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Phase coexistence of a Stockmayer fluid in an applied field
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We examine two aspects of Stockmayer Quids, which consist of point dipoles that additionally
interact via an attractive Lennard-Jones potential. We perform Monte Carlo simulations to examine
the efFect of an applied field on the liquid-gas phase coexistence and show that a magnetic Quid phase
does exist in the absence of an applied field. As part of the search for the magnetic Quid phase, we
perform Gibbs ensemble simulations to determine phase coexistence curves at large dipole moments
p. The critical temperature is found to depend linearly on p for intermediate values of p, beyond
the initial nonlinear behavior near p = 0 and less than the p where no liquid-gas phase coexistence
has been found. For phase coexistence in an applied field, the critical temperatures as a function of
the applied field for two difFerent p, are mapped onto a single curve. The critical densities change
very litle as a function of applied field. We also verify that in an applied field the liquid droplets
within the two-phase coexistence region become elongated in the direction of the field.

PAC S numb er (s): 64.70.Fx, 83.80.Gv, 75.50.Mm

I. INTRODUCTION

Bipolar fluids have a simple, but anisotropic, long-
range pair potential that presents an interesting new
set of problems for statistical physics. Manifestations
of dipolar Huids include ferrofluids (FFs), magnetorhe-
ological (MR) fluids, electrorheological (ER) Huids, and
polar Huids [1—4]. These Huids have great technological
promise and in some cases applications, as they possess
the dual properties of being Huid and magnetic (electric).
In most cases, an applied field is present. For the MR
and the ER fluids, an applied field is essential, since only
induced dipoles exists.

Simulations of simple dipolar fluids have discovered
several interesting phenomena. The fluid can become
magnetized in the absence of an applied Beld at high den-
sities [5,6]. For the simplest model of hard- or soft-sphere
dipoles in zero field, no liquid-gas phase coexistence has
been found in contrast to predictions of mean field the-
ory [7—9]. In an applied field, phase coexistence does
occur for this system, yet it is not the usual gas-liquid or
even isotropic-magnetic liquid phase coexistence [9,10].
Coexistence in the absence of an applied field does not
occur in part because the only attractive interaction is
the anisotropic dipolar interaction that tends to produce
chains instead of droplets. Phase coexistence does occur
in zero field if a sufficiently strong, short-range attractive
interaction is added to the dipolar interaction [8].

One model that exhibits two-phase coexistence in zero
external field is the Stockmayer Huid (SF) [11,12]. This
system consists of long-range dipoles that have an addi-
tional short-range Lennard-Jones (LJ) interaction. Since
the LJ interaction alone is sufficient to produce a gas-
liquid coexistence [13], it is clear that the Stockmayer
fluid must also have a gas-liquid coexistence at least for
small dipole moments. Recent simulations [ll] have cal-
culated the coexistence curves for several nonperturba-
tive values of the dipolar moment p in zero external mag-

netic field. For this reason the Stockmayer Quid is a good
system to study the effects of an applied Geld on the gas-
liquid phase coexistence.

One intriguing aspect of dipolar fluids is the existence
of a magnetic fluid phase in the absence of an applied
field. For soft-sphere dipoles, simulations have found
a magnetic Huid phase [5,6,10] at high densities. Early
simulations on the Stockmayer fluid for relatively small
p, found negative pressures at these high densities [12].
Consequently, later studies of the ordering in the fluid
preferred the hard- or soft-sphere dipolar system [5,6].
We now know that the negative pressures occur because
of the two-phase coexistence present in the Stockmayer
fluid. Prior to this work, there have been no simulations
to examine whether the magnetic liquid phase exists for
a Stockmayer fluid at densities above the liquid coexis-
tence curve. We report here results of simulations for
the Stockmayer Quid that search for the magr"etic liquid
phase. The phase coexistence curves were calculated for
larger values of p where the magnetic liquid phase is more
likely. Using these calculated coexistence curves we ex-
amined the regime above the liquid coexistence densities
and. find the magnetic liquid phase.

The Stockmayer Huid provides a simple model system
for ferrofluids [14]. Recent work [8—10] has shown that
a dipole with a purely repulsive core potential does not
model some aspects of ferrofluids and that the presence of
an additional attractive interaction is essential for phase
coexistence. Experiments on hydrocarbon based ferroflu-
ids have shown that phase coexistence depends strongly
on the solvent [15,16]. For some solvents phase coexis-
tence in the absence of an applied field does occur [16],
while for others it does not [15]. Given that the same
behavior occurs in simple dipolar systems as a function
of the strength of the attractive part of the interaction,
an examination of such systems is warranted.

In the next section we describe the simulation methods
employed. We also show that the variant of the Stock-
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mayer potential used in Ref. [8] can be mapped to the
standard Stockmayer potential. In Sec. III we present
calculations of the coexistence curves for large p and ver-
ify the mapping determined in Sec. II. The existence of
the magnetic Quid phase is demonstrated in Sec. IV. In
Sec. V we examine the effect of an applied field on phase
coexistence.

II. SIMULATION METHODS

The dipole-dipole interaction between particles i and
is

where p,, is the dipole moment of the ith particle, r;~ is
the displacement vector between the two particles, and
a caret signifies a unit vector. There are three relevant
parameters for the dipolar systems: the density p, the
dimensionless dipolar coupling strength given by the ra-
tio A = p~/osT, where o is the particle diameter and T
is the temperature, and the dimensionless applied field

g = pH/T. The temperature may also be an indepen-
dent variable depending on the nondipolar interactions.
In any case, the dimensionless temperature is 7 = 1/A.

In addition to the dipole interaction, the Stockmayer
Quid possesses a Lennard-Jones pair potential that mod-
els the van der Waals interactions in ferrofluids [1],

(2)

1/60 O C6 (4)

2666 (5)

converts the 6-12 potential parameters o and r into LJ
parameters o' and e'. The density and temperature are
mapped in the following manner:

1/2
p = p/~s (6)

and

(7)

chain formation was found instead. Thus there seems
to be a minimum amount of attraction necessary for a
dipolar liquid phase to exist. This is consistent with the
absence of phase coexistence for the soft-sphere dipolar
system es ——0 [9,10].

The significant feature of the interaction is not the
absolute strength of the nondipolar attraction, but the
relative strength in comparison with dipolar interaction.
This is because the dipole interaction induces a con-
densed phase different from the LJ interaction and, con-
sequently, the phase diagrams for LJ and strong dipo-
lar (e.g. , soft-sphere dipoles) systems are different [9].
The dipolar interaction, because of its orientation de-
pendence, prefers to aggregate particles in anisotropic
chain structures instead of isotropic droplets like the LJ
interaction prefers. That the relative strengths are the
essential quantity is evident from that fact that U6
can be mapped onto Ui, g [19]. Mapping

The temperature and A are now independent quantities.
The LJ system with no dipole interaction (p = 0) has a
critical point at T,* = 1.316, and p,

* = 0.304 [17], where
variables are given in reduced form: T* = T/s, p* = pa s,
p* = p /so and H* = Hgos/E. This critical point
value is for a LJ cutoff equal to half the box length, which
is shifted slightly from the critical point of the LJ with
no cutoff [18]. To maintain consistency we always use
a cutoff equal to half the box length, as was done in
previous simulations for the Stockmayer Quid in zero field
for several values of p'~ ( 6 [11];at p* = 2, the critical
point is T,* = 2.09 and p,* = 0.289 [11].

Recent simulations examined ostensibly a different sys-
tem in which the strength of the attractive part of the
LJ interaction was varied [8]. Specifically, they used the
potential

where ~6 is the constant used to vary the strength of
the attractive interaction. We will refer to the system
of dipoles with U6 z2 as the SF6 system. They found
phase coexistence for e6 & 0.30. For smaller values of c6,
two-phase coexistence was not detected by the Gibbs en-
semble simulations and near the expected critical points

We can map the dipolar system SF6 to SF by

3/4= @les (8)

Thus, reducing es as was done in Ref. [8] is equivalent to
increasing the effective dipole moment. We confirm this
mapping in Sec. III. From the results of Ref. [8], this
mapping implies that for the Stockmayer Quid there is
no phase coexistence for p* & 5.

Our simulations methods follow that of previous works
on dipolar systems [5,6,11,20,21] and are basically the
same as in the preceding paper [10]. We performed sim-
ulations in zero field at p* = 2.5, 3.0, 3.5, and 4.0. Simu-
lations as a function of the applied field were performed
at p* = 1 and 2.5. To examine the liquid structure we
performed constant volume canonical ensemble simula-
tions with N = 256 particles. These simulations ran for
a least 10 MC cycles with each cycle comprised of an
attempt to translate and rotate each particle.

To obtain the coexistence curves, Gibbs ensemble sim-
ulations were performed. For most of the Gibbs simula-
tions, N = 512. Some simulations were performed with
N = 1024 to test the N dependence. At least 10 cycles
were required with larger p requiring runs 2—5 times
longer. Long runs were also performed for temperatures
near T . Each cycle included an attempt to move each
particle once, 100 attempts to change the cell volume,
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and 500 attempts to exchange particles between the two
cells. For our simulations at least 10 000 accepted ex-
changes occurred in 10 000 cycles.

Our simulations in the Gibbs ensemble were performed
with H* ranging from 0 to 5. The critical temperature T
and density p, were determined by fitting the calculated
coexistence curves using the law of rectilinear diameters
and the usual scaling law for the density with exponent
P = 0.32 [22].

We characterize the system structure through the order
parameter Pq, defined as
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Pi ———) jc, d= M. d,N. - ' pN
(9)

0.30

where d is the director and M is the total magnetization
of the system. For a completely magnetized system, Pz ——

1.

III. PHASE COEXISTENCE AT LARGE p, '

In order to examine the possibility of a magnetic fluid
phase, we performed simulations at larger p' than pre-
vious works [ll]. Using Gibbs ensemble simulations we
determined the coexistence curves for p* = 2.5, 3.0, 3.5,
and 4.0. The critical points are given in Table I. We then
performed constant volume canonical ensemble simula-
tions at densities above the liquid coexistence densities
looking for a magnetic fluid phase. Before discussing the
magnetic fluid phase, we discuss the p* dependence of
the critical point.

We plot T,* as a function of p* in Fig. 1(a). The open
squares are from previous simulations [11],our data are
the open circles, and the solid circles are the mapped data
of Ref. [8]. For p* & 2 a linear fit to T,* with slope 0.254
and intercept 1.06 fits the data well. This fit must end
near p*2 24, where no coexistence was found [8]. The
parametrization given by van Leeuwen [11(c)]fits the T
data except at large p* . Clearly, the data are consistent
with the mapping given in Eqs. (4)—(8). For small p*,
the dipole interaction is efFectively a r van der Waals

0.20

\

0 10 I I I I I I I I I I I 0 I I I I « I I I I I I I I

0 5 10 15 20 25
p

FIG. 1. In (a) the critical temperature T; as a function of
the dipole moment squared p' and in (b) the critical density
p,* are plotted. The open points are from previous works [11]
and the solid points are from this work. The solid lines are a
least-squares fit to the nonzero p,

* data. The dotted lines are
the parametrizations given in Ref. [11(c)]. The uncertainty
in T* is about +0.01 for all data, which is smaller than the
points.

attraction [19]. This increases the total attraction and,
consequently, T is raised and p, is lowered, as seen in
Fig. 1. For large p*, this basic trend continues and T,
has a simple dependence.

Similar results are found for p, in Fig. 1(b). There is
more uncertainty in this data, but a least-squares fit cal-
culated as above gives the general decreasing trend with
increasing p*. Here the parametrization of van Leeuwen
only works for the original data 6tted.
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TABLE I. Critical points.

P
2.5
3.0
3.5
4.0
1.0
1.0
1.0
1.0
2.5
2.5
2.5
2.5
2.5

0*
0.0
0.0
0.0
0.0
0.0
1.0
2.0
3.0
0.5
1.0
2.0
5.0

Data from Ref. [8].

2.63(1)
3.35(1)
4.20(1)
5.07(5)
1.41(1)
1.44(1)
i.49(i)
i.si(i)
2.7i(i)
2.78(i)
2.89(i)
3.is(i)
3.64(l)

Pc
0.29(1)
0.25(1)
0.24(1)
0.24(1)
0.30(1)
0.32(l)
0.33(1)
0.32(1)
0.285(1)
0.285(1)
0.302(1)
0.278(1)
0.303(1)

0 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 5 10 15 20 25
p 2

FIG. 2. The dimensionless temperature w is plotted versus
p' with the same point types as in Fig. 1. The solid line is
obtained from the least-squares fit in Fig. 1.
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1.06
7, = 0.254+

@+2 (10)

derived kom the linear fit in Fig. 1. The equation sug-
gests an apparent saturation of ~ to about 0.25. How-
ever, the largest value of p* for which phase coexistence
has been found (p,

*2 = 24.34 from es ——0.30 [8]) has
v; = 0.30. Beyond p,

'2 24 Eq. (10) does not hold and
the lowest critical temperature is ~ = 0.30. At higher
p the Quid structure in the vicinity of the w from Eq.
(10) exhibits chain formation [8]. This change in fiuid
structure precludes liquid-gas phase coexistence.

IV. MAGNETIC FLUID PHASE

We now address the question of the existence of a mag-
netic fluid phase in the absence of an applied Beld in the
Stockmayer fluid. A magnetic fluid phase has already
been found in the soft-sphere dipolar system for A & 4
[5,6,9,10] at high densities. To determine if the magnetic
Quid phase exists for the Stockmayer Quid. , we examine
densities larger than the liquid coexistence densities p~.
We use the coexistence curves calculated in the preced-
ing section to determine the density region of interest.
The coexistence curves for larger p,

* were calculated in
Sec. III because a suKciently large A & 1 is necessary
for existence of the magnetic Quid phase as found for
the soft-sphere system. For A & 1, thermal interactions

As noted earlier, we can also define the dimensionless
(dipolar) temperature 7. The critical value ~, is more
relevant to determining the dipolar structure. In Fig. 2
we plot v. as a function of p* . The solid line is the
equation

dominate and there is no magnetic Quid phase.
We find that for the Stockmayer Quid the structure

of liquid coexisting phase in our Gibbs simulations is
isotropic. It is possible for the coexisting liquid phase to
be magnetically ordered [23—26], but that is more likely
to occur in the case of a liquid-liquid coexistence, where
one liquid phase is isotropic and the other is magnetic. In
the canonical ensemble simulations at T (( T, we do find
some ordering, but this is most likely a Rnite-size e8ect.
Figure 3 shows the Gibbs ensemble data and the fit to the
coexistence curve for p* = 2.5. Obviously, far from T*,
the coexistence curve will probably not follow the simple
fit function used, but we are only concerned about hav-
ing a guide to choose where to perform simulations. The
squares show the p' and T* at which simulations were
performed in this case. A solid square denotes a negative
pressure and is within the coexistence region as expected.
Similar simulations were performed for p* = 3.0 and 3.5.
The results are given in Table II.

At T~, the values of A—:A, are too low for the magnetic
Quid phase based on our experience with the soft-sphere
dipolar Huid. For soft-sphere dipoles, we found that for
A = 4, the magnetic Quid phase occurs close to p' = 1.0
[10]. For the Stockmayer fiuid, we find for p,

' = 2.5,
A = 2.38. Thus any magnetic Quid behavior, if it occurs
at all, will occur at T much lower than T . The situation
does not improve much with increasing p* since the value
of r, = I/A, (see Fig. 2) saturates for large p'. Thus even
for p,

* = 4.0, A is only 3.17. To have a chance of Gnding a
magnetic Quid phase, T must be much lower than T, and
of course, p ) pg. As T decreases, pg increases and we
will encounter the solid phase certainly by p* = ~2, the
close packed density. For hard-sphere dipoles, the liquid-

TABLE II. Phase coexistence data for p* = 3.0, 3.5, and
4.0.
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P
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FIG. 3. The coexistence curve calculated in the Gibbs
ensemble simulation in the absence of an applied field at
p,
' = 2.5 is plotted. The open circles are the coexisting den-

sity points found in the simulations. The solid circle repre-
sents the critical point calculated along with the fitting curve
as described in the text. The square represents points where
canonical simulations were performed to determine the exis-
tence of the magnetic Suid phase (see also Table III).

TQ

2.70
2.85
2.95
3.00
3,10
3.20
3.25
3.30
3.35
3.50
3.70
3.80
3.90
4.00
4.05
4.10
4.15
4.70
4.80
4.90
4.95
5.00
5.02

P
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.0
4.0
4.0
4.0
4.0
4.0

Pg
0.011(1)
0.020(2)
0.033(5)
0.060(9)
0.060(8)
0.072 (9)
0.086(14)
0.13(l)
O.21(2)
0.011(1)
0.017(1)
0.031(8)
0.053(6)
0.06(1)
0.065(5)
0.08(2)
o.lo(2)
0.03(6)
0.05(2)
0.05(1)
0.07(1)
0.06(1)
0.14(2)

Pg
0.021(l)
0.036(3)
0.053(3)
0.057(5)
o.o77(1)
0.099(5)
0.099(2)
0.124(4)
0.148(5)
0.025(2)
0.043(2)
0.046(6)
0.070(6)
0.084(4)
0.091(9)
0.101(4)
O. 111(4)
0.04(5)
0.07(2)
o.o72(4)
0.09(l)
0.08(1)
0.08 (5)

Pe
O.68(1)
O.63(2)
0.59(2)
0.57(2)
0.57(2)
0.46(3)
0.43(4)
0.39(2)
0.30(2)
0.64(2)
0.58(2)
0.54(2)
0.50(4)
0.46(2)
0.45(2)
0.41(4)
0.39(1)
0.48(8)
O.53(2)
0.50(2)
0.44(2)
0.41(2)
0.41(4)

Pq'

0.01(5)
0.02(5)
0.05(2)
0.05(6)
0.09(6)
o.oo(1)
0.11(1)
0.12(1)
0.14(2)
o.o3(o)
o.o3(3)
0.03(2)
0.06(3)
o.oo(3)
o.1o(2)
0.12(2)
0.11(3)
0.01(4)
0.10(3)
o.o7(4)
0.08(3)
0.07(3)
0.09(2)
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solid transition for p* = 2.5 occurs at p* 1.0 [27].
Thus, the existence of a magnetic Quid. phase depends in
part on where the triple point temperature and density
are. If the triple point temperature is sufFiciently low, a
magnetic Quid phase may exist in the region above the
triple point.

Calculated phase diagrams [23,25] have shown the crit-
ical point for the isotropic-magnetic coexistence to be
at a higher temperature than the gas-liquid T, even for
p* = 2. This is inconsistent with our simulation results,
although the density functional calculations [23] are pri-
marily for ellipsiodal geometries, not the spherical ge-
ometries used in the simulations. The anisotropy of the
ellipsoid promotes the magnetic Quid phase. For spheri-
cal geometry, the results are consistent with our results.
Our simulations also show that the value of A near T, is
too small for ordering to occur. Table III shows that P»
is small for p* = 2.5 at p* = 0.8 and T' = 2.5, which is
slightly below T*. Furthermore, as T* decreases at this
density, it is not until T* = 1.5 that P» & 0.5 and at
T* = 2.0 Pq ( 1/2 for p* ( 1.0. Thus, for the spherical
geometry, the simulations show that the gas-liquid T is
too high for a magnetic Quid phase to exist above it.

For p* = 2.5, Table III shows that for T* & 1.5, P» &
0.5. We take the magnetic liquid transition density to
be where P» ——0.50. There will be of course finite-size
effects [28] that tend with increasing K to lower Pq below
the transition and increase it above the transition. Here
we are mainly interested in the existence of the transition
as opposed to pinning down the transition point, which
would require simulations with much larger values of %.
For A = 4.19, we find the transition at p' 0.90. There
is the possibility that the system is a supercooled liquid
at this density. However, since the transition for hard-
sphere dipoles at A = 6.25 is at p* 1.0, we are most
likely below the liquid-solid transition. Furthermore, we
have found that the fcc crystal phase melts at p* = 1.0,

although the fcc crystal is most likely not the solid phase
ground state [27]. In general, Table III shows that for
A & 4.0 and p* + 0.90, P» & 0.50 and a magnetic liquid
regime exists.

V. PHASE COEXISTENCE
IN AN APPLIED FIELD

Phase coexistence in an applied Geld was studied at
two dipole moments p* = 1.0 and 2.5. We chose p* = 1
since at T, (II = 0), A = 0.71 so that the thermal and
L3 interactions are about of equal strength. For p*
2.5, A = 2.38 at T (II = 0) and the dipole interactions
are significantly larger than the L3 interactions. This is
especially true near T, . One might expect that the results
for the two dipoles strongly difI'er, but we find that much
of the results can be described in terms of dimensionless
quantities that remove the p* dependence.

For p* = 1 and large H*, we encountered some dif-
ficulties in obtaining accurate values of the coexisting
densities close to the critical point. This is a problem
that has been observed before [29]. The free energy sur-
face becomes rather Qat and the simulation can become
trapped away from the two minima. One might expect
the problem to be worse for p* = 2.5, but we found this
not to be the case.

Figure 4 shows the phase coexistence curves for p,
* = 1

and p* = 2.5 at selected Belds. As H increases, the
dipoles become progessively aligned with the Beld direc-
tion. The dipolar interaction between pairs of particles
is then stronger and the dipole moments are more corre-
lated. The critical temperature increases with field due
to the stronger dipolar interactions as is found in the ab-
sence of an applied Beld. In contrast to the varying T„

TABLE III. Data for dense liquid phase for % = 256.

P
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.0
3.0
3.0
3.0
3.5
3.5
3.5
3 ' 5
3.5
3.5

Ag
2.50
3.12
3.12
3.12
3.12
4.16
4.16
4.16
4.16
4.16
4.09
4.09
4.50
4.50
4.08
4.08
4.45
4.45
4.90
4.90

T*
2.5
2.0
2.0
2.0
2.0
1.5
1.5
1.5
1.5
1.5
2.2
2.2
2.0
2.00
3.0
3.00
2.75
2.75
2.50
2.50

P
0.80
0.75
0.80
0.85
0.95
0.80
0.85
0.90
0.95
1.00
0.80
0.90
0.90
1.00
0.80
0.90
0.80
0.90
0.90
1.00

2.83(3)
0.33(1)
0.98(4)
1.97(3)
5.21(2)

-O.93(5)
-0.41(4)

O.36(4)
1.57(7)
3.26(5)

-O.35(4)
1.74(7)
0.60(15)
3.42(9)
0.58(5)
2.70(7)
0.00(14)
1.62(12)
O.37(17)
2.98(7)

P1
0.08(1)
0.09(1)
0.11(4)
0.13(3)
O.21(3)
0.24(2)
O.36(9)
0.51(2)
0.62(1)
0.69(2)
0.17(10)
O.33(5)
o.55(6)
O.71(1)
0.20(4)
0.29(5)
0.22(8)
0.41(10)
0.64(2)
0.76(2)

2.8

E- 2.6

2.0 I » & I

1.5—

1.4

1.2
0 0.2 0.4

P
0.6 0.8

FIG. 4. The coexistence curves within an applied field are
plotted (a) for p' = 1 at H* = 0, 1, 2, and 3 and (b) for
p,

* = 2.5 at II* = 0, 0.5, 1.0, 2.0, and 5.0.
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the critical density changes at most only slightly. For
p* = 1.0 the shape of the coexistence curve changes
slightly, as can be seen by the fact that the midpoint
line becomes almost vertical. However, we can still fit
the curves with P = 0.32 and the p* = 2.5 midpoint
lines maintain a negative slope. Because the midpoint
line was more vertical for p* = 1 than p,

* = 2.5, more
data were needed near T, which tended to encounter the
convergence problem mentioned above.

The field dependence of the critical temperature can
be simplified by examining the critical temperature at
H, T,(H), relative to the zero field critical temperature
T, (0) in terms of the ratio

1
i

I I I I

i
I I I I

i

I I I I
i

I I I I
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I I I I
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I

0.8

0.6

04
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0
0

A collapse of the data (Fig. 5) for our two dipole mo-
ments is obtained when we plot T, versus the dimen-
sionless field using T, as the temperature,

FIG. 6. The magnetization per particle at the critical point
versus the applied field for p' = 1 (triangles) and p' = 2.5
(squares) .

We have drawn a least-squares fit to the data exclud-
ing the .H = 0 point, which fits the data within the
uncertainty. Near H = 0 there must be some nonlin-
ear behavior. At large H, i.e. , beyond the saturation
field, a p dependence is expected because saturation is

p dependent. We have not reached the saturation H in
our simulations. In order to determine T for the infinite
field, we performed Gibbs ensemble simulations with the
dipole moments fixed in the z direction. For this case,
we find T* = 3.64 for p* = 2.5. This yields T = 1.38,
which &om the fit occurs for gH ——20.5, which is beyond
the range we have studied. Thus, for the range of 0 we
studied, we see no effects of field saturation.

I I I
[

i I 1

(b)
I I I

i
I I I I

i
I f I

We can also get an idea of how near the systems are to
saturation by calculating the magnetization M or equiv-
alently Pi. In Tables IV and V we list the values of
the order parameter P». We want to calculate M at the
critical point. The magnetization in the gas phase is ba-
sically constant as the dipoles only interact weakly. The
interaction energy between a dipole pair will be k~T at
a separation of r = A ~ 0. For p* 0.30, the average
separation is a = p ~ 1.50. We are working in the
range of A ( 4, which gives r & a implying the dipolar
interaction energies are at most equal to k~T. We take
M, to be the value of M at the critical point. Since M is
constant on the gas coexistence curve, the limit T ~ T

10

—10

x
O ] ] 10

1.0 ~
I I I I I

0 2 4 6 8 10
p, 'H"/[T."(H)/T;(0)]

FIG. 5. The critical temperature for systems exhibits some
scaling when plotted versus the dimensionless field. In or-
der for the data of the two p' to be on the same curve, we
scale T; (H) by the zero field T'. This is also done in the
dimensionless Geld. The solid line is a least-squares Gt to the
nonzero Geld data.

0

—10

—10 10
I

—10 10

FIG. 7. Projection plots for (a) H* = 0 and (b) H" = 1.0
for p' = 2 at p* = 0.1 and T* = 1 show the efFect of an
applied field on the liquid droplet shape in the coexistence
region. The field is parallel to the z direction.
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TABLE IV. Phase coexistence data in fields for p' = 1.0.

T*
1.10
1.20
1.30
1.35
1.37
1.40
1.30
1.35
1.40
1.44
1.46
1.48
1.30
1.35
1.40
1.45
1.45
1.47

1.0
1..0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0

Pg
0.025(2)
0.047(3)
0.080(5)
0.113(7)
0.122 (9)
o.i5(i)
0.077(6)
0.090(5)
0.109(5)
0.157(9)
0.186(8)
0.21(3)
0.056(8)
0.078(4)
0.099(5)
0.132(ll)
0.129(11)
0.157(6)

P*
0.023(2)
0.043 (3)
0.071(3)
0.092(3)
0.098(4)
o.ii(s)
0.069(2)
0.079(4)
0.096(2)
0.117(2)
0.129(3)
0.138(5)
o.o55(5)
0.072(2)
0.088(2)
0.108(6)
0.108(6)
0.120(1)

P(g)
1

0.24(4)
0.21(2)
O.22(5)
0.21(7)
O.22(2)
O.22(2)
0.46(1)
0.45(2)
O.44(1)
0.45(2)
o.45(i)
o.46(i)
0.60(1)
o.6o(i)
0.58(1)
0.60(1)
0.58(1)
0.58(l)

Pe
o.724(5)
0.669(5)
0.602 (5)
0.554(7)
0.54(1)
0.48(2)
0.629(6)
0.590(4)
0.544(8)
0.50(l)
0.49(2)
0.45(2)
0.646(3)
0.614(8)
0.575 (17)
0.529(6)
0.518(16)
0.51(2)

Pe*

0.024(7)
0.046(7)
0.072(6)
0.083(8)
0.09(2)
0.100(7)
0.067(7)
0.08(2)
0.094(9)
0.118(6)
o.is2(7)
0.141(8)
o.o5(i)
0.06(1)
0.08(2)
0.104(6)
0.103(9)
o.i2(2)

1
0.477(3)
0.43(1)
o.366(7)
0.341(7)
0.31(1)
o.so(3)
0.60(1)
0.57(1)
0.55(1)
o.53(2)
0.52(1)
0.51(1)
o.7o(1)
o.69(i)
0.67(1)
0.65(1)
0.65(1)
0.65(1)

is trivial, in contrast to the same limit on the liquid co-
existence curve. We thus use the constant value of M
on the gas coexistence curve as M . In Fig. 6 we plot
M, /pN for the two cases. Neither case has reached sat-
uration, as we expected since there is no p dependence
in our T

One of the important questions concerning dipolar Hu-
ids (FF, MR, and ER) presently under consideration
[2,3,16,30—32] is the shape of the liquid coexisting phase.
We can only examine the structure at the particle level
and are mainly concerned with confirming the basic ef-

feet of elongation of a liquid droplet in the applied field.
We have performed a constant volume canonical ensem-
ble simulation for p* = 2 at p* = 0.01, T* = 1.0, and
H* = 0 and 1.0. In Fig. 7 we show projection plots
for the two different H*. In the absence of a field, the
droplets are spherical on average as expected, and in the
presence of a field, the droplets become extended along
the field direction (z in Fig. 7) and in this case two of
the droplets at H* = 0 coalesced into one. Thus we find
the two main efFects of an applied field on liquid droplets:
elongation in the field direction and coalescence [33,34].

T*
2.30
2.40
2.50
2.60
2.65
2.70
2.40
2.50
2.65
2.70
2.72
2.73
2.74
2.40
2.50
2.60
2.70
2.80
2.85
2.80
2.90
3.00
3.05
3.08
3.10

0.5
0.5
0.5
0.5
0.5
0.5
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
5.0
5.0
5.0
5.0
5.0
5.0

Pg
0.03(1)
o.o4(i)
o.o9(i)
0.16(3)
0.14(1)
0.21(5)
0.030(5)
0.046(5)
0.09(2)
O. ii(2)
o.is(2)
0.12(2)
0.15(2)
0.019(l)
0.028(3)
o.o4o(6)
0.069(11)
0.10(2)
O. is(2)
o.o43(8)
0.058(6)
0.10(2)
o.o9(i)
o.i2(2)
o.i2(2)

TABI E V. Phase coexis

Pg
0.045(4)
0.06(1)
0.092(3)
0.118(6)
0.14(1)
O. 16(1)
0.048(6)
0.069(4)
0.109(4)
0.127(8)
0.133(7)
0.133(10)
0.137(7)
0.034(4)
0.047(3)
0.066(6)
0.093(6)
0.118(10)
0.136(3)
0.070(5)
0.091(6)
0.118(7)
0.13(l)
0.14(1)
0.14(2)

Pe
0.66(1)
0.62(1)
0.56(1)
0.49(2)
0.44(4)
0.38(5)
0.66(1)
0.61(1)
0.51(2)
0.49(3)
o.47(i)
0.44(3)
0.45(1)
0.702(3)
0.664(5)
0.623(6)
0.585(13)
0.516(6)
0.50 (2)
0.609(6)
0.579(8)
0.54(2)
0.48(l)
0.46(3)
0.44(2)

tence data in fields for p* = 2.5.

P(g)
1

0.20(1)
0.16(1)
0.21(2)
0.23(2)
0.20(5)
0.22(6)
o.s4(2)
0.33(4)
0.38 (4)
0.39(1)
0.40(2)
0.39(4)
0.43(4)
0.61(4)
0.59(3)
0.59(3)
0.60(2)
0.60(2)
o.6i(2)
0.82(1)
0.80(l)
0.80(1)
0.80(l)
0.80(1)
0.8o(i)

Pe
0.05(1)
0.07(2)
0.09(3)
0.12(1)
0.14(2)
0.16(3)
0.05(3)
0.07(2)
0.10(4)
0.136(3)
o.is(1)
0.13(1)
0.14(1)
0.03(5)
0.06(3)
0.07(6)
0.10(1)
0.13(1)
0.14(l)
0.063(5)
0.09(2)
0.12(2)
0.122(8)
0.14(3)
0.14(l)

p(e)
1

0.53(2)
0.50(2)
0.44(3)
0.40(1)
0.36(1)
0.33(l)
0.68(l)
0.64(1)
0.59(1)
0.57(1)
0.56(2)
0.54(2)
0.55(1)
0.80(1)
0.78(1)
o.77(i)
0.75(1)
o.72(i)
0.72(1)
0.86(1)
0.86(l)
0.85(1)
0.86(1)
0.83(1)
0.83(l)
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VI. CONCLUSION

The results of the the present simulations give a better
understanding of the phase diagram of the Stockmayer
fluid in both zero or nonzero fields. The mapping of the
SF6 system onto the SF system shows that dipole in-
teraction strength in comparison with the I J interaction
strength is the determining quantity for the occurrence
of phase coexistence. The mapping is particularly useful
when comparing with experimental systems, as discussed
below. The p dependence of the critical point is rather
simple for most of the range over which SF phase coexis-
tence occurs. In this range, the temperature T' depends
linearly on p . I inear behavior is also true for p, al-
though there is more uncertainty here. The magnetic
fluid phase does appear at high densities for sufficently
large p. At least for the spherical geometry, the tricrit-
ical temperature appears to be below T . In an applied
fields, a p-independent scaling can be obtained at least
for a broad range of Gelds for the critical temperature as
a function of applied Geld when the temperature is scaled
by the zero Geld T, .

One of the important conclusions of previous works
[9,10] is that the hard- or soft-sphere dipolar systems
were insufficient as models for ferrofluids (and most likely
MR and ER fluids). Some added central force attraction
is required such as that found in the SF or the SF6 poten-
tials. Dipole moments in terms of A are about 1, although
ferro8uids possess a large polydispersity [1]. However,
the residual strength of an attractive interaction such as

van der Waals is unknown. Thus the value of e6 must
be determined from some experimental data. If phase
coexistence occurs in zero field, one way of determing c6
is to map the value of T for H = 0 and the given value
of p onto the plot of T versus e6. In the cases where no
phase coexistence occurs at H = 0, one must determine
e6 from the value of T, at H ) 0. The linear relationships
between T or p and p, simplify this procedure some-
what. In some of the experiments [15] phase coexistence
curves are not fully measured, but slices in the H-p plane
at fixed T are measured. To compare with these experi-
ments requires calculation of coexistence curves not only
at several H, but also several T and e6 in order to deter-
mine the correct e6 and then make the correct slices.

The structure at the particle level in ferrofluids has not
been resolved experimentally. Simulations naturally of-
fer a means to examine this structure. The structure of
the columnar objects [1,35] that form in ferrofluids is an
open question. In the simulations of soft-sphere dipoles,
chains form, consisting of connected single particles as
in a polymer [9,10]. These chains do not aggregate to
form the columnar structures as has been observed ex-
perimentally. In contrast, we find in the simulations of
the Stockmayer fluid that the polymeric chains do not
form. In an applied field, the zero field droplets distort
becoming elongated in the field direction. Droplets are
also seen to coalesce. This suggests that in ferrofluids the
columns are formed by initial formation of liquid droplets
that are distorted into an elliptical shape and coalesce in
an applied Beld to form columns spanning the experimen-
tal cell.
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