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Conditional distribution function approach to the theory of the
solid —nematic-fluid interface
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A statistical-mechanical theory which takes into account translational-translational,
orientational-orientational, and mixed correlations, based upon the method of conditional distri-
bution functions, is applied to calculations of the order parameters and surface free energy of a
system composed of interacting ellipsoidal molecules near an interacting wall. The calculations have
been carried out for cubic close packing with the nearest-neighbor Gay-Berne intermolecular poten-
tial and with a (9-3)-like orientation-dependent molecule-wall interaction. The theory shows that
the number of surface layers which must be taken into account depends more on the character of in-
tercell correlations in the system than on the direct wall-nematic interaction. The equilibrium order
parameter and surface free energy profiles at the solid —nematic-fIuid interface have been calculated.
It is found that the number of surface layers for the case of a strong interaction between the solid
wall and nematic phase and for the case of a weak one is the same and equal approximately four.

PACS number(s): 64.70.Dv, 61.30.Cz

I. INTRODUCTION

The surface properties of liquid crystals (LCs) have
been a subject of intense interest for many years [1].
Anchoring phenomena are especially interesting due to
their technological importance in the fabrication of var-
ious electro-optic devices. Recent theoretical studies
have shed significant light on interfacial phenomena in
nematic-liquid crystals (NLCs) [2—8]. The first molecu-
lar model for the nematic-wall interface was developed
by Telo da Gama [2], who used a Maier-Saupe type of
anisotropic pairwise potential while the solid was mod-
eled by an impenetrable wall which exerts an anisotropic
external potential on the fIuid molecules. Another kind
of microscopic theory which takes into account anchor-
ing transitions at LC surfaces in the framework of the
Fowler approximation has been used by Teixeira and
Sluckin [5]. The more realistic Gay-Berne intermolec-
ular potential has been used by Sullivan and co-workers
[3,4], who have studied orientational alignment and ne-
matic wetting at the free liquid-vapor interface in the
framework of a generalized mean-field theory. A similar
approach has also been used by Osipov and Hess [6], who
have developed a general density functional theory for the
interfacial properties of NLCs and expressed the coeK-
cients of the Landau —de Gennes expansion for the free
energy of the nematic surface in terms of the direct cor-
relation function. The existing molecular theories [2—7]
of inhomogeneous systems are based mainly on the so-
called generalized mean-field approximation, in which all
intermolecular correlations are neglected.

Recently a kind of Bethe theory, which takes account
of intercell pair correlations for describing NLC systems
composed of interacting ellipsoidal molecules near an in-
teracting wall, has been proposed [8]. In the framework
of that theory, which is based on the concept of average
force potentials [9,10], the influence of the interacting

wall on the order parameter and surface free energy has
been calculated. However, in Ref. [S] the influence of
the wall was considered as a small perturbation on the
bulk values of the average force potentials, which is not
likely to be valid in the case of a strong wall-molecule
interaction.

In the present paper, I make an attempt to combine
the previous [8] advantages of integral equation theory
and of the cell model approach to construct a statistical-
mechanical theory for calculating equilibrium properties
of NLCs near an interacting wall, which will be applicable
to the case of a strong wall-molecule interaction.

The plan of this paper is as follows. A description
of the model is given in Sec. II, the method of solving
the resulting system of nonlinear integral equations is
presented in Sec. III, the intermolecular potential is de-
scribed in Sec. IV, results of the numerical calculations
are given in Sec. V, and finally I summarize my main
results and conclusions in Sec. VI.

II. MODEL

I consider a one-component fluid consisting of
molecules with coordinates i—:(q, , e, ) describing molec-
ular positions q, and orientations e, (~e, [

= 1) of prolate
ellipsoids of revolution, of major semiaxis 0~~ and minor
semiaxis 0~, respectively, in contact with a solid planar
wall. The x axis of the coordinate frame is chosen to be
normal to the wall, and the nematic molecules occupy
the half-space x ) 0. The space-fixed z axis is chosen
so that the nematic director lies in the xz plane. Of
course, in the general case the orientation of the director
for each layer should be calculated from the condition of
minimizing the Helmholtz free energy. However, here I
will assume homogeneous anchoring.
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One uses a statistical scheme in which the total volume
V of the system of % molecules is divided into n molec-
ular layers parallel to the solid wall. In layer I there are
Nl, cells, so that N = P Nl„and the volume of each
cell is v = V/N. The model which is used here assumes
that every cell is occupied by a molecule and thus the
number of cells equals that of molecules, which seems
reasonable for a condensed system. The potential energy
associated with the N particles is a sum of potentials
U = P,.&. 4 (ij) + P,. 4 (i), where 4(ij) is the inter-
molecular pair potential and 4(i) is the molecule-wall
potential. By integration of the Gibbs canonical distri-
bution, a set of functions Fl, (i),FI,I, (ij), FL,~(ij), etc. ,
is introduced in order to define the probability densities
for the molecules to be found at the coordinates i, i and
j, etc. [8—10]. Below I take into account only the first
two kinds of functions of the infinite hierarchy, the sin-
glet function Fl, (i) which defines the probability density
for a molecule to be found at the coordinates i inside a
cell of volume v, which belongs to the layer L, and the
binary functions FI,L,(ij) and Fl,~(ij) which define the
joint probability densities for two molecules to be found
at the coordinates i and j inside two different cells, be-
longing to the same layer L, or to different layers L and
K, respectively. Using mean force potentials (MFPs), I
can present the above-mentioned functions in the form

is the binary mean force potential energy of molecules i
and j in the ith and jth cells due to a molecule in the lth
cell, averaged over the state of the later. The subscripts
before the comma correspond to the MFP dependence on
the coordinates of the molecules; those after the comma
correspond to the average states. Using now the relations
between the singlet and binary functions which follow
from their definition, one has

d(i)FI, (i) = 1, d(z)FI ~(iz) = Fl, (i), j C K.

(7)

The two-particle function is similarly related to a three-
particle function by an integral relation, etc. Below I
take into account only the first two functions of the infi-
nite hierarchy; this corresponds to considering only pair
correlations between cells. In order to make this a closed
system of equations, I separate the mean force potentials
into irreducible parts [11]. In the approximation consid-
ered here, which corresponds to neglecting three-cell and
higher-order correlations, I have

(8)

and then the expressions for the binary functions take
the forms

FLL(ij) = Ql,
' exp{—P[c'(ij) + p«(ij)])

FI,K(ij) = F (1i)F (Jjc) exp{p[p, ~(i) + p~, (j)]}V(ij),

for i c I, j c K (9)

FLK(ij) = {QLQK) ' exp{—P[c'(ij) + pL(ij)]) (3)

where L, K are the layer numbers, respectively, and

Fl.l, (ij) = F (i1)F (j1) exp{P[p, ~(i) + y~, ;(j)])V(ij),

for i 6 L, j E L (10)

"(')exp{—&«(')) "(') =— dq 'de'

Here P:—(kT) is the inverse temperature and iU

v(3o. , where o. is the volume associated with orientations.
The integration is over the volume of a representative cell
in layer L. The functions Ipl, (i), pI, ~(i j), and IpL, L, (ij) are
the singlet and binary mean force potentials belonging to
the indicated layers. These are given by sums of the form

~'p', (')) = d(j ) exp{Pp~, (j))V(ij)EM(j),

where V(ij) = exp{—P4(ij)). The exponential factors
in Eqs. (9) and (10) reflect the correlations between cells
and distinguishes the approach used here from the mean
field approximation. Substitution of Eqs. (1)—(10) into
Eq. (7) leads to a closed system of nonlinear integral
equations (NIEs) for the MFPs [8,11],

(4) M = L, K. (11)

Here y, ~ (i) and y, ~ i(ij) are the mean force potentials:
y, i(i) is the singlet mean force potential energy of a
molecule in the ith cell due to a molecule in the jth cell,
averaged over the state of the latter. Similarly, &p,~ i(ij)

Since y, ~(i), p~;(j), and FM(j) are related through
Eqs. (1), (4)—(6), and (8), Eq. (11) provides a system
of nonlinear integral equations for the mean force po-
tentials. Knowing the solution of these equations, one
can compute the microscopic characteristics of the LC
system (expressed in terms of the one-particle and two-
particle functions) and also the macroscopic characteris-
tics, which can be expressed in terms of the free energy
of the system. The Helmholtz free energy per molecule
is given by [8,9,14],

f = ) fr, , fr, = —P ln d(i) exp{—P«(i)} . (12)
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It should be noted that in the case of a homogeneous
system, the MFPs p;~(i) and p~, (j) do not depend on
the positions of the cells i and j. This means that one
reduces the system of NIEs (11) to a single equation.
Note that the same system of equations appear in the
Bethe approximation for a lattice model of surfactant
mixtures in [12] [see Eq. (12)].

Theoretically, of course, the system of Eq. (11) is in-
finite, but in practice only a finite number of adjacent
layers can be taken into account. It will be shown that
the MI"Ps decay to their bulk values. The decay length,
or the number of layers in which the MFPs are di8'erent
from the ones in the bulk, depends strongly on the pair-
wise interaction and correlations between the cells. In
this case, the system of Eq. (11) must be truncated after
a finite number n of perturbed layers. Accordingly, one
arrives at the finite system of NIEs

"0) V('j) &k, l(&) +i(j)

~i,2(') =

d(j ) V(ij) g „(j)E„(j), m = n —1,

methods for solving systems of more than one nonlin-
ear equation. Except in linear problems, obtaining so-
lutions invariably proceeds by numerical iteration using
the method

@{k+1}(P) jy(k) (P ) Lq(k}(P ))1/2 (16)

where ~~L~[ & 1 is the five-dimensional nonlinear integral
operator defined by Eq. (13) in the space W; = iin, and
I, is a five-dimensional vector in that space. Cronrade
(in Ref. [13])investigated the existence and uniqueness of
such solutions in one dimension. His findings can, how-
ever, be generalized to multidimensional domain as well
[14]. For smoothly varying functions, good algorithms
will always converge, provided that the initial guess is
accurate enough. Success strongly depends on having a
good initial guess for the solution Q(i), and from that
point of view it is convenient to chose @("}(i)= @ (i).
The procedure of construction of the bulk MFPs g (i)
for the nematic phase was described in Refs. [8,11]. The
algorithm (16) was implemented as follows: the initial
approximation was set to be gi k(P, ) = gi 2(P, ) =

(P, ) = g (P;). Then the integrals of the right-hand
side of (16) were calculated with the help of the Sobol's
method [15], using the Haar functions for calculating
multidimensional integrals as

dg j 0 ~ ~

where @I, M (i)—:exp( —Py, ~ (i)) for i E I, Z E M, and

V (j) fork=0
V(ij) for k = l.

Here V (i) = exp[ —P4(i)] is the kernel of the integral
equation determined by the wall-molecule interaction po-
tential which I shall identify shortly, and

Fl, (i) = Q~' g;, (i), i eL, , (14)

g;,, (i) & vP,
'. , (i), i C n,

k

(15)

where g, . (i) is the bulk MFP. It should be noted that in
the present paper I have considered only a simple cubic
structure where every cell has six neighbors. The layerI = 0 corresponds to the top layer of the substrate. The
products over j in Eqs. (14) and (15) are over all nearest-
neighbor cells of cell i.

Here P' s are the points uniformly (mod 1) distributed
in the n-dimensional unit cube. These points belong to
a IP sequence [16] and were generated by means of an
I,P generator [15], and M is the number of points. The
precision of the calculations is about B = O(M ln M),
whereas for Monte-Carlo integration the analogous esti-
mate is O(1/+M).

The procedure of the calculations was repeated for all
neighbors of the cells in the erst n layers. The coor-
dinates P, in Eq. (16) were chosen such that g(i}(P,)
could be calculated at the points forming the same sta-
tionary IP sequence as used in the evaluation of the
integrals with the initial approximation g( }(P,). Then
EI (P;) was calculated by a simple multiplication of
g( }(P,). The procedure was then iterated until a given
accuracy was achieved. The calculations were executed
using M = 200, which corresponds to 200 points of a
Monte Carlo method for the same estimates of the in-
tegrals. This has been achieved owing to the fact that
the IP sequences possess a more uniformly distributed
set of M points in the five-dimensional unit cube than
independent random sequences.

III. METHDD DF SDLVINC THE SYSTEM
OF NONLINEAR INTEGRAL EQUATIONS

The method of solution of the Gve-dimensional problem
(13) is very complicated and there are no good general

IV. MDDEL DF MDLECULAB. INTER.ACTIDNS

The kernel of the integral equations (13) is determined
by the molecular interaction potential. This was chosen
to be the Gay-Berne [17] intermolecular potential
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The parameters in this potential are also orientation de-
pendent, and are given by

(20)

where e;, e~ are, respectively, unit vectors along the
molecular symmetry axes, q, ~ the vector between the
molecular centers, and e,~. = q;~/~q, ~]. The poten-
tial energy parameter e(e, , e~, e,~) and size parameter
a (e, , e~, e;~) are angle-dependent functions defined in
Eqs. (3), (4), and (8)—(10), respectively, of Ref. [17]. The
former depends on the molecular elongation or length-
to-breadth ratio p (denoted a'~~ ja~ in Ref. [17]), while
e(e, , e~, e;~) depends on both p and another parameter
which can be used to adjust the ratio between the end-
to-end and side-by-side well depth, denoted e~/e, . In our
calculations the parameters p, and v of Ref. [17] have been
fixed at the values 1 and 2, respectively. The molecule-
wall interaction is given by [18]

long axis of the molecule and the director, Pl. (i) is the
singlet function corresponding to the 1th layer, satisfy-
ing the system of NIE (13), and @,(i) is the full bulk
MFP. In the case considered here, only one orientation
of the director for each layer, parallel to the surface (ho-
mogeneous anchoring) has been investigated. It is rea-
sonable to assume homogeneous anchoring due to the
fact that this orientation minimizes the wall potential
CI(e;, z, ). In the general case, of course, one should in-
vestigate the question of which orientation of the director
pt, ,~t, ——cos (n k), where n is the director and k is the
normal vector to the surface, minimizes the Helmholtz
free energy.

In the present theory I have not investigated the ques-
tion of the separate inHuence of biaxiality on the behavior
of the surface free energy and assumed that the surface
structure is uniaxial. Our system is characterized by re-
duced parameters: the reduced volume v* = u/crs, the re-
duced temperature P = kT/e, and anisotropy param-
eter p. The latter was chosen to be p = 3. One can readily
see from Fig. 1 that the number of perturbed layers for
the case of a strong interaction between the solid wall and
nematic phase (e = 5e ) (Fig. 1, curves 1, 2, and 3)
and in the case of weak interaction (e = 0.5e ) (Fig. 1,
curve 4) is the same and equal approximately four. The

where y = (p —1)/(p +1), e = e e, e is a strength
parameter, x, denotes the distance from the wall to the
molecule i, and e, = (e, , e; &, e, , ) .
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V. RESULTS OF THE NUMERICAL
CALCULATIONS

rI(L) = (P2 (cos 8;)) d(i) P2(cos8, ) Pl, (i),

(22)

(23)

respectively, where P2(cos 8;) is the Legendre polynomial
of order 2, 0; is the polar angle or the angle between the

The equilibrium order parameter (OP) and surface free
energy (SFE) profiles at the solid —nematic-fluid interface
corresponding to the layers can be expressed by means
of the functions gl, (i) = Q .&, Q, ~ (i), for i E L as

g 0.4 ~ ~ ~ ~

E4
4

Q~ 03 —.~
s „ /'50

/

08'g / I I I I I I I I I I I I I

number of

~I ~ ~ ~ ~ ~

I I I I I I I I I

4 5

layers (L)

FIG. 1. Dependence of the order parameter g(L) on the
number of cells L from the wall, for p = 3.0, reduced
volume v/op = 4.0, in the case of a strong interaction

= 5.0@0, for difFerent values of the reduced temperature
P = kT/e = 0.5 (curve 1), 0.6 (curve 2), 0.7 (curve 3), and
in the case of a weak interaction e = 0.5eo for P = 0.5
in the framework of the present theory (curve 4) and by lin-
earization of the nonlinear MFPs [8] (curve 5). Open squares
indicate points calculated by means of molecular dynamics
[18] at the reduced temperature P = 0.5 and the same vol-
ume.
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I I I theory four distinct layers are needed, and the degree of
ordering near the solid surface is greater. The value of
the OP rl(l) decreases with increasing temperature, as
shown in Fig. 2. The most rigorous test of the theory
would be a comparison to the molecular dynamics OP
rI(L) for the same pair potential and wall potential. Such
computer simulation data have been reported [18]. Gen-
erally, agreement between the calculated values and the
computer data are reasonable, see Fig. 1 (open squares
indicate points calculated by MD at the reduced temper-
ature P = 0.5 and reduced volume v/oo = 4.0). The
dependence of the scaled SFE f, (L)/e for layer I on the
reduced volume v/aro is plotted in Fig. 3 for the case
of a strong interaction (e = 5e ) and for scaled tem-
perature P = 0.7. The SFE decreases with increasing
volume and temperature in both cases.

4 5 6 7
3

reduced volume v/v

FIG. 2. Volume dependence of the order parameter il(1) for
the first layer in the case of a strong interaction e = 5.0 co
and p = 3.0, for diBerent values of the reduced tempera-
ture: P

' = 0.5 (curve 1), 0.6 (curve 2), and 0.7 (curve 3).
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direct interaction has a strong infl. uence on the behavior
of the molecules only in the layer nearest to the wall. It
is seen that the OP rI(L) varies rapidly with growth of
the value L (typically over two or three cells) to the value
of the bulk order parameter. In the previous calculation
of the OP rl(L) by linearization of the MFP's [8], the
number of distinct layers which must be taken into ac-
count equals approximately three, whereas in the present

VI. CONCLUSION

In this paper a statistical-mechanical theory has been
developed which takes into account the translational-
translational, orientational-orientational, and mixed cor-
relations for describing the equilibrium order parameter
and surface free energy profiles at the solid —nematic-fl. uid
interface. The calculations have been carried out for a
cubic close packed system composed of molecules inter-
acting by means of the Gay-Berne potential and with
a (9-3)-like orientation-dependent molecule-wall interac-
tion. The calculations show that the number of distinct
layers which must be taken into account depend mainly
on the character of cell correlations. It should be men-
tioned that a similar problem for the same nonuniform
system has been solved in the framework of linearization
of the nonlinear functional [8] rp; ~(i) = p, (i) + 6, ~(i),
where

~

h, ~ (i)
~

&& (p, - (i) ~. It that case, one has a system
of linear integral equations in addition to the bulk MFPs,
but, in the case of the strong interaction (e = 5.0eo),
it is questionable whether can one use a such decompo-
sition. Here I have extended the conditional distribution
function approach to the case of a strong wall-molecule
interaction. A similar picture appears in a solid crystal
system composed of spherical molecules interacting by
mean of a Lennard-Jones potential at a solid-vacuum in-
terface. In that case, the bulk values of the concentration
of vacancies is reached at the fourth or third layer from
the inter face [19,20] .

In future work, I will investigate the possibility of dif-
ferent preferred orientations of the director, based on
minimizing the Helmholtz free energy.
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