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We examine the structure of soft-sphere dipolar (SSD) Guids as a function of density and applied
6eld. Besides being fundamental test systems for theory, dipolar Quids are models for ferro6uids.
We show that chain formation is a fundamental characteristic of the SSD Quid resulting in a phase
diagram much different from Buids with an isotropic potential. In particular, two-phase liquid-gas
coexistence does not appear to occur in the absence of an applied field. In an applied 6eld, phase
coexistence does occur and we discuss the structure of the SSD system in the vicinity of the critical
point. In contrast to expectations, the SSD does not model ferroBuids well. An additional attractive
interaction beyond the dipolar interaction is needed to model ferrofiuids.

PACS number(s): 61.20.—p, 83.80.Gv, 75.50.Mm

I. INTRODUCTIIDN

A fundamental problem of statistical mechanics is the
phase diagram of dipolar spheres. In contrast to simpler
systems such as the Lennard-Jones (LJ) system, dipolar
systems possess a long-ranged interaction that is attrac-
tive or repulsive depending on the orientation. Recent
simulations [1—8] have shown that dipolar systems pos-
sess a rich variety of structures and a complex phase dia-
gram. An understanding of the structure of dipolar sys-
tems will help in understanding model dipolar systems
such as ferrofluids, magnetorheological (MR) Guids, and
electrorheological (ER) Guids. Ferrofluids are permanent
magnetic dipoles in solution. The MR and the ER Quids
are similar except that the dipoles are not permanent,
but induced. In addition, for ER guids image dipoles
must be treated. These systems combine the interesting
behavior of magnetism or electricity with that of Quids
yielding intriguing phenomena and. technological appli-
cations [9,10]. In this paper we expand on results of our
recent Monte Carlo (MC) simulations [8] of dipolar soft
spheres in an applied field and examine the zero field
phase diagram.

Recent simulations [1—8,11] modeled systems that have
permanent dipole moments within the range found in
ferroQuids. Two important findings have resulted from
these simulations. The first is that at high densities a
magnetic Quid phase can occur in the absence of an ap-
plied Geld [1,2]. Such a state is yet unattainable in the fer-
roQuid system, partly because the maximum attainable
volume fraction of magnetic material is low (20'%%uo). The
second important result is that for hard- or soft-sphere
dipolar systems with purely repulsive short-range inter-
actions, simulations have not found a two-phase liquid-
gas coexistence in zero field [3,6,7]. This difFers from ex-
periments on ferroQuids in which phase coexistence is ob-
served [12,13] and theories of dipolar systems that predict
it [14—23]. These results, in conjunction with the simu-
lations of van Leeuwen and Smit [7], who found that a
dipolar interaction with some additional attraction does
have phase coexistence, clearly demonstrate the signif-

icance of nondipolar attractive interactions. Therefore,
there is a fundamental difference between dipolar sys-
tems with only a purely repulsive core and, for example,
Stockmayer Quids, which have an additional LJ interac-
tion besides the dipole interaction.

Our previous work found coexistence for soft-sphere
dipoles in an applied field H [8]. The critical density p, is
approximately independent of H. Furthermore, p is at a
rather low density and gives a lower bound for p at H =
O. Together with the simulations of van Leeuwen and
Smit [7], which give an upper bound for p„our results
show that coexistence can only occur, if at all, in a narrow
density range and the dimensionless critical temperature
must be significantly less than all predicted values.

The dipole-dipole interaction between particles i and
j is

where p, , is the dipole moment of the ith particle, r,~ is
the displacement vector between the two particles, and
a caret signifies a unit vector. There are three relevant
parameters for the dipolar systems: the density p, the
dimensionless dipolar coupling strength given by the ra-
tio A = p /oT, where o is t. he particle diameter and T
is the temperature, and the dimensionless applied field

g = pH/T The tempera. ture may also be an indepen-
dent variable depending on the nondipolar interactions.
In any case, the dimensionless temperature is r = 1/A.

Some sort of repulsive core is necessary in order to
remove the singularity of the dipolar interaction at zero
separation and to model the steric repulsion. We use the
soft-sphere potential, which commonly has the form

(2)

where o. is the effective particle diameter and c is the
energy scale. For these soft-sphere dipoles (SSDs) the
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core potential is purely repulsive and all attraction arises
solely due to the dipolar interaction. Thus all conden-
sation occurs because of the dipolar interaction. For
hard-sphere dipoles, the temperature and A are depen-
dent quantities. Strictly speaking, this does not hold for
the soft-sphere dipoles, but changing the temperature is
basically equivalent to shifting the effective hard-sphere
diameter and we can thus view the two quantities as de-
pendent.

The other prototypical potential is the Lennard-Jones
dipoles or the Stockmayer fluid [7,24,25]. In this system,
along with the dipole potential there is a LJ potential

The LJ potential can be viewed as modeling the van der
Waals interaction between the particles. In this case,
attractive interactions arise from both the LJ and the
dipolar interactions. The temperature and A are now
independent quantities in contrast to the SSD system.
Unlike the SSD fluid, a liquid phase can occur solely due
to the nonpolar interaction. In particular, the LJ system
has a critical point at T,* = 1.32 and p,* = 0.33 [26],
where variables are given in reduced form: T* = T/s,
p' = po, p* = p2/so, and H* = Hgos/s Th. e cr.

is either the soft sphere or the LJ diameter depending
on the potential. Coexistence has been found for the
Stockmayer system in zero Geld; at p* = 2, the critical
point is T,* = 2.09 and p,' = 0.289 [24].

Another diBerence between the Stockmayer fluid and
the SSD fluid is that the former has a negative pressure at
high densities for A ) 2 [27]. Thus the Stockmayer fiuid
is unstable where the magnetic liquid phase occurs in
the SSD system. For this reason the SSD system was fa-
vored in some simulations [1,2,8,28]. Not surprisingly, the
values of p and A, where negative pressures occur, turn
out to be within the two-phase coexistence regime. The
structure of the Stockmayer system at liquid densities in
the one-phase regime has not been previously exaxnined
for the existence of a magnetic liquid phase. In the fol-
lowing paper [29], we calculate the coexistence curves for
the Stockmayer system at larger values of p* () 2.5) and
find the magnetic liquid phase in the one-phase regime.
Assuming that the phase is not a supercooled liquid, we
find that at least for p* & 2.5, the Stockmayer fluid, like
the SSD fluid, has a magnetic liquid regime [29].

Van I eeuwen and Smit [7] recently examined the effect
of varying the attractive part of the LJ interaction upon
the critical point. They used the nondipolar interaction

where e6 is the constant used to vary the strength of the
attractive interaction. As e6 decreases from 1, which is
just the Stockmayer Buid, T and p decrease monotoni-
cally. However, for e6 & 0.30 no coexistence was found.

As noted above, there have been several theoretical
calculations of the critical point for hard-sphere dipoles

[14—23,30]. All of these find phase coexistence in the ab-
sence of an applied field, in contrast to the simulations.
Among these various theoretical calculations there is very
little agreement on the value of either T or p . Values
for the dimensionless critical temperature w range from
0.225 to 0.66 and for p,* from 0.053 to 0.50 for H = 0.
Two mechanisms have been proposed for coexistence.
One is that Quctuating dipoles produce a van der Waals
interaction and the traditional gas-liquid coexistence. In
addition, a second coexistence mechanism occurs due to
the magnetic fluid phase in which the isotropic-magnetic
fluid transition ends in a tricritical point yielding coexis-
tence between the isotropic and the magnetic fluids or at
even lower temperatures between the gas and the mag-
netic fiuid phases [22,30].

The ranges for p and T are quite large and suggest
that many of the approximations are invalid. Further-
more, the simulations strongly suggest no coexistence in
zero Geld and if a critical point exists, it is outside the
predicted range. The failure of the theories of hard- or
soft-sphere dipoles is the presumption that the fluctuat-
ing dipolar interaction yields a van der Waals interaction,
which in turn leads to coexistence. We show below (Secs.
III A and IV) that in the regime of interest, the dipolar
interaction cannot be approximated by a van der Waals
interaction. In the hard-sphere dipolar system condensa-
tion is induced solely by the dipolar interaction and the
simulation results presented here show that the conden-
sation is fundamentally di8'erent for dipoles with purely
repulsive cores. In contast, in the Stockmayer system the
van der Waals interaction is already present and induces
a liquid phase. The coexistence that occurs in Stock-
mayer systems is a perturbation of normal gas-liquid co-
existence of a LJ fluid. Not surprisingly, the Stockmayer
Quid possesses coexistence within the range predicted.

In recent density functional calculations [30], it was
found that the phase coexistence depends on the shape
of the system volume. In these calculations, the system
was taken as an ellipsoid of revolution with axis of rev-
olution k times the other two axes. The magnetic fluid
phase is favored for large k. Simulations with the Ewald
sum usually treat a cubic, or equivalently spherical, sys-
tem [31]. The cube has side length S » L, where L is
the simulation box length. The simulation is generally
viewed as modeling a microscopic piece of the bulk sys-
tem. For example, with respect to ferrofluids, which are
often experimentally studied confined between parallel
plates, the simulation models a cube within the middle
of the system. Ideally, one wants to choose the perme-
ability due to the boundary conditions at S, @Bc equal
to the permeability of the bulk system pb„~k, but that
requires a priori knowledge, which one does not have.
Recent simulations have shown that the difFerence be-
tween using @Bc ——oo and pB~ ——pb„~i, is small as long
as pb„u, is large [2].

Here we present results of simulations on SSD systems
examining the structure of systems with and without an
applied Geld at four difFerent values of the dipole mo-
ment. Simulations for the Stockmayer Quid in a Geld are
presented in the following paper [29]. After describing
the simulation model and method in Sec. II, we exam-
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ine the Quid phase to determine the nature of the con-
densed phase contrasting it with that of the Stockmayer
Huid. In particular, the onset of chain formation and the
densed Huid structure is determined for a range of dipole
strengths in Secs. III A and III B, respectively. We also
determine in Sec. III C the magnetic Quid transition den-
sity for a range of dipole strengths. At high densities, we
show and discuss a strong dependence on initial condi-
tions. The structure in an applied Beld is examined near
the critical point in Sec. III D. In Sec. IV we present the
complete Quid phase diagram as a function of p and v.
Conclusions and a comparison with experimental systems
are given in Sec. V.

II. SIMULATION METHODS

Our simulations follow that of Wei and Patey [1,2] and
Kusalik [28,32]. We performed simulations for p' = 2.0,
2.5, 3.0, and 4.0. Most simulations were at T* = 1,
although some, especially in an applied Beld, were per-
forrned at varying T*. The Ewald sum is used to evaluate
the dipole interaction in periodic boundary conditions
with the convergence parameter o. = 5.75 and reciprocal
vectors are summed to 10vr/L, where L is the length of
the simulation cell. The Ewald sum contains a boundary
term for the total potential energy

4a
(2@Bc+ 1)Ls

where M = P,. p; is the magnetization. We use pn~ =
oo, making the above term zero. This allows the uni-
forrnly magnetized state to occur. A value of @Bc ——1
will lead to magnetic domains because this condition pre-
vents the system from having a net magnetization [2].
This form of the Ewald sum treats a periodic lattice en-
closed in a large sphere or cube [31]. These boundary
conditions are consistent with experiments performed be-
tween parallel plates. For a crystal lattice, Griffiths [33]
has shown that in the thermodynamic limit, there is no
dependence on the boundary conditions.

Canonical constant volume ensemble simulations were
performed mainly with N = 256 particles. Previous sim-
ulations [2] found insignificant differences between 256
and 864 particle simulations in zero Beld. For a cubic
cell N = 256 is commensurate w'ith a fcc lattice. Dipoles
form a centered tetragonal (ct) lattice at high densities,
which is incommensurate with the N = 256 cube [2,4].
We have thus performed some simulations with N = 192,
which is commensurate with the ct lattice. The simu-
lations ran for at least 10 MC cycles with each cycle
comprised of an attempt to translate and rotate every
particle. However, at some phase points long runs of'

5 x 10 cycles were required. The particle step size was
chosen to achieve about 50% acceptance. The rotation
step was usually set so that the component of the new
moment in the direction of the old moment was at most
0.2. This was done for most cases since the acceptance
rate could not be lowered to 50'%%uo. The rotation step
size was lowered below 0.2, when that would yield a 50%%uo

acceptance.
Most of our simulations used either an initial configura-

tion of random positions and moments or the last configu-
ration of a previous run (both increasing and decreasing
density). We will discuss the various initial configura-
tions and the dependence on them in Sec. III C.

Gibbs ensemble simulations were also performed to de-
termine the coexistence curves in an applied Beld. Be-
low the critical temperature the Gibbs ensemble directly
gives the two coexistence densities at a given tempera-
ture [34,35]. For the Gibbs simulations, K = 512. The
Gibbs simulations required at least 10 cycles; here each
cycle included an attempt to move each particle once, 100
attempts to change the cell volume, and 500 attempts to
exchange particles between the two cells. Only a small
percentage of exchanges is accepted in these Gibbs sim-
ulations. Thus an extremely large number of attempts is
needed to gather reasonable statistics. We have verified
that both the pressure and the chemical potential are the
same in the two cells. The pressure is calculated from the
virial expression and the chemical potential is calculated
from the overlap of the particle insertion and extraction
energy distributions [26].

Our simulations in the Gibbs ensemble were performed
with H* = 0.25, 0.5, 1.0, and 2.0. For all of these fields we
found coexistence and the critical parameters are given
in Table I. For each field only a few points on the co-
existence curve were obtained, because the critical tem-
peratures ~ are relatively low, making simulation times
prohibitively long. For this reason, II* ( 0.25 were not
studied. We determined w by bracketing it between the
Gibbs run that gave two clearly distinct densities, im-
plying coexistence and the Gibbs run that gave a single-
peaked density distribution implying that w & w, . The
uncertainty in w, +0.008, comes directly from this brack-
eting. The critical density is taken from the law of recti-
linear diameters. With just a few points estimating the
uncertainty in p,* i's difBcult, but as p must be between
the two coexisting phase densities, we estimate the un-
certainty as +0.005.

We characterize the system structure through two or-
der paraineters [2]. The rank-one order parameter Pi is
defined as

N
1 „-1P, = —) js, . d= —M d,S S (6)

TABLE I. Critical parameters at various Beld strengths.

H
0.25
0.50
1.0
2.0

Pc
0.032
0.032
0.030
0.035

A

8.93
6.94
6.44
5.95

gC

0.82
1.40
2.60
4.75

+C

0.112
0.144
0.155
0.168

where d is the director and M is the total magnetization
of the system. For a completely magnetized system, P~ ——

1. The second-rank order parameter P2 is the largest
eigenvalue of the matrix
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N

(7)
i=i

where p, is the o. component of the unit vector p,, The
corresponding eigenvector is the director. For an ordered
nematic state, P2 ——1.

Either an applied field or high densities will orient
dipolar systems and it is thus useful to examine the struc-
ture parallel and perpendicular to the preferred direction.
To do this we calculated two pair distribution functions

) h(rIi. —rii)
i jWi

N pL 2krl
]

where I is the simulation box length, r,. - and r+ are
the parallel and perpendicular distances to the preferred
direction, and Lrl] is the bin width.

In order to examine the anisotropic order in the dipo-
lar systems, we also calculated the two-dimensional pair
distribution function g(g, z),

g(g, z) =
N2vr pgAz

(10)

where z, = p,, r;~, g; = r,~
—(jc; r,~)gs;, and b, z is

the bin size for z. Given a particle at the origin with its
moment along the z axis, the probability to find another
particle with cylindrical coordinates (g, z) is g(g, z).

III. RESULTS: STRUCTURE OF SOFT SPHERE
DIPOLAR SYSTEM

A. Onset of chain formation

A gas phase must exist at suKciently high tempera-
tures and/or low densities. The transition to the liquid
state occurs when particles begin to condense forming
clusters. Usually, the onset of the liquid phase can be
roughly determined from when the average number of
particles per cluster is greater than 1. In this case the
pair distribution function will exhibit peaks correspond-
ing to the nearest-neighbor separation. In purely dipolar
systems, the cluster structure is anisotropic. The nearest
neighbor of a particle is most likely at either the dipoles'
head or tail.

We performed a cluster analysis similar to that of
Weis and Levesque [3]. Two particles are defined as
bonded if their dipolar pair energy is lower than ub „d——

—1.5Ak~T. This choice corresponds to an intermediate
state between the parallel and antiparallel states. Two
collinear, parallel particles i and j can continuously go to
the antiparallel state by rotating j about i and simulta-
neously rotating the moment of j. The dipole energy is
—1.5Ak~T when the dipole moments are perpendicular
and the angle between r;z and ~; is vr/4. Thus this energy
range does not consider the antiparallel state as bonded
since its dipolar pair energy is —Ak~T. Pair energy dis-
tributions show that for large values of A the antiparallel
state is only a transient state. The clusters that form are
linear chains and rings. We do allow branched chains in

4vro 3
c = exp[2A((3)],81aiA2 (12)

where ai ——1 —1/256 and the Riemann zeta function
((3) = 1.202 for H = 0. The exponential dependence on
A remains and the densities for the onset of chain forma-
tion for A =4, 6.25, 9, and 16 are p* = 0.0069, 4.5 x 10
2.1 x 10 " and 3.2 x 10, respectively, extremely di-
lute densities. From just these simple calculations we see
that dipolar systems with a purely repulsive core possess
a radically diBerent phase diagram compared to the LJ
system, for example.

One can do another simple calculation that indicates
the density at which dipolar interaction become impor-
tant in comparison with thermal fluctuations. We define
the dipolar interaction length, much like the Bjerrum

our formulations, but they occur rather rarely with this
choice of cluster definition.

Some idea of the density dependence of the chain for-
mation can be obtained from the virial coefFicient, which
has been calculated for large A [15]. The asymptotic ex-
pression for the virial coeKcient B is

3KO

18A3

The density of dimers p2 is —Bp . The system would be
all dimers at pz ———1/B. Of course, trimers, etc. , will
form starting at a lower density and we should think of
pz

' as an upper bound for strong bonding. The key point
is that the exponential dependence produces extremely
small values for pz' at the typical values of A. For A = 9,
this density is p* = 6.4 x 10 . Thus the virial implies a
significant amount of chaining even at quite low densities.

Jordan [36,37] has performed an improved calculation
of n-mer probabilities in the limit of large A. He calcu-
lated the partition functions in both zero and nonzero
fields treating only linear chains. The critical condition
for chain formation is pc 1, where
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length for Coulomb systems, to be the separation dis-
tance at which the dipole-dipole interaction energy equals
kgT:
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The dipole interactions will be significant at the den-
sity p~, where the average particle separation equals E~.
Taking the average separation distance to be p ~ we find
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Since for p ) p~ the dipole interactions between nearest
neighbors is greater than kI3T, p~ is the density at which
all particles will be part of a chain, if A is large enough
to produce a strong bond. Equation (14) also gives a
connection between p and T, which suggests a boundary
in the phase diagram (see Sec. IV).

Using our cluster analysis, we can test the above pre-
dictions. For A = 4 we find that less than 0.5% of the
particles are in dimers at p* = 0.01. At this density no
higher-order n-mers exist. By p* = 0.1 the average num-
ber of particles per chain (n) is 1.04 or about 4% of the
particles are in a dimer. The density dependence is log-
arithmically decaying and by p* = 0.001 the number of
dimers is practically zero. Thus chain formation begins
at the same order of magnitude as given by the 3ordan
criterion. However, if we examine g(r), a peak is found
at the nearest-neighbor distance even at p* = 10 (Fig.
1). This peak is due to dimers, since no structure is ob-
served at longer separations; the system is gaslike except
for the peak at r = cr. To compare to the cluster analy-
sis one must examine the number density n(r) = pg(r).
The area under the first peak gives the actual number
of bonded dipoles. Because p is so small and the peak
heights are of order 1 for A = 4, the number of dimers im-
plied by g(r) becomes logarithmically small, even though
g(r) at r = cr is quite large.

A more dramatic display of the large peaks in g(r) is
found for A = 9. Because the peaks are so large, we plot
n(r) instead of g(r) in Fig. l. In both cases, higher-
order peaks due to trimers, etc. , are visible. The dimer
peak is rather sharp and well defined. The dimer peak
height for n(r) is about 1, which implies that the peak
height for g(r) is about 1/p*, quite large for these low
densities. In fact, the peak height in the structure factor
S(k) is also large. The peak height for A = 9 at p* = 0.01
is greater than 6. By the Hansen-Verlet criterion, such
a peak height usually implies the system is a solid [38].
Obviously, this is not true. One can understand this in
terms of the Hansen-Verlet criterion by realizing that the
bonds that yield the first peak are extremely stable, i.e. ,
solidlike. That the bonds are quite stable is also indicated
by n(r) being zero between the peaks.

There is an additional unusual characteristic of g(r).
One normally expects the first peak height to decrease
with decreasing density and disappear as the gas regime
is entered. In contrast to this trend, we find that the first
peak actually grows with decreasing density for large A,

but the peak heights in n(r) decrease with decreasing
density as required. This increase in the peak height of
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FIG. 1. Distribution functions at low densities show peaks
due to chain formation: (a) g(r) for p* = 2 (A = 4) at
p* = 10, dotted line; p' = 0.01, solid line; p" = 0.1, short
dashed line. (b) n(r) for p,

* = 2.5 (A = 6.25) with same lines
as in (a) except no p' = 0.1. (c) n(r) for p" = 3 (A = 9) with
same lines as in (h).

g(r) implies that the number of dimers does not decrease
as rapidly as the density.

The degree of chaining at these low densities for high A

is exhibited in Fig. 2, which is a projection plot for A = 9
at p* = 10 . For these large A values we always find
strong chain formation even at such extremely low densi-
ties. Long chains containing up to 20 particles are shown
in Fig. 2. Some of the chains have formed loops. We
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FIG. 2. Projection plot of p' = 3 (A = 9) at p* = 0.001
shows the presence of chains and rings at an extremely dilute
concentration.
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cannot verify the Jordan criterion for the chain forma-
tion at A = 9, since the onset occurs at about p* = 10
Clearly though, chain formation does occur at quite low
densities for A & 9.

We can compare our results with Jordan's criterion at
A = 6.25, which gives the onset at p* = 4.5 x 10 . At
p* = 0.001, 2% of the particles are in dimers according
to the cluster analysis. By p = 10, which is slightly
above the Jordan density, 0.26% of the particles are in
dimers. Extrapolations to p* = 1 x 10 give about
0.02%, which is zero within error. Thus, for A = 6.25 like
A = 4, Jordan's criterion appears to at least give the cor-
rect order of magnitude for the onset of chain formation.

An examination of g(r) at low density for p,
* = 2.5

shows the large peak due to the presence of dimers and
even a small second peak for trimers at p* = 0.01 (Fig.
1). Unlike the other cases, we find that the first peak in
g(r) at p* = 10 is lower than at p* = 10 . Also in
contrast to the larger A behavior, all the peaks in n(r)
are less than one.

The chained structure of the SSD system at dilute den-
sities is not at all like a LJ fluid. Gas-liquid coexistence
for SSD was predicted on the basis of Huctuating dipoles
interacting via a van der Waals potential. The chains
that form at very dilute densities do not occur for van
der Waals interactions. Both the structure and the lack of
zero Geld coexistence in the SSD imply that something is
wrong with the usual argument for the van der Waals co-
existence. The derivation of the Buctuating dipole mean
potential is only valid for A ( 1 [39], because it involves
an expansion of the Boltzmann factor in powers of A. In
this regime, the dipole interaction is weak in comparison
to kI3T and the dipoles Huctuate considerably. However,
outside this range, there are strong correlations in the
dipole-dipole orientation, as our results show, and the
average potential is no longer applicable.

The strong difference between the SSD fluid and the
Stockmayer Quid is clearly exhibited in Fig. 3. The Hg-
ure shows projection plots for both Huids for A = 4 at
p* = 0.01 and T' = 1. The Stockmayer Quid is in the co-
existence region, as can be seen by the spherical droplets
that have formed. In contrast there is no condensation
present in the SSD Huid. Thus it is clear the condensa-
tion present in the Stockmayer Quid is due to the attrac-
tive part of the LJ interaction, which is consistent with
spherical droplets forming instead of chains.
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FIG. 3. Projection plots for (a) Stockmayer and (b) SSD
fluids for p' = 2 at p* = 0.1 and T* = 1 show the fundamental
differences between the two systems' fluid structure.

)gOO

because the chains are polydisperse and their length de-
pends on density as well as A. Beyond the overlap density
the chains become entangled, greatly slowing the dynam-
ics. However, unlike neutral polymers the dipolar chains
have a tendency to orient and produce a nematic state.
The structure of a dipolar Quid is thus more complicated
than a polymer system.

We have seen that the structure of the SSD Quid at low
densities difFers greatly from the isotropic LJ Quid. This
difference is due to the anisotropi. c dipole potential, which
yields an anisotropic fluid structure (see Fig. 2). This
anisotropy can be readily seen in the pair distribution
function g(g, z). For p,

* = 3 at p* = 0.01 we show the
surface plot of g(g, z) in Fig. 4. The most striking aspect

B. Dense Quid phase
)OOO

We now have some idea of the onset of chain formation
and turn our attention to the structure of the chained
Quid as a function of density and A. In this section we
consider the density regime in which the Quid is nonmag-
netic.

At low densities the system is composed of chains of
varying length that do not overlap. In the terminology
of polymer physics, this is a dilute system. There will be
an overlap density where the average chain-chain separa-
tion equals the average end-to-end distance of the chain.
The value for the overlap density is diKcult to determine

gOO

FIG. 4. The two-dimensional pair distribution function for
p* = 3 at p* = 0.01 clearly displays the anisotropic structure
of the fluid.
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of the pair distribution function is the two large peaks
corresponding to the high probability of parallel head-
to-tail alignment of two dipoles. Instead of uniform rings
at the successive neighbor distances, one finds smaller
peaks that look like fingers but protrude further as one
is farther &om the origin. This distribution shows that
the highest probability is along the z axis and that as the
chains get longer, they also become more flexible.

The effects of chaining can be seen in the radial distri-
bution functions as a function of density. Figures 5(a)—
5(c) show g(r) for p* = 2, 2.5, and 3 at various densities
in the range p* = 0.1—0.7. In a system with an attractive
interaction, the nearest-neighbor peak is located close to
the position of the potential minimum and all the peaks
grow as the density increases. The figures show that the
nearest-neighbor peak for the SSD system is also located
close to the position of the potential minimum. In all
cases, the lowest density plotted has the highest first
peak, continuing the trend noticed earlier for very dilute
densities. Since the peak height is larger for larger A, the
trend is most noticeable for p* = 3 for which p* = 0.1
also has the highest second and third peaks. For p* = 2,
the peak heights increase with density for p* & 0.4 as
an isotropic fluid. For p* = 2.5 the first peak height
decreases until p* = 0.5. In contrast, the first peak is
always decreasing with density for p,

* = 3. In fact, there
are several differences between the p* = 2.5 and p* = 3

0.8

I I I
)

I I I I
(

I I I I

(a)

0.6

0.4

0.2 —
I

T s s s s
I'

s

I
I I I I

I
I

0.1

I I I I I I I I l I I I
I I I

L

I I I I
)

I I I

(b)—

0.05—

0 I

0 10 20 30 40
cluster size (s)

FIG. 6. The probability P(s) of a particle being in a chain
of size s is plotted for (a) p,

' = 2.5 at p' = 0.001 (long-dashed
line), p' = 0.01 (solid line), p" = 0.2 (dotted line), p* = 0.7
(short-dashed line), p* = 0.9 (long-dashed line) and (b)
p,

* = 3 at p' = 0.001 (long-dashed line), p* = 0.01 (solid
line), p" = 0.4 (dotted line), p* = 0.6 (short-dashed line),
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1.0

0.5
3.0

I I s
I I I I

L

I I
I I s

I I
I

I I I I

(b)-

1.0

10
I I I I I I I I I I I I I
I I I I I

i
I I I I

)
I

(c)-

6
tg 4

0
1 2 3

r(o)

FIG. 5. Radial distribution functions at isotropic Quid den-
sities for (a) p = 2, p' = O. l (solid line); p* = 0.4 (dotted
line); p" = 0.5 (short-dashed line); p* = 0.7 (long-dashed
line). (b) p,

' = 2.5, p" = 0.2 (solid line); p" = 0.4 (dotted
line); p' = 0.5 (short-dashed line); p' = 0.6 (long-dashed
line). (c) p' = 3.0, p' = 0.1 (solid line); p' = 0.2 (dotted
line); p' = 0.4 (short-dashed); p" = 0.5 (long-dashed line).

fluids.
At p* = 3 most of the particles are contained in chains,

as can be seen in Fig. 2. In contrast, most of the particles
are in the monomeric state for p* = 2.5 at all densities
within the isotropic regime. From our cluster analysis,
we calculate the probabiblity P(s) of finding a particle
in a chain of size s. We plot P(s) in Fig. 6 at several
densities for p* = 2.5 and 3.0. This plot clearly shows
the different degree of chaining between p* = 2.5 and
p* = 3. The peak chain size for p* = 3 varies in the
range 5—10, except at p* = 0.001, where the peak is at
8 = 2. The odd peak for p' = 3 at p* = 0.6 is due to
chains preferring to be the same length as the simula-
tion cell. The distributions will change slightly as up „d
is changed. However, changing uh „&by 20%%uo does not
alter the qualitative features of the distributions. Fur-
thermore, the physical correspondence with our choice of
ug „gimplies certain structures upon the distributions.
For p* = 2.5 the particles are either well separated or
the moments are not correlated. At the low densities,
the smaller peak height and the nonzero values between
peaks in g(r) (Fig. I) shows that the particles are much
less bound than at p* = 3. At high densities where the
particles must be close, the distributions for p* = 2.5 im-
ply that the dipole moments do not become highly cor-
related until the transition to the magnetic fluid state.
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Between p* = 2.5 and 3, the dipole interaction be-
comes sufficiently strong that well defined, long lived
molecules exist. At smaller p* the chains tend to be short
and weakly stable. The g(r) for p,

* = 3 at low densities
(Fig. 1) resembles a molecular g(r) with sharp peaks
due to the bonded atoms. One could separate g(r) into
intra- and interchain parts. Another characteristic that
occurs for p* = 3 but not for p* = 2.5 is ring formation.
Rings tend to be highly stable in comparison with linear
chains, because to remove a particle from a ring requires
breaking two bonds. The chains are not long enough at
p* = 2.5 for rings to occur.

At p* = 4 chain formation is so stable that for p' & 0.1
a set of chains is formed that never breaks. Thus one
has severe ergodicity problems for simulations at this p*,
particularly because the set of chains depends strongly on
the initial configuration. Since the largest chain length
tends to contain about half the total particles, we cannot
say that we have equilibrated runs at p* = 4. Even if we
used a much larger system, the dynamics will be similar
to that of a living polymer, which is much slower than a
particle system.

C. Phase transition

For p* = 3 at T' = 135 (A = 667) and T* = 1 (A =
9), Wei and Patey [2] calculated the order parameters Pq
and P2 as a function of density starting from randomly
oriented dipoles on a fcc lattice. They found a transition
to a magnetically ordered state at p* 0.65 for A = 6.67
and at p* = 0.60 for A = 9. At higher p* the system
exhibit smectic order and then (magnetic) solid order
[2,5]. We discuss below our results for Pz and P2 for the
four p* values discussed above.

We have performed simulations with a variety of start-
ing states and have found some dependence on the initial
configuration for p* & 3. The initial state dependence for
A = 9 and 16 turned out to be due only to the orienta-
tion of the dipoles, random or oriented. The results were
independent of the initial particle configuration. It did
not matter whether it was initially a fcc lattice, a random
configuration, or the last configuration from the previous
lower density. Random dipole orientations are obtained
by initially choosing random orientations. These runs
do not dier from sequential runs of increasing density.
In this case the low density dipolar orientation is sufFi-

ciently random. Oriented states are obtained by starting
with all the moments parallel to the z axis. Similar to
above, consecutive runs decreasing in density where the
first run is at an ordered density with Pi ) 0.5 give the
same results as when the moments are initially aligned.

We show results for Pi and P2 in Fig. 7 for four values
of p*. The circles represent random dipole moments and
the squares represent oriented moments. For p* = 2 and
p* = 2.5 there is no dependence on these various starting
states. Magnetic (nematic) ordering occurs for p,

* = 2 at
p* 0.85 and for p* = 2.5 at p* 0.67 for N = 256.
Since we were unable to perform long runs for large N, it
is not possible at this time to determine finite corrections
to these densities.

We found strong initial configuration dependence at
p* = 3 and 4. We tried a variety of starting states and,
as stated above, found that the order parameters and
thermodynamic quantities depend only on the dipole ori-
entation. For initial states with a random orientation we
obtain the same transition density as Ref. [2]. However,
near the transition for p* = 3, we foun. d that extremely
long runs (5 x 10s MC cycles) were required to achieve
equilibrium from an oriented state. Runs of order 1 x 10
MC cycles appeared equilibrated in energy, but not for
the order parameters. For p,

* = 3, Fig. 7(c) shows some
hystersis in the order parameters. At p* = 0.5 the de-
scending sequence of runs give an ordered state, but the
ascending sequence gives an isotropic state.

For p* = 4 an even stronger initial configuration de-
pendence was found [Fig. 7(d)]. The magnetic Quid
phase was not observed when the initial configuration
had random dipole orientation. A sequence of runs start-
ing from the high density oriented state gives the mag-
netic Huid transition at about p* = 0.1. On the other
hand, P2 gives a transition near p* = 0.5. As pointed
out above, the cluster analysis shows that the system is
composed of a few large chains, usually loops, which are
not broken within the MC run and thus there are ergod-
icity problems. The plot of the order parameters clearly
shows the extent of the initial state dependence. Because
of this problem, we cannot determine the transition den-
sity for p,

* = 4 beyond saying that transition satisfies
p* & 0.1.

In this work we have not attempted to precisely de-
termine the transition densities. Simulations for varying
system size have not been performed to determine finite
size effects. Previous simulations at p,

* = 3 [2] found very
little difference between N = 256 and N = 864 in Pi and
P2 at selected densities. Although the size dependence
was not examined close to the transition density, these
simulations do indicate that the transition density will
not vary by more than 0.1o

D. Field dependence

Previously, we had shown that in an applied field phase
coexistence does occur for the SSD system [8]. We calcu-
lated the critical points at four fields H* = 0.25, 0.5, 1.0,
and 2.0 at p* = 2.5 and found that p* 0.03 in all four
cases. We reproduce the table of the critical data in Table
I. The surprising aspect of the coexisting phases is that
both phases contain predominantly long chains. In Fig.
8 we show the Gibbs coexisting densities for H* = 1.0.
As these runs take about 10 times the number of MC
cycles than zero Geld Stockmayer Gibbs simulations, we
could only calculate a few points. These few points are
sufBcient to give reasonable values of T and p, in part
because the values are so low. Besides the three temper-
atures at which coexistence was found in Fig. 8 we also
ran at T* = 1.1 and found no coexistence. As mentioned
above, T* is determined from bracketing between T* at
which coexistence is and is not found.

The structure of the coexisting phases does not corre-
spond to either of the theoretical pictures. Since chain-
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FIG. 7. Order parameters P& and Pq for (a) p' = 2, (b) &t)' = 2.5, (c) p' = 3, and (d) p* = 4. The circles are for a random
initial dipole moment orientation. The squares are for initially parallel dipole moments.

ing is significant in both phases, the phase coexistence is
definitely not a gas-liquid coexistence. Both phases are
magnetic which rules out the isotropic-magnetic (IM)-
coexistence. However, it is possible that in the limit of
H ~ 0, the coexistence may become of the I-M type.
The I-M transition occurs at much higher densities for

the four p* values examined here, but (see also Sec. IV)
the transition density is decreasing with increasing A and
such a convergence cannot be excluded.

Since both coexisting phases are chained, we want to
confirm the equilibriation of the runs. In Fig. 9 we show
for H* = 0.5 and T* = 0.85 the cumulative average pres-
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sures and the function y(u) = T ln[pf(u)/g(u)], where f
and g are the test and the real particle energy distribu-
tions [26]. The pressures are calculated from the virial
and Fig. 9(a) shows that the pressures are converged and
equal. The slope of y(u) should be 1 and the intercept
gives the chemical potential. As usual, the slope of y(u)
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FIG. 10. Projection plots for p* = 2.5 at p* = 0.001 and
T' = 0.85 for H' = 0, 0.5, and 2. The arrow length as drawn
is 1o'.

deviates from 1 at low and high u where the sampling is
poor. However, for several decades two straight, overlap-
ping lines of unit slope occur, showing that the chemical
potentials are equal.

We now present some results of canonical simulations
in nonzero Beld. We would like to understand the na-
ture of both coexisting phases, the e8'ect of an applied
Beld and the zero Beld limit. Canonical simulations in
an applied Beld were performed in the vicinity of a crit-
ical point. Two sets of simulations were performed at
constant T and 8* = 1.0. These runs are labeled in
Fig. 8. One set of runs is performed at T* = 1.1 ) T*
and the other at T* = 0.85 & T*. Simulations were also
performed at constant density, varying the applied Geld.
We report the results of two sets of these simulations: at
p' = 0.001 (below p, ) and p* = 0.1 (above p, ).

Figures 10 and 11 show projection plots for p* = 0.001
and p' = O. l, respectively. These simulations were per-
formed at T* = 0.85 and p* = 2.5, which gives A = 7.35.
For H = 0, at this A, chains already exist in the dilute
phase at p* = 0.001. An applied Beld tends to align
the dipole moments parallel to the Geld yielding chains
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FIG. 9. Plots of (a) the cumulative average pressures and
(b) energy distributions for both cells confirm that the pres-
sures and chemical potentials are equal. v is the number of
MC cycles. The y intercept of the function y(u) given in the
text is the chemical potential.
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FIG. 11. Projection plots for p* = 2.5 at p' = 0.1 and
T' = 0.85 for H' = 0, 1, and 10.
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parallel to the field (z direction). The order parameter
Pi ——0.59 at H* = 0.5 or g = 1.47, which implies that the
dipoles are predominantly aligned with the field. How-
ever, Fig. 10(b) shows the chains do not necessarily align
with the field. For this case g & A; thus the local dipolar
field dominates the applied field and the chains need not
align with the field. Figure 10(c) shows the case where
Tl ) A (H* = 1) and Pi ——0.97. Here the long chains are
directed along the field direction, although the chains are
flexible and have local fluctuations away from the field
direction.

Figure 10 also clearly shows that as H increases the
chains grow. By H* = 10, the system is composed of
several long chains along with a few monomers. This pic-
ture of growing chains at dilute concentrations is similar
to those seen in Fig. 1 of Ref. [40], which are photographs
of ER fluids with A = 31 and p = 0.0047. The chains are
quite straight since the ER fluid has only induced dipoles.

At p* = 0.1 the system is sufIiciently dense that the
zero field chains overlap (Fig. 11). At this higher density
the chains orient parallel to the field at a much smaller
field strength than the dilute density; at H* = 0.1,
Pi ——0.50. The most striking aspect of the figure is chain
alignment with the field, which results in a separation of
the chains. By H* = 1 the chains no longer overlap be-
cause they are oriented parallel to the field. Increasing
the field makes the chains stiffer; their extent in the xy
plane decreases considerably.

One possible explanation for the two coexisting
chained phases is that one is a gas of chains and the
other is a liquid. However, the xy projection at H = 10
and p* = 0.1 ) p* shows what appears to be a gas phase
of chains. The calculated g~ and g~~ for this density as a
function of the applied field are shown in Fig. 12. A peak
at r = 0 grows with the field in g~. This peak is just the
intrachain peak and shows the increase of the chains par-
allel to the field. There are no other peaks, suggesting
the structure of the system is a gas of chains. The fact
that the individual chains show no sign of clustering to
form a column is an important difference from some ex-
periments. Experiments on ferrofluids [41] and MR fluids
[42—44] exhibit columns, not single chains. For ferroflu-
ids it is not possible to discern single chain columns, but
they may exist under some circumstances. On the other
had, MR fluid can be imaged at the single-particle size
and chains agglomerate into columns via a "zippering"
action [42,43]. Such behavior is not present in the SSD
fluid. This suggests that the agglomeration is an effect of
attractive interactions not included in the SSD potential.
One other possiblity is the fIexibility of the chains in the
SSD system presents an efFective repulsive interaction for
chain clustering. In MR fIuids the chains are rather in-
flexible, because the dipoles are induced and are always
parallel to H.

The projection plots in Fig. 13 show a continuous
change as the density increases for T* = 1.1 ) T*. At
p* = 0.001 [Fig. 13(a)] the system is mainly composed of
dipoles that tend to point in the z direction (Pi ——0.60)
since Tl = 2.3. Figure 13(b) shows clustering present at
p* = 0.01, which is still in the less dense regime. By
p* = 0.1 [Fig. 13(c)] more clustering into chains has oc-
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curred. The chaining is rather weak, especially in com-
parison with the same density at T* = 0.85 & T,* [cf.
Fig. 14(c)].

In Fig. 14 we show the same densities as above but at
T* = 0.85 ( T*. Chaining is strongly present even at the
very dilute density p* = 0.001. These two figures show
that decreasing T has effects similar to those resulting
from increasing H. Chains grow and tend to be oriented
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IV. PHASE DIAGRAM

We plot in Fig. 15 a partial phase diagram for the
SSD system. The liquid-solid transition and any liquid-
liquid transition such as the nematic-smetic transition are
not included. The solid points represent the isotropic-
magnetic fiuid transition. The squares are our data and
the triangles are from Ref. [2]. The open square for A = 9
represents the transition density found for this A using
the decreasing density sequence. The arrow shows the

0.3

more parallel to H. Unfortunately, none of this gives us
an indication of the difference between the two coexisting
phases.

es ——A T*/3 = p* /3T*. (15)

To satisfy A ( 1, we must have es ( T*/3 and es (
p,

* /3. For es ——1, this implies T* ) 3 and p* ) ~g.
Thus T* ) T* = 1.3 for e6 ——l. At the lower value
of es ——1/3, the requirements are T* ) 1 and p* ) l.
Again, T* ) T,* 0.17 [7]. At smaller values of es phase
coexistence does not occur.

lower limit on the transition density for A = 16, which
possesses strong nonergodic effects. The crosses are the
critical points found in an applied field [8]. With increas-
ing critical temperature the fields are H* = 0.25, 0.5,
1.0, and 2.0. The dotted line represents the line p&
Eq. (14). For p' ) p& the fiuid is strongly interacting.
The solid line is a least-squares fit to the solid points,
which rather interestingly is a good fit. The extrapola-
tion of this line to A = 16 gives p* = 0.5 and A = 0 gives
p* = 0.4.

An interesting question is what happens to the I-M
transition density pIM as A —+ 0. Calculation of the mean
field A = 0 limit for hard spheres gives p* = 0.56 [45].
This value is high, but if we equate this value with the
extrapolated A = 0 density, then the effective hard-sphere
diameter is 1.1o, which is only slightly larger than the
soft-sphere diameter o and is about equal to r = 2 ~ cr

1.12, where the value of Uss is e. The value of pIM for
A = 9 from oriented simulations suggests a curving of
the transition line toward much lower densities. Possibly,
pIM may be near 0.03 for very large A and merge with
the nonzero Beld phase coexistence.

We pointed out earlier (Sec. III A) that the approxi-
mation of dipole interaction as van der Waals interaction
is valid only for A ( 1, yet this does not rule out phase
coexistence. By examining the actual form of the van
der Waals interaction, we find that in general, T* is well
above T* in the relevant regime. The van der Waals
form for the average dipole-dipole interaction [39] with a
soft-sphere core has as the total potential U6 q2, where
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FIG. 15. Phase diagram for soft-sphere dipolar Buids. A
description of the figure is given in the text in Sec. IV. The
solid points (triangles [2] and squares, this paper) are the
isotropic-magnetic Quid transition densities. The solid line is
a least-squares fit to the solid points. The open square for
A = 9 represents the hystersis found for this A. The arrow
gives the lower limit on the transition density for A = 16.
The crosses are the critical points found in an applied field

[8]. The dotted line represents the line p&
——7', Eq. (14l.

We now have a picture of the SSD structure as a func-
tion of density for a broad range of dipole moments. The
key component of the fiuid structure is chains even at
very dilute densities. The SSD fiuid is much like a living
polymer with a polydisperse distribution of chain sizes
that is time invariant. For small A, the chains break up
easily, although for large A the bonds become very stable
as we see at A = 16 for p* & 0.1. The anisotropy in the
dipole potential that yields the chaining fundamentally
effects the phase diagram. The structures that form are
much more complex than, say, in the I 3 system.

The SSD, as a simple dipolar system with a repulsive
core, was thought to be a good model for ferroHuids and,
with an induced dipole potential, good for the MR and
the ER Quids. However, as this work shows, there are
basic differences between this model and experimental
systems. In particular, phase coexistence does not occur
for the SSD in the absence of a field and while chains
form, they do not coalesce into columns. In order to un-
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derstand how to better model the experimental systems,
we discuss them in more detail.

Experimentally, two types of ferroQuids have been
studied for coexistence [12,13]. The difFerence is in the
mechanism used to stabilize the particles against agglom-
eration due to the van der Waals interactions. This is
done is either by coating the particles with a surfactant
[13] or by using charged magnetic particles in an ionic
solution [12]. In both cases, phase coexistence occurs in
zero external Beld. More measurements have been per-
formed on the ionic ferroQuids, which via added salt allow
easier modification of the stabilization force than those
stabilized by coating. In the absence of a Beld, neither the
isotropic-magnetic Quid coexistence nor even a zero Beld
magnetic Quid phase has been found. The volume frac-
tion for the magnetic core can only be made up to 20% of
Quid volume. At this fraction, the total particle volume
fraction (including the core and the surfactant layers) is
near close packing, limiting the maximum value of A that
can be achieved.

Modeling the ionic ferroQuids appears to be rather
complex. The basic effect of the charges is to produce a
repulsion between the magnetic particles. However, mod-
eling these interactions is nontrivial because the charges
on the particles are of order 10 and the simple Debye-
Huckel model is not valid. The charges can also effect
the phase coexistence, for even a simple electrolyte has
phase coexistence [46]. Comparison of predictions based
on the Stockmayer fluid [47] with experiment [12] show
that polydisperisity plays an important role.

Coexistence for both types of ferroQuids occurs even in
the absence of an applied field. Here we consider only the
surfactant coated ferroQuids, which have been considered
simpler to model. The coexistence curve as a function of
Beld versus density for surfactant coated ferroQuids has
been measured at two temperatures [13]. We identified
these data incorrectly as critical points in a Letter [8],
but the fundamental points remain the same. For the hy-
drocarbon based ferroQuid at 27 C, p,* 0.05 is small,
as in our simulations [8]. However, r, 1.0 is much
larger than our simulation value. Increasing the temper-

ature raises the coexisting Beld and appears to increase
p, . Since the experimental system is highly polydisperse,
the values of g and v. are average, but the difference in
w, is too large to be ascribed to the polydispersity.

The surfactant ferroQuid has been simply modeled as a
dipolar interaction plus a simple repulsive core that gives
the particles their size. However, the results of these and
recent simulations [7] suggest that modeling the stabi-
lization interactions (and thus the van der Waals inter-
action) requires more than just a repulsive core. A better
understanding of the nondipolar interactions is needed.
Some attractive interaction must exist for coexistence in
the absence of a field to occur. In the 6—12 potential,
increasing e6 raises T as is needed to match experiment.
However, this also raises p, which needs to be lowered.
Given that many experiments are performed in an ap-
plied Beld, simulations in an applied Geld for the 6—12
potential that determine T and p, would be very useful
to compare to experiments. Such simulations are dis-
cussed in the following paper [29].

At the particle level, the structure of ferrofluids has
hardly been probed [48]. The chaining of dipolar par-
ticles especially in an applied field has been observed,
but not on the scale of individual particles [41]. In
these experiments, droplets condense to form "chains. "
One can imagine the droplets in Fig. 3(a) in an ap-
plied Geld becoming magnetized and then coalescing to
form columns. One means of probing individual par-
ticle interactions is to examine MR Quids, which are
much larger than ferroQuids, although they posses only
induced dipole moments. Additional advantages are the
good monodispersity and high values of g (of order 100)
that can be obtained. Because these particles diame-
ters are about 1 pm, the systems can be probed through
video microscopy [42,49]. Experiments on MR fluids be-
tween parallel plates show only column formation, ex-
cept for very small plate separation (about 10o). Ini-
tially, single-particle-thick chains are formed, which then
form columns via a zippering action [42,43]. The col-
umn structure may very well be a solid structure, which
implies that one of the coexistence phases is solid.
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