture factor for classical one-component plasmas. Since

the present results are based on a nonrelativistic theory,
the relativistic effects in the final expressions of Itoh
et a/. have been ignored in the present comparison.

In Figs. 2 and 3, various theoretical evaluations for the
thermal resistivities are compared for He plasmas
(Z =2) at T =10 ' K and 3 g/cm «p «3X10 g/cm,
and for ' C plasmas (Z =6) at T=10 K and 10 g/cm
«p «10~ g/cm3, where p =m; n;, with m; denoting
the mass of an ion. These are typical conditions near the
surfaces of white dwarfs [2]. We find that the present re-
sults "without cz" agree fairly well with those of Itoh
et al. in the quantum limit O((1. It seems, however,
that the calculations of Hubbard and Lampe underesti-
mate the resistivities, owing probably to their use of the
Quid-solid interpolation scheme.

We remark that the possible effects of the total heat
capacity, i.e., the differences between the present results
"with c~" and "without c~," are substantial. The ratio
cp '/ct, takes on a value significantly smaller than unity
due to strong Coulomb coupling between ions in a dense
matter; hence, the thermal resistivity may assume a re-
duced value in such a condition. In the present evalua-
tion of c~, we have used the equation of state based on
the IRS concept [1], which accurately reproduces the
thermodynamic functions of hydrogen plasmas computed
in the HNC MCA theory [4].

In Fig. 4, a similar comparison of the thermal resistivi-
ties for Fe plasmas (Z =26) is exhibited for T= 10 ' K
and 10 g/cm «p «10 g/cm . Here again, a good
agreement is observed between the present results with
ct, '/cz=1 and those of Itoh et al. ; the electrons are
strongly degenerate under these conditions. The impor-
tance of accurate evaluation for the thermal resistivity in
such a parametric regime was pointed out [20] in con-
junction with the analysis of thermal structures in neu-
tron star envelopes.

V. CONCLUDING REMARKS

We have presented the analytic expressions for the
electric and thermal resistivities for high-Z plasmas in
the Quid phase, where quantum-mechanical cross sections
of scattering between the electrons and the ion spheres
have been accurately incorporated in the strong-coupling



51 ELECTRIC AND THERMAL RESISTIVITIES IN DENSE. . .

regime. Enhancement of the resistivities due to strong
electron-ion coupling has been taken into account in
terms of IRS descriptions; the parametrized formulas ac-
curately reproduce the resistivities of hydrogen plasmas
obtained through the HNC MCA microscopic calcula-
tions and are applicable for 1~Z &26. It has been
shown that the heat capacity in a dense plasma may have
a considerable effect modifying the rate of thermal con-
duction.
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