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Monte Carlo study of living polymers with the bond-fluctuation method
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The highly efBcient bond-fluctuation method for Monte Carlo simulations of both static and
dynamic properties of polymers is applied to a system of living polymers. Parallel to stochastic
movements of monomers, which result in Rouse dynamics of the macromolecules, the polymer chains
break, or associate at chain ends with other chains and single monomers, in the process of equi-
librium polymerization. We study the changes in equilibrium properties, such as molecular-weight
distribution, average chain length, radius of gyration, and specific heat with varying density and
temperature of the system. The results of our numeric experiments indicate a very good agreement
with the recently suggested description in terms of the mean-field approximation. The coincidence
of the specific heat maximum position at k&T = V/4 in both theory and simulation suggests the
use of calorimetric measurements for the determination of the scission-recombination energy V in
real experiments.

PACS number(s): 61.25.Hq, 05.50.+q, 64.60.Cn, 82.35.+t

I. IN'XKODUCTION

Systems in which polymerization is believed to take
place under condition of chemical equilibrium between
the polymers and their respective monomers are termed
"living polymers. " These polymers are long linear-chain
macromolecules that can break and recombine reversibly
and so are in equilibrium with respect to their molecular-
weight distribution (MWD). A number of examples have
been studied in recent years, including liquid sulfur [1—3]
and selenium [4], poly(o. -methylstyrene) [5], polymerlike
micelles [6,7], and protein filaments [8].

The irreversible aggregation of monomers into linear
polymers exhibits critical phenomena which can be de-
scribed by the n ~ 0 limit of the n-vector model of mag-
netism [9,10]. Unlike mean-field models, the n-vector
model allows for fluctuations of the order parameter, the
dimension n of which depends on the nature of the poly-
mer system. (For linear chains n —+ 0, whereas for ring
polymers n = 1.) In order to study living polymers in
solutions, one should model the system using the dilute
n ~ 0 magnet model [10]; however, a theoretical solu-
tion presently exists only within the mean-field approxi-
mation (MFA) where it corresponds to the Flory theory
of polymer solutions [11].

Due to experimental diKculties [7] the properties of
living polymers still pose a number of questions. While
phase diagrams can be reasonably described by the MFA
[5], the experimental evidence concerning microscopic
properties, such as, e.g. , the extent of growth in mi-
celles, is controversial [12]. Some light scattering, NMR,
and sedimentation experiments [13] suggest that micelles
in solutions grow considerably with decreasing temper-
ature and rising density; other neutron scattering mea-

surements [14] and transient ffuorescent experiments [15]
have been interpreted in terms of much smaller growth
with temperature and density. So far we are not aware of
any direct measurements of the MWD in such systems.

Given the shortcomings of an approximate analytical
treatment (MFA) and the difficulties with the labora-
tory measurements, it is conceivable that numeric ex-
periments, being exact within the framework of the re-
spective model and able to account explicitly for vari-
ous factors that infIuence experiments, might help much
in understanding the thermodynamic behavior and the
properties, both static and dynamic, of living polymers.
However, up to now only a small number of simulational
studies [16—18] have been carried out. Indeed, while the
connectivity of polymer chains and the resulting slow dy-
namics render computer simulations a demanding task
in its own terms, the scission-recombination processes,
which are constantly under way in living polymers, im-
pose additional problems on computational algorithms.
In the Monte Carlo (MC) simulations so far [16,17] the
polydisperse system of polymer chains was mapped on
a Potts model whereby diferent spin values were taken
to represent bonded and nonbonded monomers as well
as vacancies on a lattice. Such models are very efficient
for studying static properties of living polymers since at
each update of the lattice all sites are assigned new spin
values subject to a Boltzmann probability whereby the
restrictive topological connectivity of the chains is vio-
lated. Since the way in which equilibrium properties of
the system are attained is not essential, it is clear that
static features may thus be faithfully reproduced. How-
ever, the kinetics of such models is fictitious and they
cannot be employed for studies that include dynamic fea-
tures as yet.

In the present work we use a new Monte Carlo al-

1063-651X/95/51(6)/5905(6)/$06. 00 51 5905 1995 The American Physical Society



5906 YANNICK RQUAULT AND ANDREY MILCHEV

gorithm, based on the highly efFicient bond fIuctuation
model [19,20] (BFM) which is known to be very accurate
in faithfully reproducing both static and dynamic proper-
ties of polymer chains in melts and solutions. The BFM
is modified so as to allow for the association-dissociation
events in the process of equilibrium polymerization and
provides a basis for a thorough investigation of various
properties of living polymers. In the current investiga-
tion we focus on the static properties of such systems
and examine the dependencies of thermodynamic e.g. ,
internal energy, specific heat as well as of structural
properties —weight average association number (average
chain length), MWD, radius of gyration, on density and
temperature of the system. Our first results indicate that
the MFA description provides an amazingly good semi-
quantitative picture of the properties of living polymers
at least for the case when nonbonded interactions be-
tween monomers may be neglected as compared to the
bond energy along the backbone of the macromolecules.
The specific heat of the system, which we introduce in
this paper, turns out to be an interesting alternative to
other measurable properties of solutions of living poly-
mers. With varying temperature the specific heat ex-
hibits a maximum whose position measures directly the
energy of association in such systems. The present paper
is organized as follows: In Sec. II we give a brief descrip-
tion of the BFM and of the MC procedure, in Sec. III we
present our results, and in Sec. IU we summarize our
finding.

II. MODEL

The bond fluctuation model is a coarse-grained. model
of polymer chains, in which an "efFective monomer" con-
sists of an elementary cube whose eight sites on the hypo-
thetical cubic lattice are blocked for further occupation
see Fig. 1. This defines the largest possible density of the
polymer which, in terms of the ratio of occupied to to-
tal volume, is 0.5. A polymer chain is made of efI'ective
monomers joined by bonds. A bond corresponds to the
end-to-end distance of a group of 3—5 successive chemical
bonds and can fluctuate in some range. It is represented
by vectors I of the set P(2, 0, 0), P(2, 1, 0), P(2, 1, 1),
P(3, 0, 0), and P(3, 1, 0) which guarantee that intersec-
tioris of the polymer chain with other chains, or with
itself, are virtually impossible. All lengths are here mea-
sured in units of the lattice spacing and the symbol P
stands for all permutations and sign combinations of the
cartesian coordinates (I, l„,I,). The algorithm displays
Rouse behavior for all spatial dimensions and combines
typical advantages of the lattice MC methods with those
from the continuous Brownian dynamics algorithm. The
adequacy of the BFM algorithm to describe static and
dynamic behavior of polymers has been proven in sensi-
tive investigations [20].

In our model, we set an energy —V (V ) 0) for the
creation of a bond between monomers. In the present
study the ends of a given polymer chain are not allowed
to bind together so that the formation of rings is impos-
sible. Those sites of the lattice that are not occupied
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FIG. 1. Sketch of the BFM of polymer chains on the
three-dimensional simple cubic lattice. Each repeat unit or
"effective monomer" occupies eight lattice points. Elemen-
tary motions consist of random moves of the repeat unit by
one lattice spacing in one lattice direction. These moves are
accepted only if they satisfy the constraints that no lattice site
is occupied more than once (excluded volume interaction) and
that the bonds belong to a prescribed set of bonds. This set
is chosen such that the model cannot lead to any moves vrhere
bonds should intersect, and thus it automatically satisfies en-
tanglement constraints. Reprinted @lith permission from %'.
Paul, K. Binder, D. W. Heermann, and K. Kremer, 3. Phys.
(France) II 1, 37 (1991).

by monomers are considered empty (vacancies) and con-
tribute to the free volume of the system. In principle
we assign an energy —tv (to ) 0) for the nonbonded in-
teraction between monomers in the system, and another
energy o governs the fIexibility of the chains, o ) 0 be-
ing the cost for converting a single bond from trans- into
gauche-configuration. In the present investigation, how-
ever, we focus exclusively on the process of equilibrium
polymerization of entirely fIexible chains, setting tu = 0
and o. = 0, so that no phase separation into dense and
dilute components should take place.

Time is measured, as usually, in Monte Carlo steps
(MCS) per monomer of the systems and a MCS is orga-
nized as follows:

(i) A monomer is chosen at random and allowed to
perform a move according to the BFM algorithm.

(ii) If the monomer happens to be at the end of a
chain, an attempt is made to create a bond with an-
other monomer that might be present on any one of the
108 neighboring sites that is also chosen also at ran-
dom. If the end of another polymer is present on the
chosen neighboring site, the Metropolis algorithm [21]
is applied, that is, a new bond is created if the value
of a random number between 0 and 1 is smaller than
min(1, exp[ —V/k~T]).
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(iii) Finally, if a bond on the right of the current
monomer exists, it is attempted to break, also accord-
ing to the Metropolis rule. During one MCS one carries
out (i)—(iii) as many times as there are monorners m the
system. The order in which these sequences are carried
out does not play any role. A number of structural prop-
erties are sampled during the simulation. Thus the mean-
square gyration radius (R ), the mean-square end-to-end

g
2distance (R,), the mean-square bond length (l ), and the

average chain length (I},are measured for chains, start-
ing from a dimer and larger, i.e. , for those which are de-
fined by the presence of bonds. Single monomers do not
contribute thus to the gyration radius or to the end-to-
end distance. The density P was usually varied between
0.16 and 0.4. One should bear in mind that densities
around 0.5 correspond to extremely dense systems in the
BFM since the blocking of neighboring sites by existing
monomers leaves no room for movement and the system
goes effectively into a glassy state [19,20]. Therefore,
at density 0.4 and for large enough chains, the so-called
"dense" regime of polymer solutions, characterized by
efI'ective screening of the excluded volume interaction, is
observed —Fig. 2.

The simulations have been carried out mostly on a
30 x 30 x 30 cubic lattice with periodic boundary condi-
tions but finite-size effects were also tested with smaller
lattices of size 10 x 10 x 10, 16 x 16 x 16, and 20 x 20 x 20.
The system takes usually about 10000 MCS in order
to be equilibrated. The start configuration consists of
randomly distributed and nonbonded monomers. After
equilibration, measurements of data were performed in
intervals of 100 to 160 MCS so that the sampled conGg-

urations should be possibly uncorrelated. Depending on
temperature, usually about 600 independent data sets
have been sampled. It turns out that, in order to get
a reasonable statistics, a great number of monomers is
needed at small temperatures. Indeed, since no chain
can be larger than the total number of monomers present
in the system, the presence of free monomers during the
simulation guarantees that with the given set of energy
and thermodynamic parameters one is still in the equi-
librium regime. Thus, to ensure good average values, the
mean chain length was kept equal or smaller than 10%%uo

of the total number of monomers in the system. For the
smaller lattices, however, this condition severely restricts
the choice of the lowest temperature.

III. B.ESULTS

Before turning to the results of the present investiga-
tion we recall brieHy some essential points in the MFA
treatment of living polymers [7]. As pointed out by Flory
[ll] the principle of equal reactivity, according to which)

~ ~ ~ ~ ~ ~ ~

the opportunity for reaction (fusion or scission~ ss mue-
pendent of the size of the participating polymers, implies
an exponential decay of the number of polymers of size l

as a function of l. Indeed, at the level of mean-Geld ap-
proximation in the absence of closed rings, one can write
the free energy for a system of linear chains [7] as

V= ) C(l, T) inC(l, T) +
k~T ' ' k~T

where the MWD for chain length l is denoted by C(l, T)
and k~ stands for the Boltzmann constant. The density
of the system P is then

P = ) LC(l, T).

Minimization of Eq. (1) with respect to C(l, T), subject
to the condition Eq. (2), yields

V i (' l
C(l, T) = exp — —1

~

exp
~

—,
r

FIG. 2. A snapshot of a typical system configuration in a
20 x 20 x 20 lattice with a total of 400 monomers present.
Polymer chains of increasing chain length appear increasingly
darker. The longest chain here consists of 99 monomers. The
average chain length (L) = 7.76. The thermodynamic pa-
rameters are T = 0.5 and P = 0.4, and V = 2.0.

v
exp

((2k~T)
This result should be valid for sufFiciently high den-
sity P where correlations, brought about by the mu-
tual avoidance of the chains, are negligible. Due to the
recombination-scission process a polydisperse soiution o
living polymers should absorb or release energy as the
temperature is varied. This is refj.ected by the specific
heat c„,which can be readily obtained from Eq. (1) as a
derivative of the internal energy U,

|' v
U = V 5 C(l, T) = (L) exp —

i

—1
~

.

l

For c one has
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c„=~Pe V,
2 g

(6)
3 0e %P

2.5
which has a maximum at k~T = V/4.

In Fig. 3 we show the measured variation of the mean
chain length (L) with temperature for different strength
of the bonds between monomers. The specific heat c, re-
flecting the process of equilibrium polymerization, is also
indicated. Evidently, in a comparatively narrow temper-
ature interval, marked by a maximum in the specific heat,
a sharp increase of (L) with decreasing temperature is ob-
served in agreement with theory [1—3]. As mentioned in
Sec. II, it is the finite size of the systems that does not
allow us to go down to even lower temperature since the
largest chain would then consume all available monomers
in the lattice. This is clearly visible for the smallest size
of the 10 x 10 x 10 system by the sharp drop in c„at
T = 0.45, 0.4 where the equilibrium size of the longest
chain exceeds the total number of monomers in the box.
As compared to the MFA result, Eq. (6), the maxima
of c„occurat k~T —V/4 for sufficiently large system
sizes. This appears to be a remarkably good agreement
with the prediction of Eq. (6), given the known shortcom-
ings of the MFA in general. However, while the positions
of the c maximum do not differ appreciably in theory
and simulation, the overall shape of the simulational e„
is much sharper than that of Eq. (6). In order to check
for finite-size effects, which might affect our results, we
studied several system sizes: 10, 16, 20, and 30 the
latter being able to accommodate about 1350 monomers.
Despite considerable fluctuations in our data, it is seen
from Fig. 4 that for all lattice sizes studied, no apprecia-
ble finite-size effects can be detected. This result is in
agreement with an earlier investigation of finite-size ef-
fects in computer simulations of living polymers [17] with
t// g 0 which found that finite-size eff'ects can be observed
below lattice sizes of 14 only. All data in Fig. 4 refer to
V = 2.0 and it is seen that c„maximum occurs at = V/4
indeed.
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FIG. 4. Variation of specific heat c„with temperature for
system size: 10,16,20, and 30 .

The distribution of chain lengths at equilibrium,
C(L, T), is represented in Fig. 5 in semilog coordinates.
The fluctuations in the sampled lengths increase consid-
erably for very long chains where correlations between
successive configurations deteriorate the statistics. Nev-
ertheless, qualitatively the distributions agree very well
with the MFA result, Eq. (3). An attempt to get all dis-
tributions collapsed on a single master curve by rescal-
ing the chain lengths with the mean chain length (L) as
Eq. (4) suggests, is less successful. It appears that the
average chain length is somewhat larger at low temper-
ature, and, respectively, smaller at higher temperature,
than a perfect scaling plot according to Eq. (3) would
require. Here we should also like to point out that this
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FIG. 3. Variation of (L) with temperature for three differ-
ent values of the bond energy V (full symbols) and P = 0.4.
The speci6c heats of the respective systems are also shown by
lines.

FIG. 5. Probability distribution C(L) of chains with length
L at various temperatures (given as a parameter) and P = 0.4.

L
In the inset an attempted scaling of C(L) in the form of e
is also shown.
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values of the bond energy V (given as a parameter) and
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FIG. 8. Scaling plot of (Rg) and (R, ) with the mean chain
length (L) for U = 2.0 and P = 0.4. The slope is 1.00+0.01.

10

. .~
e'

.e
~. - e

. .e

&Lx

S.'

. . --~
~ '

.~ .
. .e

~ &Lo at T = 0.4
~ &L& at T = 0 6
~ &I & at T = 0.4

form of the distribution, which reveals a typical curvature
for small chain lengths (monomers), has been observed
in a MC simulation of a three-dimesional system of living
polymers employing a qualitatively diferent model [17]
so it is by no means an artefact of the present algorithm.

Another comparison between numeric experiment and
analytic predictions is presented in Fig. 6 where we show
a semilog plot of (L) vs inverse temperature for three
difFerent values of the bond energy V. Evidently our
data fit straight lines well for (L) & 2. All slopes of the
curves are indeed given by V/2, cf. Eq. (4). Also, the
dependence of (L) on density P shows good agreement
with the MFA prediction, Eq. (4). In Fig. 7 the variation

of (L) with density P is plotted for two temperatures,
above, T = 0.6, and below, T = 0.4, the respective T, for
V = 2.0 in log-log coordinates. For T = 0.4, i.e. , for long
enough chains, we measure an exponent of 0.567 which
exceeds slightly the expected v P law and tends to the
value of 0.6 [7] which has been derived on the basis
of scaling theory considerations [22]. As the density of
our polymer system is considerable, excluded volume is
screened at rather short distances and one deals effec-
tively with an assembly of Gaussian chains with v = 0.5.
That is why we interpret the value of 0.567 as marking
the crossover between a semidilute and a dense regime for
our system. At T = 0.6 the system is apparently domi-
nated by very short chains (L) ( 2, which explains the
rather low value of the measured exponent —0.44.

Finally, in Fig. 8 we demonstrate the scaling behav-
ior of the mean-square end-to-end distance (B ) and of
the mean-square gyration radius (B ) with the average
chain length (L) for a system with V = 2.0. Not sur-
prisingly, deviations from the scaling behavior are ob-
served for very short chain lengths, (L) & 2. While
(R )/(R ) 6, the measured slope of 1.01 + 0.01 re-
veals that both (B ) and (B2) scale with (L) with an ef-
fective exponent v 0.5 as for Gaussian polymer chains.
This, as a matter of fact, is what one should expect since
the density P = 0.4 of the system corresponds to the
high-density regime in which excluded-volume interac-
tions are almost completely screened. Simulations of the
system with other values of V (not shown here) produce
the same value of v.

IV. CONCLUSIONS
1
0.1 0.4

FIG. 7. Variation of (L) with total density P at two diifer-
ent temperatures T = 0.4 and T = 0.6. The slope of the data
is 0.567 + 0.005 at T = 0.4 and 0.44 + 0.01 at T = 0.6. Filled
triangles denote the change in the mean-squared bond length
(I ) with P which goes with a slope of —0.039.

In the present investigation of equilibrium properties
of living polymers we apply the bond Huctuation model
of a MC simulation, which is known to reproduce the cor-
rect Rouse dynamics of macromolecules in the absence of
solvent molecules. The algorithm allows for the stochas-
tic movements of the monomers and for the processes
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of scission and recombination of energy bonds (in this
study no formation of ring polymers is allowed). Struc-
ture and thermodynamic properties of polydisperse sys-
tems (wormlike micelles) undergoing equilibrium poly-
merization are studied for the "pure" case when non-
bonded monomer interactions are set to zero so that the
overall picture is not complicated by phase separation
at low temperature. For the sake of clarity the chains
are considered as absolutely flexible, too. Our simula-
tional results reveal very good semiquantitative agree-
ment with the mean-field predictions for the properties
of living polymers:

(i) The probability distribution of chain lengths in the
polydisperse system closely follows the expected expo-
nential form Eq. (5). The failure to get all distribu-
tions collapsed on a single scaling function e with
x = L/(L), however, suggests that the measured values
of (I) slightly difFer from those, required for a perfect
collapse, probably due to the particular temperature in-
terval (at the polymerization transition) where the mea-
surements have been carried out.

(ii) The maximum of the specific heat c„which marks
the onset of rapid growth of (L) occurs at a critical tem-
perature k~T, 4 where V denotes the energy of aV

single bond in the polymer chain in good agreement with
the MFA prediction, Eq. (6).

(iii) The mean chain length (L) is found to grow expo-
nentially with decreasing temperature, and the measured
"activation" energy for the growth is 2, as expected from
MFA considerations.

(iv) Concerning the density dependence of (L), we find
that (L) oc &P

+ ', marking a crossover between the

predicted ~P dependence by MFA, and the exponent of
= 0.6, following from scaling considerations.

(v) At the comparatively high density P = 0.4, where
most of our simulations have been performed, the ex-
cluded volume interactions appear to be entirely screened
and we observe a scaling relationship (R ) oc (R ) oc

(L) with v 0.5 as for Gaussian polymer chains [22].
We believe that the present work unambiguously con-

firms the main results of the MFA treatment of living
polymers in most aspects concerning their static proper-
ties at equilibrium. It may be concluded that the princi-
pal MFA results provide a qualitatively correct descrip-
tion of such systems and in most aspects these results
turn out to be even quantitively correct, at least within
the framework of the underlying model. An interesting
check for the theory would be the simulation of the ob-
served dynamics and relaxation kinetics of living poly-
mers where our studies are currently under way.
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