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We consider the configuration of a linear polyion embedded in a disordered medium with quenched
fluctuations in the density of ionic sites that comprise the disorder. Expressions for the disorder-
averaged interactions among the polyion beads are derived. The problem of polyion structure in a
quenched disordered medium is thus reduced to that of a self-interacting polymer with adjusted pair po-
tentials among its units. This class of problems is solvable by existing theories for polymer and polyelec-
trolyte configuration. We analyze the problem using the Feynman-Bogoliubov variational method with
a Gaussian reference Hamiltonian and compare the results of this approach with those of Monte Carlo
simulations performed using the same disorder-averaged pair potentials. At all conditions, the charged
disorder leads to a contraction of the polymer, the effect being strongly dependent on the quenching tem-
perature and the concomitant permittivity of the disorder which effectively determine the magnitude of
the potential fluctuations in the system. At high disorder strength, the scaling characteristic of a self-
avoiding chain is retained for shorter polyions. For sufficiently long polymers, however, the size of the
polymer coil becomes almost independent of the degree of polymerization N. The transition between the
two regimes takes place at the degree of polymerization at which the characteristic distance among the
beads, measured in terms of the radius of gyratioﬁ R,, reaches the distance r,;, corresponding to the
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minimum of the effective disorder-averaged pair potential among the beads.

PACS number(s): 61.25.Hq, 36.20.Ey

I. INTRODUCTION

The configuration of an ionized macromolecule in solu-
tion or in a porous material is strongly affected by the
long-ranged Coulombic interactions among the charged
groups on the polymer chain. The electrostatic repul-
sions enhance steric exclusion effects, thus leading to the
swelling of the polyion coil [1-5]. Additional effects such
as the rigidity of bonds and interactions with molecules
of the solvent and other components in the system may
also contribute to the equilibrium conformation of the
polyion. In view of their importance in engineering and
biophysics, polyelectrolyte solutions have long been the
subject of intense experimental and theoretical research
[1-4,6]. Many features of the behavior of polyelectrolyte
solutions have been dealt with in theoretical treatments
ranging from classical mean-field theories to integral
equation approaches [5,7-29] and simulations [28-38]. It
is fair to say that the structural behavior of simple po-
lyelectrolyte solutions is reasonably well understood.
Technological processes and biological systems, however,
often involve polyelectrolyte molecules at interfaces or in
porous materials characterized by various degrees of dis-
order in the composition and spatial distribution of steric
obstacles or polar groups which may interact with the
units of the polyion. The effects of disordered media on
neutral polymers have been addressed in the literature
and interesting localization behavior resulting in the
overall contraction of the coil has been unanimously pre-
dicted [39-49]. The case of the chain with long-ranged
intramolecular forces in a hard-core disordered medium
has also been studied [43]. In the present paper, these
considerations are extended to ionic macromolecules in-
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teracting with random media that are comprised of
nonuniform charge distributions with quenched spatial
fluctuations. Specifically, we will assume that the
quenched disordered medium may contain uncorrelated
fixed obstacles and ionic sites frozen at a configuration
that corresponds to an equilibrium distribution at some
higher temperature, 7', at which the disordered material
has been prepared. An example of the above kind of
charged disordered matrix is [50,51] a macroporous,
water-filled network with randomly located cationic and
anionic headgroups. While neutral as a whole, the matrix
is characterized by quenched spatial fluctuations in the
charge density due to the random distribution of fixed
ionic sites [50,51]. We will assume that the density distri-
bution of these sites can be approximated by the Debye-
Hiickel form [52,53] for spatial correlations at the pre-
quenching temperature 7' at which the disorder has been
equilibrated before quenching takes place. This fixed
configuration of the disorder particles persists during the
time of observation of the system at an ambient tempera-
ture 7 <T'. A macromolecule absorbed in this porous
material, however, undergoes thermal motion. It as-
sumes various configurations and visits many different
disordered environments. The average configuration of
the macromolecule in the matrix depends on both the in-
tramolecular forces and on the interactions with the
disordered material. In this study, we aim to estimate the
effect of interactions with the disordered medium on the
conformation of the chain. The model system we will
consider in our analysis will be described in terms of an
Edwards Hamiltonian [54] for a self-avoiding macro-
molecule supplemented by the Coulombic interactions
among the charged polyion units [8,10-17,22—-27] and by
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the forces between the units of the polymer and the fixed
sites of the disordered medium. In previous studies of
polymers in disordered media, the disordered material
was usually modeled as “a medium in which a certain
number of obstacles is frozen at random locations” [43].
In the present study, the medium can comprise both ster-
ic obstacles and fixed ionic sites interacting with the po-
lyion through the long-ranged Coulombic potential.
While our analysis applies to both types of the disorder,
we mainly focus on the effects of charged disorder on the
structure of the polyion. In order to carry out the disor-
der average, we treat the quenched disorder as an an-
nealed disorder in the adiabatic limit, a procedure al-
lowed [44,45,47,50] at the specific conditions considered
in the present study. In general, the treatment of
quenched and annealed disorders must be carried out
differently. In the former case one needs to average the
free energy while in the latter the disorder-averaged par-
tition function is calculated. In sufficiently large, self-
averaging systems, however, the two types of disorder
can be treated in an analogous manner
[42,44,45,47,55-59]. As noted in these and other con-
texts previously, this is so because under these cir-
cumstances, the disordered medium can be represented as
an ensemble of several large subsystems, each of which is
larger than any relevant length scale of the problem of in-
terest. During a macroscopic time of observation, the
macromolecule undergoing thermal motion through the
medium will visit a representative ensemble of subsystems
with different configurations of the disorder. This way,
the macromolecule will sample the disordered environ-
ments with the probability that is arbitrarily close to that
characteristic of the annealed case in the adiabatic limit.
The quenched and the adiabatic annealed averages are
therefore equivalent in the limit of large, self-averaging
systems. The argument pertains to the calculation of po-
lymer properties averaged over all initial positions in the
sample. It does not apply to the cases of a grafted macro-
molecule or of a chain trapped in a medium of obstacles
whose concentration exceeds the percolation threshold
[47]. The analysis based on the equivalence between the
two averages is suitable for situations where the polymers
are sufficiently mobile to retain the self-averaging proper-
ties described in the above argument. As discussed in
several studies [44,45,47,50,59], the wuse of this
equivalence avoids some of the algebraic complexity asso-
ciated with carrying out a replica analysis [40,42,43]
without altering any of the structural results that pertain
to the statistical properties of the fluid in a medium with
prescribed disorder-disorder correlations. In the present
context, we employ this approach to derive expressions
for the disorder-averaged Hamiltonian of the polyion
that are analogous to the solvent-averaged McMillan-
Mayer potentials usual in standard treatments of mix-
tures and solutions [52,53]. The polyion configuration
can then be obtained by any method selected from a
variety of approximate theories applicable to simple po-
lyelectrolyte solutions. The particular procedure that we
shall use is the variational path integral approach which
has been used in various forms in a number of recent arti-
cles [16,19,22-26]. The disorder-averaged Hamiltonian
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that we obtain can, however, be treated by other analyti-
cal approaches as well as simulations. In the present
work, predictions of the variational method in a number
of characteristic situations will be compared with the re-
sults of Monte Carlo simulations performed using the
disorder-averaged Hamiltonian of the polyion.

The paper is organized as follows. In Sec. II, the mod-
el Hamiltonian is specified and the averaging procedure
leading to the expressions for the disorder-induced in-
teractions is described. In Sec. III, we consider the appli-
cation of the variational method of Ref. [16] to a system
characterized by the above disorder-averaged Hamiltoni-
an. In Sec. IV, the details of the Monte Carlo simulations
carried out on the same model are given. Finally, in Sec.
V, numerical results and predictions of the model are dis-
cussed. A comparison between the results of the varia-
tional approach and the simulation is presented. Some
limitations of the present analysis are pointed out and
planned improvements are briefly outlined.

II. ANALYSIS

A. General considerations

The polyion embedded in the disordered medium is
modeled as a necklace of N equal units or beads of ex-
cluded volume, u,, each carrying a charge, g. The bonds
among the neighboring beads are described as harmonic
springs, the spring constant being equal to 3kT /212,
where k is the Boltzmann constant, T the absolute tem-
perature, and / the mean (Kuhn) segment length in the
absence of anharmonic interactions. The beads located at
positions {r,,} interact with each other through the ex-
cluded volume potential, approximated by the standard
hard-core Hamiltonian Hy.

Uy
Hhc_T 2 8(rm—_rm’)
m,m’
Uz
+~3—!~mm2’m &(r,, —r,,)6(r,, —1,,)+ (1

consisting of the two-body, three-body, and higher-order
contributions. For the time being, we will be concerned
solely with the two-body pair interactions

Uy = U 8(T,, —T,,0) ()

which dominate the hard-core exclusion at moderate seg-
ment densities. In addition to the short-ranged steric
effect, the ionized beads repel each other through the
Coulombic potential u

. A

="
N S

u , (3)

where A=g?2/4mekT and the thermal energy kT is used
as the energy unit throughout the paper. In the presence
of a simple electrolyte, the repulsions among the beads
are electrostatically screened as discussed briefly in para-
graph Sec. II B3. The screening due to the polyelectro-
lyte counterions and interactions among distinct polyions
will not be considered since infinite dilution of the poly-
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mer is assumed. A fraction of the counterions attracted
to the polyion at these conditions may still be considered
through Manning’s limit of polyion charge density. Ac-
cording to this limit, the counterions will effectively
shield the polyion charge in excess of the critical charge
density [60] determined by the relation

q/1=4mekT /e,. @

In addition to the intramolecular forces, the polymer
beads also interact with the disorder. For the time being,
we do not specify the form of the bead-disorder interac-
tions except to restrict attention to two-body interac-
tions. The Hamiltonian of a polyion can then be written
as

:53_2 2 (rm+1_rm )2+%2 2 umm’(rm _rm’)
+22umd(rm_rd) ’ (5)
m d

where the summation is over all polymer units m and dis-
order particles d, and pair potentials u,,,,(r,, —r,,) and
U,4(1,, —1,) comprise Coulombic, excluded volume, and
other contributions to the bead-bead and the bead-
disorder interactions, respectively. The instantaneous
configuration of the polyion is determined by the coordi-
nates of its units {r, }. The global structure of the poly-
mer is, however, conventionally described in terms of the
mean-square distances between pairs of beads

—H({r_1},{r,;})
Trlr,, —r1,, /% b trad

Tre—H({rm],[rd}) >{rd} ©

where the set {r;} represents the positions of the parti-
cles of the quenched disorder and the angular brackets
denote the average over {r;}. Similarly, one obtains the
thermodynamic properties from the free-energy function

(Fy=—=(inTre "Imblnady %)

(Ir,, ~—rm,|2)=<

In both Egs. (6) and (7), the symbol Tr implies integration
over the configurations of the polymer {r, } at fixed
configuration of the disorder, {r;}, and the angular
brackets denote averaging over all realizations of the
quenched disorder, {r;}. Quenched disorder averages
are usually performed using the replica method. For
quenched disorders, external to the observed macro-
molecule, however, the disorder can be treated as an an-
nealed disorder in the adiabatic limit
[44,45,47,50,55-59]. As noted in the aforementioned
references and in the Introduction of the present work,
treating a quenched disorder as an annealed one leads to
identical statistical properties of the embedded polymer.
Of course, we assume that the system is self-averaging in
making this statement. The conclusions based on the
simple physical interpretation outlined in the Introduc-
tion, as well as related thermodynamic arguments [44,47],
have been reaffirmed by a perturbative renormalization-
group analysis [45]. The reader is referred to these refer-
ences for a thorough discussion of the subject. For the
well-known case of the self-avoiding chain interacting
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with quenched steric obstacles below the percolation
threshold [39,40,42-44,46-49)], employing the
equivalence between the quenched and the adiabatic an-
nealed disorders is known to reproduce the structural re-
sults [43] of the replica analysis. The above equivalence
has recently been exploited to study the effects of random
media on macromolecular structure, penetrant diffusion,
and quantum processes in liquids [44,45,47,50,55-59]. In
view of this equivalence, we may reverse the sequence of
the averaging operations in Egs. (6) and (7) without
affecting the statistical properties of the macromolecule.
We begin our analysis by considering the average of the
Boltzmann factor e ") {¥a over the configurations
of the disorder. It is convenient to assume a continuous
spatial distribution of all disorder species s,

ps(r)=p,+38py(r), ®)

where p, is the average density of the disorder species,
and 8p(r) its local-density fluctuation. The fluctuations
around the mean are considered to obey Gaussian statis-
tics; i.e.,

P[8p,(D)]~exp {— [ [8p,(r)x; \(x,r)8p,(r)drdr |,

9

where x, I(r,r') is the functional inverse of the density-
density correlation function for species s,

Xs(1,1')={8p,(r)8p, (")) =p,8(r—1')+p2h (r—1') ,
(10

and h(r—r')=g . (r—r')—1 is the total correlation func-
tion of given species. Only the self-term p 6(r—r’) will
survive for an uncorrelated disorder characteristic of di-
lute steric obstacles. The charged disorder, quenched at
certain temperature 7' > T, is, however, assumed to re-
tain the distribution characteristic of equilibrium at that
temperature. This simply implies that we consider the
disorder to have been in equilibrium at T’ prior to
quenching down to a lower temperature T. For the sake
of analytic tractability, this distribution is approximated
by the asymptotic low-density form [52,53]

’
A e—x’lr—r’l

hy(r—r')=— r—r
with
'=el /4me' kT’ (11)
and
K?=4mp,\ .

Here, p, denotes the number density of charged disorder
sites, and the coupling constant A'(7’) and the screening
parameter «'(7T"’) correspond to the quenching tempera-
ture T’ and permittivity €'(T") that are different from the
temperature of observation 7T and permittivity €(7T) of
our system. The sum over the disorder particles in the
last term of the system Hamiltonian, Eq. (5), is now re-
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placed by corresponding spatial integrals over the distri-
butions, p,(r). The contribution to the effective Hamil-
tonian from the mean density, p; [see Eq. (8)], is ir-
relevant since it represents a constant term independent
of the configuration of the polymer. Therefore, although
nonzero, it cannot affect the probabilities of different
configurations of the chain. Moreover, in view of overall
electroneutrality, this term vanishes for charged disor-
ders. Only the terms corresponding to the density fluc-

J

Tl <exp r,, —r,)8p(r,)dr

— 33 [u

tuations are, therefore, retained in our analysis. Calcula-
tions for neutral polymers [39-48,55,59] show that these
fluctuations induce an attraction among polymer units.
As shown below, the same effect is observed for polyelec-
trolytes after the disorder average has been performed.
Performing the functional integrals that correspond to
the averaging over the density distributions of the disor-
der amounts to the calculation of an “influence function-
al,” exp[I{r,,}][61]:

>P[p(rs)] ’ (12)

where the subscripts m and s correspond to a particular polymer unit and disorder species, respectively; the angular

brackets denote the disorder average, and the probabilities P are given by Eq. (9).

formed to yield:

I[ {rm
e =exp

EEEEIIums

r, ){8p(r,)8p(r,

The above calculation is easily per-

Nty —ro)drdrg | . (13)

This result applies to arbitrary types of disordered media provided the density fluctuations are adequately described by
Gaussian statistics. Two types of disorder consisting of steric obstacles and charged sites will be considered in the fol-
lowing. No cross correlations between the two kinds of disorder particles will be assumed, so
X1, ") ={8p,(r)8p,(r’')) will be taken to vanish for s7s’. In view of this assumption and Eq. (13), the Hamiltonian
H of Eq. (5) can be replaced by the disorder averaged form

3
2 E(rm-i—l_rm )2+%22
m m m'

3 A
:? 2 (11— Tpy )2"“%2 2 Up (T —Tpp0)
m m m'

According to the above result, the Hamiltonian can be
expressed in terms of apparent pair potentials,
UpmmATm —T,m), which play the role of the disorder-
averaged analog of the McMillan-Mayer pair potential
between the beads m and m’. The effective potentials
comprise the direct terms, u,,, (r,, —r,.), and the
medium-induced attractions [43-48,62,63], correspond-
ing to the third term of the right-hand side of Eq. (14). In
the present case, this term is simplified by ignoring any
correlations among different species of the disorder.
Such correlations do not seem important in the present
context but can, at any stage, be included in a straightfor-
ward manner.

Equation (14) can be analyzed by employing any of the
various methods that have been developed to study
configurational statistics of polymers with nonlocal
bead-bead interactions. In order to illustrate the physical
effects of the disorder on the structure of the polyion, we
shall employ a variational path-integral method and the
Monte Carlo simulation technique described in Secs. III
and IV, respectively. Prior to doing so, however, we need
to specify the nature of interactions between the beads
and the disorder and to consider the expressions for the
effective potentials #,,,,(r,, —r,) pertaining to particu-

)—szums Tm ™ Xs(s

r)u,, . (r,, —r;)drdr;

lar types of intramolecular and polymer-disorder interac-
tions.

B. Specific examples

1. Steric disorder

We begin by briefly considering the well-known
[39-49] example of a self-avoiding uncharged macro-
molecule in dilute steric disorder. In this case, the repul-
sive interactions between the polymer units are approxi-
mated by Eq. (2) and the same form with a different pre-
factor, u,, describes the interaction between the polymer
beads m and the disorder particles d. The disorder-
averaged bead-bead potential 7,,,,(r,, —r,,) introduced
in Eq. (14) reads

m)

U —r,, ) =u,(r, —r,)

— [ [ uadlen —rxalrs—14)

mm’(rm

Xuyd(r,, —r4)drydr,

=u,8(r,, — T, ) —uixq(r, —T,) . (15)
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In the case of a medium of uncorrelated steric obstacles,
which is the situation considered in many previous stud-
ies [39,40,42-44,59], the density-density correlation func-
tion can be written as [40,42,43]

Xa(r—1')=pa6(r—r1’) (16)
and Eq. (15) for #,,,,(r,, —r,,+) becomes [43]
mm'(rm —-rm’)z[uZ _ucgpd ]S(rm _rm’)

=u58(r,, —r1,,) . (17

A~
u

Within the above approximation, the disorder-averaged
bead-bead potential retains the form of the steric interac-
tion among the self-avoiding beads but with a modified
coupling constant u5=[u, —u2p,] replacing the exclud-
ed volume parameter u,. This, of course, is a known re-
sult considered in earlier replica analyses [43] but has
also been shown to be true via heuristic arguments [47]
and Monte Carlo simulations [44]. It is interesting to
note the independence of u; on the sign of the bead-
disorder interaction [43]. Disorder particles attracting
the polymer beads have the same overall effect as an
equally strong repulsive disorder. The only difference is
the change in the role of the sign of the density fluctua-
tions. In the case of an attractive disorder, the polymer
beads are being attracted to regions with higher density
whereas they are trapped in regions of low density in the
case of repulsive bead-disorder interactions. The pres-
ence of quenched disorder has an apparent effect on the
“quality” of the solvent as reflected in the value of the
coefficient u5. This is best illustrated in the case of the
disorder particles with the excluded volume equal to the
volume of the beads, u; =u,. Considering that the prod-
uct u, p, equals the volume fraction of the disorder obsta-
cles ¢4, the effective coupling constant u5 can be ex-
pressed by the relation

uy=u,[1—¢4]. (18)

A somewhat more complicated situation is obtained if u,
differs from u,. In this case,

(19)

can assume negative values leading to an effective attrac-

A

tion between the beads. These effects have, of course,
been thoroughly studied by a number of alternative ap-
proaches [39-48,55]. We have briefly considered this
case merely as an illustration of the application of the re-
sults of the preceding section. We note that the presence
of another type of the disorder would not alter the ex-
pression for the disorder-induced excluded-volume con-
tribution as long as different disorder species are not
correlated.

2. Ionized macromolecule in charged disorder

We now turn attention to the more interesting and
hitherto unexplored case of a self-avoiding macro-
molecule comprised of charged units interacting among
themselves as well as with charged disorder particles
through bare Coulombic potentials, Eq. (3). This system
is related to, but different from the case of the polymer
with long-ranged intermolecular forces in a purely steric
disorder considered in Ref. [43]. The emphasis of the
present work is on the effects of long-ranged polymer-
disorder interactions. The disordered medium consists of
charged sites of total density p,, each carrying an elemen-
tary charge e, or —e,. The quenched charge-density dis-
tribution is subject to Gaussian spatial fluctuations
around neutrality, with the density-density correlation
function, x,, described [52] by the Debye-Hiickel form

per’

—K'[r—r'| 20
47|r—r'| ¢ ’ o

X (r—r')=p,8(r—r')—
where k' corresponds to the temperature 7’ at which the
disordered medium has been brought to equilibrium be-
fore the quenching took place, and which is higher than
the current temperature 7. According to Eq. (11), ' also
depends on the permittivity €'(7") that may differ from
the current permittivity €(7) of the system at the condi-
tions of observation. ), takes a particularly compact
form in Fourier space where we have

pek’

. (21)
k2+k"?

X.(k)=

The effective bead-bead potential obtained after integra-
tion over the density distributions of the charged disorder
is

A

— _ A _ A VAN ,
U (T, — T, )=u38(r,, —r,)+ e —r.] f f e —r,] X.(ry r,,)l ,|drddrd . 22)

I, Iy

Replacing the real-space expressions for the bead-disorder interactions and the disorder-disorder density correlation
function by corresponding Fourier transforms, and taking advantage of the convolution theorem, we can rewrite Eq.

- or

(22) as
" _ 1 , L 4mA _ 4mh Pk’ amh | ik, -1,
Bl =00 = s L 40~ g g ]e ek 23)
A A 477'}‘2Pe 1 1 —«'lr,, =1,
. —r _)=ul8( —r, )+ — m~ Tm .
UL, — T, )=u,8(r,, —r1, I, —r,] 2 £, —t, | [Ty —Tp| (24)
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In writing Eq. (24), we assumed that the beads m and m’
are monovalent and equally charged. In the case of arbi-
trary valences, z,, and z,,,, the Coulombic terms in Eq.
(24) would be multiplied by the prefactor z,,z,,.. The first
term in Eq. (24) corresponds to the excluded volume in-
teraction between the beads, possibly modified by the
effect of the disordered obstacles described by Eq. (17).
The second term is due to the direct electrostatic interac-
tion among the charged beads, and the last term de-
scribes the electrostatic screening of these interactions by
the charged disorder. The screening power of the static
charged disorder stems from the fact that the charged po-
lymer beads prefer to reside in regions with charge densi-
ty opposite to their own. According to Eq. (11), the
screening parameter k' of the disorder depends on the

A

Az, z,. B Az, z,.€T 1 1

D. BRATKO AND A. K. CHAKRABORTY 51

prequenching temperature (7') and the corresponding
permittivity €’(7") at which the disorder has last been in
thermodynamic equilibrium. In the interesting hypothet-
ical case with 7' equal to the actual temperature of the
system T, and consequently, k'? equal to k*=4wAp,, the
screening term, estimated in Eq. (24), is equal to the
screening effect of a simple electrolyte [52,53] whose ionic
strength equals the ionic strength of the disorder. For
real quenched systems, of course, 7°'>T, and the ap-
propriate relation for «'? is

eT

— - 25
T (25)

K2=4mAp,

For an arbitrary ion pair mm' with charges z,, and z,,,
Eq. (24) can then be rewritten as

—«'|r,, —1,.|

Uy (L, — T, )=u58(r,, —r,.)+

or, in the limit of small «’|r,, —1,,/|,

Az, z .
B 0 =) =3B — ) T
m T,
_ Aoz €T -
eT '

Equation (26) shows that for €'T’>¢eT, the disorder-
averaged potential of mean force between equally
charged beads that includes both the direct Coulombic
repulsion and the disorder-induced attraction exhibits a
minimum at a distance 7, that satisfies the relation

——E; = (14Kl ™ (28)

The mean force between equally charged beads m and m’
remains repulsive if the separation |r,, —r,,| is smaller
than the distance r;,. The force is, however, attractive
when the two particles are separated by a distance
It =Tl > 7min- Physically, the effect is explained by the
fact that equally charged beads are attracted to the same
potential wells created by a high density of oppositely
charged disorder sites. At distances r,,,,.>r_.., this at-
traction prevails over the direct repulsion between the
two units. A related phenomenon has been discussed pre-
viously in the context of colloidal solutions where the
counterions are known to accumulate in potential wells
adjacent to the macroions, the net result being an attrac-
tive potential of mean force between equally charged
mobile ions in solution [64—66].

The dependence of the critical distance r,;, [defined in
Eq. (28)] on the ratio €'T’'/eT and on the screening pa-
rameter «'(T’) of the disordered medium is illustrated in
Fig. 1. Higher values of ¢'T' /€T and «’ correspond to a
shorter range of bead-bead repulsion and a faster cross-
over to the attractive interaction. The parameters

1

Ir,, —1,,] eT

(26)

T, — Tl T, =1,

e'T’'/eT and k' will therefore have a significant effect on
the behavior of the polyion. To minimize the Coulombic
energy, the polyion will tend to assume configurations
with typical bead-bead separations close to the distance
Fmin» Where r_; corresponds to the minimum of the
disorder-averaged pair potential among the beads. This,
in turn, favors configurations with the radius of gyration
R, close to the distance r;,. For smaller coils, the
Coulombic forces are expected to enhance the swelling of
the polymer while they tend to suppress its growth
beyond the size R, ~7;,. These trends have important
repercussions for the scaling behavior to be discussed in
the following sections.

3. Screened polyion in the presence
of quenched charged disorder and mobile ions

We now briefly consider a situation that is more gen-
eral and perhaps more frequently encountered in practice

10.0

8.0

6.0 |

X I'min

4.0

20

0.0

1.0 1.2 1.4 1.6 1.8 2.0
eT/eT
FIG. 1. The dependence of the characteristic distance 7, on
the quenching conditions 7" and €'(7”) and on the density of the
disorder measured in terms of the screening parameter «'(T",¢’).
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than the problem considered so far. Specifically, we look
at situations where the electrostatic interactions among
the polyion beads and those between the beads and the
disorder charges are mitigated by the presence of a sim-
ple electrolyte chdracterized by its own screening param-
eter k(7). This entails the presence of additional mobile
simple ions that are not attached to the fixed sites on the
quenched irregular matrix. In the absence of the
quenched charged disorder, the averaging over the elec-

I

ﬁmm'(rm _rm')zu‘Z(rm

where u5(r,, —r,,) is given by Eq. (17) and the summa-
tions are over all ionic species k of the salt and the
quenched medium. The double sums contain the terms
which stem from site-site, site-ion, and ion-ion correla-
tions. The density-density correlation functions
Xi(ty —r;.) involving only quenched sites are not
affected by the presence of the salt. The density-density
correlation functions involving the salt ions are, however,
affected by the presence of the quenched disorder. For-
mally, they can be determined by applying Eq. (10) to all
species pairs, kk’. The total correlation functions
hy (1, —r.) can be approximated by the negative of the
reduced potential of mean force between species k and k',
— (1, — 1), These potentials can be calculated by us-
ing equations analogous to Eq. (29) which will, in this
case, represent a system of integral equations [46,67,68]
for @,(r, —r;.). These equations can be solved by any
of the standard techniques of integral equation theory
[52,53], a problem to which we hope to return in a
separate study.

We have now developed expressions for the disorder-
averaged pair interactions between the polyion beads. In
the following, we apply these results to study polyion
conformational statistics in charged disordered media.

r(L)

G(RL)—fO)_ 3 Ld

21

ar( s

D[r(s)]exp [

where # (k) is the Fourier transform of the effective potential, % [r(s)—r(s

zzkzk’ff |r —r, lek
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trolyte configurations results in screening of the bead-
bead interactions. When the polyion and the salt are
brought in contact with the quenched disordered medi-
um, these screened bead-bead interactions are further
modified upon integrating out the disorder. Following
the procedure employed with bare Coulombic interac-
tions between the beads and the disorder sites, we obtain
the following expression for the disorder-averaged poten-
tial of mean force between the two beads m and m’:

rkl) |r ] drkdrkr N (29)

[

We do so by analyzing our equations approximately via a
variational calculation, and by Monte Carlo simulations.

III. VARIATIONAL CALCULATION

Our analysis has reduced the problem of a polyelectro-
lyte in quenched disordered media to the simpler issue of
treating a self-interacting chain with modified, disorder-
averaged intramolecular forces In view of this result, the
configurational statistics of the polyion can be obtained
by various methods that have been devolved to study po-
lymers in environments free of disorder. The averaging
over polyion configurations involves the calculation of
path integrals with the following “action” functional

3 pL ar(s)
H=77J,95 |5
+1f dsf ds'a[r(s)—r(s)], (30)

where u[r(s)—r(s’)] represents the disorder-averaged
bead-bead potential and s is the contour coordinate for a
given unit on a chain of length L. A continuous repre-
sentation is chosen for the sake of mathematical conveni-
ence. The propagator G(R,L) corresponding to a given
end-to-end vector R is then given by the expression

lk-lr(s)—r(s')l , (31)

s [ [

’)]. The integrals in Eqgs. (30) and (31) cannot

be evaluated analytically but many approximate theories and simulation methods have been reported. To illustrate the
effect of the disorder on the structure of a polyelectrolyte, we first apply a particular form of the standard variational
method that is due to Muthukumar, who considered an isolated polyion in solution or at an electrified interface [16].
The method is based on the minimization of the well-known Gibbs-Bogoliubov free energy bound, Fr = F, with

FT=F0+<H_H0>0- (32)

H is the true Hamiltonian of Eq. (30) for our model system, and F the corresponding free energy. H, is a harmonic
reference Hamiltonian, and F,=InTrexp(—H,,) the free energy of the reference system. The angular brackets ¢ ),
denote a canonical average with respect to the Hamiltonian H,. The configuration-averaged pair interactions between
the beads s and s’, (%, ), contained in the average ( H ) are then easily calculated after the usual plane-wave expansion
of the potentials % [r(s)—r(s’)] to be
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= |==| us(lr(s)—r(s)]?) 72+ —=(lr(s)—1(s")[?) "1/
2 \/77'
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erfc

exp

V6 6

In several applications, Gaussian variational methods have been shown to overestimate the short-ranged steric effects
[25,69,70] but this problem is mitigated by the use of a suitably restricted reference Hamiltonian H, [16]. Moreover,
Bouchaud et al. [20] have demonstrated that the method is, in general, fairly accurate for systems dominated by long-
ranged electrostatic interactions since the structure of these systems is described adequately by a Gaussian Hamiltoni-
an. The reference Hamiltonian used in Ref. [16] has the form of the ideal elasticity term of Eq. (31) with modified step
length, I, replacing the unperturbed length, /. Expanding the expressions for the chain propagator and the correspond-
ing free energy [16] in the plane wave, ¢, and further assuming the dominance of the lowest mode of g, the standard
minimization procedure leads [16] to the following approximate relation for the mean-squared radius of gyration of the

polyion, R?=1/(2N))3,, 3, { lt(m)—r(m")|?):
R}=LI, /6,

I, being the solution of the equation

1 1 1 L L d3k
—_—— = | = d ’ 7k 2. a2
[l I 18LI1? fo Sfo dsf(z,’r)zu( )k?|s —s'|%e

—k2ls—s'1/6 ' (34)

For details of the derivation of Eq. (34) as well as a discussion of the adopted approximations, the reader is referred to
the original work of Muthukumar [16]. We solve Eq. (34) using the Fourier transform of the effective potential of mean
force between the beads embedded in charged disordered medium, # [see Eq. (26)]; specifically,

v+, 4TA 4kt €T
B =t o T kD eT 3%
The integration of Eq. (34) with the potential #(k) given by Eq. (35) leads to the following result:
2,
1_1|_43 “2 ;g 62 4\ 3, |eT—€'T
I, 3 |2 121372 457172 21372 eT
61/2 40 32 T 7T.l/Zeb 5 12 377.1/2 77.1/2 6
3712 232 eT | 2p572 (b7 —4b +6)erfc(b /%) — ps2  p3z ! p2 [ (36)

where b=k'’Ll, /6. The first term in the above expres-
sion represents the excluded volume effect and the
remaining two terms comprise the direct and the disorder
mediated electrostatic interactions for arbitrary disorder
concentration and the quenching conditions, T’ and ¢'.
In actual quenched systems, only situations with 7'> T
are encountered. For the sake of comparison with earlier
work, it is, however, also interesting to consider the limit
e'T'—eT. In this hypothetical case, the second term on
the right-hand side of Eq. (36) vanishes and the third
term approaches the result [16,22] for the polyion in a
simple electrolyte solution with the screening parameter
k'—k. In the absence of electrostatic effects, Eq. (36) is
identical to the result of the variational replica analysis of
Ref. [43] carried out by using the present reference Ham-
iltonian. For repulsive u 5, it leads to the known Flory re-
lation with scaling exponent, 2v=6/5 [16]. For a polyion

in a very weak disorder, the scaling appropriate for a
nonscreened polyelectrolyte (v close to 2) is recovered.
The presence of quenched charged disorder leads to addi-
tional, attractive forces between the polyion beads. At
€'T'—¢eT, this would merely screen the existing repul-
sions, the strong screening limit coinciding with the case
of an uncharged self-avoiding macromolecule At
€'T'> T, however, the disorder-induced attractive con-
tribution can exceed the direct Coulombic repulsion be-
tween the ionized beads leading to an overall coil size
that is smaller than that of a neutral polymer. At these
conditions, the chain will behave in a manner qualitative-
ly different from the case of a screened polyelectrolyte
considered in Ref. [16]. For this to happen, the typical
bead-bead separation should exceed the distance r,,, cor-
responding to the minimum of the effective pair potential
among the beads. For bead pairs at smaller separations,



51 POLYELECTROLYTE CONFIGURATION IN A DISORDERED MEDIUM

the repulsive interactions dominate. This suggests that
two different scaling regimes of the polyelectrolyte in the
disordered medium should exist. The properties of rela-
tively short polyions with R, <r;, are expected to
resemble those of screened polyelectrolytes in ordinary
solutions. The size of longer polyions with radius of
gyration exceeding the distance r,;,, will, however, be
controlled by the balance between short-ranged repul-
sions and the long-ranged attraction among the beads. In
the former regime, the polyion size will grow relatively
rapidly with the contour length L. In the latter regime,
an essentially slower growth is expected. The crossover
between the two regimes is expected at or near the degree
of polymerization at which R, approaches the critical
distance r;,. In view of Eq. (28) and Fig. 1, the length
at which the crossover occurs can be shortened by in-
creasing the quenching temperature 7’ and the density of
the disorder p,. This is explained by enhanced potential
fluctuations corresponding to higher values of p, and the
product €'T’. We shall make these statements precise
when we discuss the physical meaning of our numerical
results to be presented in Sec. V.

IV. MONTE CARLO SIMULATION

We have carried out Monte Carlo simulations of a
model polyelectrolyte characterized by a disorder-
averaged polymer Hamiltonian that is essentially
equivalent to that used in the variational analysis. The
purpose of these simulations is to examine the accuracy
of the approximate variational calculations. This in-
volves lengthy but tractable computations. Explicit con-
sideration of numerous realizations of quenched disorders
with long-ranged interactions, on the other hand, would
require extreme computational resources. According to
Eq. (14), the Hamiltonian is comprised of the energy as-
sociated with harmonic bonds between the neighboring
beads, the excluded volume term, and the disorder-
averaged interactions described by Eq. (26). In contrast
with our preceding analytical treatment, for the simula-
tions, the excluded volume term is described in terms of a
true hard-core potential

Up (T, —T,)=o if |1, — 1,/ <0 an
=0 otherwise

with the hard-core diameter o chosen to match the value
of the excluded volume parameter u, =4mo>/3 used in
the analytical treatment. No steric disorder obstacles
were considered in the Monte Carlo simulations. Apart
from the disorder-induced Coulombic term described by
Eq. (26), the above model is identical to the one used in
recent Monte Carlo studies of an ordinary polyelectrolyte
in solution [28,29]. The simulations, initiated from a ran-
dom polyion configuration, were performed according to
the standard Metropolis algorithm. The attempted
moves consisted of random displacements of individual
beads and forward or backward reptation moves [71] in-
volving either of the two end groups without altering the
configuration of the rest of the chain. The allowed dis-
placement and the fraction of reptation moves were ad-
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justed to secure acceptance of the moves between the lim-
its of 40-60 %. Statistical accuracy was monitored by
using the method of subaverages [72]. The number of
configurations needed to obtain reproducible results
varied with the length of the chain. Typically, we needed
about 10* attempted moves per bead during equilibration,
while a total of about 10° attempted moves per bead were
sufficient to obtain results for R, with a standard devia-
tion below 1-29%. Above, the number of attempted
moves per bead denotes the number of simulation sweeps.
The total number of attempted chain configurations in a
run is obtained by multiplying the number of sweeps by
the number of beads N of the simulated polymer. About
ten times longer runs would be needed to obtain a compa-
rable accuracy for calculated squared end-to-end dis-
tances of the polyion.

V. RESULTS AND DISCUSSION

In this section, we present numerical results of our
variational calculations and Monte Carlo simulations for
the polyion size at different disorder strengths as mea-
sured by the quenching parameters 7’ and € and the
average concentration of sites that comprise the disor-
dered medium. We focus attention on situations wherein
e'T'>eT. The model parameters used in most of our cal-
culations correspond to a polymer containing 400 mono-
mer units of length / =7.14 A and a hard-core diameter
o=5 A or, equivalently, u,~5.24X10* A% Each unit
carries an elementary charge ¢ =e,. The product of the
relative permittivity €, and the temperature T is taken to
be 2.335X10% and we treat the disorder sites as point
charges of magnitude te,. No steric obstacles are

0.5

log,(R/R;")

0.0

-0.5
-5.0 -3.0 -1.0

log,q(c/mol dm™®)

FIG. 2. The radius of gyration of a polyion containing 400
segments of length /=7.14 A and charge q=e, at
g, T=2.335X10* as a function of the density of the charged dis-
order c, at different ratios between the quenching and the actual
values of the products of the temperature and the permittivity
(from top to bottom) £'T’ /eT=1.0 (O, dotted line), 1.025, 1.05,
1.1, 1.2 (A, dashed line), 1.5, or 2. The symbols denote the
simulation results and the lines describe the predictions of the
variational approach.
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FIG. 3. The radius of gyration of the polyion as a function of
the product of the quenching temperature 7"’ and the permittivi-
ty €'(T’) at different disorder densities (from top to bottom)
c;=1075,10"%1073,1072, 107}, or 1.0 moldm 3.

present in our system. Figures 2 and 3 illustrate the
dependence of the radius of gyration, R,, on the concen-
tration of the ionic sites of the disorder, c;, and on the
quenching parameter €'T’. As seen from Fig. 2, at low
disorder density the chain assumes a relatively extended
configuration whose end-to-end distance rapidly de-
creases with both the density and with the product of the
quenching temperature 7' and the permittivity €'(7T"') of
the disorder. In the hypothetical case with €' T'=¢T, the
average size of the coil measured in terms of R, exceeds
the value R: =V/LI /6 characteristic of an ideal Gaussian
coil at all disorder concentrations c;. The situation is,
however, qualitatively different in situations with
e'T'>¢eT. When €'T"’ exceeds the value of €T for the ac-
tual system by as little as 15-20%, the attractive
disorder-induced contributions prevail over the direct
electrostatic repulsion between the beads for disorder
densities greater than ~10"! moldm™3. Further in-
crease in ¢, leads to a pronounced contraction of the po-
lyion coil whose average diameter may be orders of mag-
nitude smaller than in the absence of the disorder. Fig-
ure 3 presents the dependence of R, on €'T" at various
disorder densities c;. At low c¢;, the product of the
quenching temperature 7"’ and the permittivity €'(7") is,
of course, of little importance. At higher densities, how-
ever, the value of €T’ has a notable effect on the
structural behavior of the chain. Here, we observe a tran-
sition from swollen to contracted coil as €' T” is increased
from values around to values above that of the actual sys-
tem at the temperature 7. Of course, we note that only
temperatures 7' > T correspond to physically realistic sit-
uations involving quenched disorders. The physical origin
of the dependence of the effect of the disorder upon the
quenching temperature can be seen clearly by considering
the spatial fluctuations in the electric field in a quenched
disordered medium. As shown in a different context [50],
the mean-square fluctuation in the electrostatic potential,
(8¢?), is related to fluctuations in the density of the
charged disorder in the following manner:
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(8¢?)=1im (8¢(r)84(r’))

2
. €0
=lim fdr”fdr"'—-”—,,
ot 4re|r—r"|
()8
Xylr—r')——————
X 47e|r’ —r1'"|
paes S
[r—r'|

VT (38)

i.e., {(8¢) is a monotonically increasing function of the
product of the quenching temperature 7' and the con-
comitant permittivity €'. For sufficient field fluctuations,
the tendency towards localization in favorable regions of
the field may prevail over the intramolecular repulsions
among the beads leading to a crossover in the scaling of
polyion coil size. This will be discussed in some detail
shortly.

Inspection of simulation data included in Fig. 2 leads
to conclusions similar to those obtained from the varia-
tional calculation. The comparison between the results of
the two methods applied to essentially equivalent model
Hamiltonians reveals a fair agreement within the whole
range of the disorder densities considered. In a number
of additional simulations corresponding to the conditions
of Fig. 2 (not shown), the present spring-bead model of
the polyion was replaced by the model with fixed bonds
of length /. These calculations lead to somewhat smaller
coil sizes (R, ) at low ¢, but no qualitative changes in the
polyion behavior were observed as a result of this
modification.

The dependence of the coil size on the contour length
of the polymer, L, is usually characterized by the scaling
exponent, 2v(L)=d 1nR;/d InL. The effects discussed
above are reflected clearly upon examining the variation
of v with ¢; and €'T'/eT. As mentioned earlier, 2v is
close to 2 in highly dilute systems. In concentrated disor-
der and with €'T'=¢T, the behavior of the polymer is
similar to that of a neutral self-avoiding chain. In
quenched disorders with €'T’'>¢e7, however, we find a
drastic reduction of the scaling exponent v under certain
conditions. In view of the discussion presented in Sec.
II B2, this crossover is expected when the size of the po-
lyelectrolyte coil R, approaches the critical distance 7,
corresponding to the minimum in the disorder-averaged
pair potential among the beads. The crossover is, there-
fore, facilitated by increasing the disorder concentration
¢y and the product €'T”’ (see Fig. 2).

The crossover between different scaling regimes can be
interpreted in terms of the equilibrium between opposing
attractive and repulsive contributions represented by
different terms in Eq. (36). For coils characterized by the
radius of gyration R, <r,;,, the chain behavior should be
dominated by the balance between the bare elasticity
term and the electrostatic repulsive term of Eq. (36). The
first term is a constant equal to 1//, and the form of the
second term, represented by the last two contributions at
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the right-hand side of Eq. (36), depends on the concentra-
tion of the disorder. At sufficiently large c; and «’, it is
dominated by the last term of Eq. (36) which varies ap-
proximately as L'/?/1}/? [16]. The balance between the
above two terms requires that 1// ~L'2/132 1, ~L/3,
and R2~LI,~L%?. Short polyions (R, <r;,) in con-
centrated disordered medium assume the behavior of the
Flory’s self-avoiding polymer. At very small ¢;, «’, and
R, <7y, on the other hand, the sum of the last two
terms in Eq. (36) gives a repulsive term varying as
L372/1}/%. Here, the balance requirements lead to the re-
lation 1/1~L3?/13/%, 1, ~L, and R}~LI; ~L* At low
disorder densities, short polyions resemble nonscreened
polyelectrolytes in solution.

For coils whose size exceeds the characteristic distance
Tmin» @ significant fraction of the bead pairs experiences
an attractive disorder-induced interaction. At these con-
ditions, the structure of the chain reflects an equilibrium
between the attractive and repulsive Coulombic contribu-
tions represented by the second and the third term on the
right-hand side of Eq. (36). The balance between these
two terms requires that L>/2/I3/2~L'?/13/?, RZ~LI,
be approximately constant (v~0), and the size of the coil
be virtually independent of L. An analogous behavior
has been observed in earlier studies of self-avoiding poly-
mers embedded in a concentrated medium comprising
disordered steric obstacles [39-48].

These trends are illustrated by the numerical results
presented in Figs. 4 and 5. Figure 4 shows the concentra-
tion dependence of the scaling exponent v calculated ac-
cording to Eq. (36) for different values of the parameter
e'T'/eT, and a constant degree of polymerization
N=4X10% At sufficiently low concentration c;, the
characteristic distance r,;, of Eq. (28) will exceed the coil
size R,. For these conditions, the dominant balance
analysis of the preceding paragraphs predicts that 2v will
approach 2, the value characteristic of a strongly extend-

2v

log,q(cg/mol dm®)

FIG. 4. The differential scaling exponent
2v=d In{h?) /d InL of the polyion containing 400 monomer
units of length / =7.14 A and charge g =e, at £, T =2.335X 10*
as a function of the disorder density ¢, at different ratios
e'T'/eT (from top to bottom): €'T'/eT=1.0 (dashed line),
1.025, 1.05, 1.1, 1.2, 1.5, or 2.
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FIG. 5. Radius of gyration as a function of the number of
links, N — 1, at disorder densities (from top to bottom) ¢, =0.01
(0),0.1 (), or 1 moldm™3 (O) at &'T’" /e T=1.2. The symbols
correspond to the simulation results and the lines denote the
predictions of the variational method.

ed polyion. The variational results for low ¢, clearly con-
form with this exception. At a higher density c;, on the
other hand, the value r;, becomes comparable to the ra-
dius of gyration R,. The attractive disorder-averaged in-
teractions that are in effect in this regime give rise to a
notable decrease in the scaling exponent v. The density
at which this happens depends on the parameter 'T’ /eT.
At high densities ¢, the exponent v becomes arbitrarily
small for all €'T" > €T.

Figure 5 illustrates the dependence of the average size
of the coil on the number of links in the chain, N —1, at
three different concentrations of the disorder c;=0.01,
0.1, or 1.0 moldm 3 and at ¢'T"=1.2¢T. The variational
and the simulation results ar included. At small values of
N, R, is generally smaller than the distance r,;, estimat-
ed by Eq. (28) for a specified concentration. In this re-
gime, the calculated slopes v are close to the value
2v~6/5 predicted by the above scaling analysis, al-
though we expect the dominant balance argument to be
less reliable at very low values of N. With increasing N,
the size of the coil R, increases until it becomes compara-
ble to the distance r,;, characteristic for given concentra-
tion. When this is the case, the slope v gradually falls to
a value close to zero in the case of the variational model
while the simulation results seem to retain a small but
finite slope (v between 0.06 and 0.09). The values of 7,
obtained from Eq. (28) for the three concentrations in
Fig. 5 correspond to log (7, /A)~2.03, 1.53, and 1.05,
respectively. The simulation results for the value of R, at
which the crossover occurs are in a very good agreement
with these predictions (see Fig. 5); the crossover takes
place at somewhat larger values of R, in the case of the
variational calculations.

A physical rationale for the virtual independence of R,
on L observed in the regime of high ¢, and €'T" is that, at
sufficient disorder strength, the whole chain tends to lo-
calize within potential wells containing an excess of op-
positely charged particles of the disorder. In this way,
the radius of gyration of the collapsed coil remains com-
parable to the typical size of the wells related to the



5816

screening length «’(T”)~!. For strongly contracted coils,
of course, packing forces should ultimately prevail over
the purely electrostatic localization. Thus, the true limit-
ing value of v is expected to be close to +. We have ob-
served such a transition in our Monte Carlo simulations
for long chains (2X10>< N <2X10%) at the highest con-
centration of the disorder charges that we consider. An
analogous transition is, however, not seen in the varia-
tional results for this high concentration. The present
variational calculations, based on the asymptotic low-
density form of the excluded volume interactions [Eq.
(2)], cannot capture packing effects in this limit [43,48].
The applicability of the present theory is, therefore, re-
stricted to systems with moderate packing densities of
polymer segments in the coil. For chain lengths con-
sidered in Fig. 5, N ~2X 103, this is no longer the case at
the highest density of the disorder, ¢c;=1 moldm 3. At
higher degrees of polymerization, N, the critical packing
density will, of course, be reached at even lower disorder
density and vice versa. The issue of including higher-
order repulsive terms to model the repulsive interactions
has been addressed within the context of the variational
model of Ref. [43]. Therein, the balance between the
short-ranged disorder-induced attraction and the in-
tramolecular three-body term has been shown to lead to
the correct high-density scaling v~ 1. If applied to our
present system, the same procedure results in an addi-
tional repulsive term ~u;/I} [43] to be added to the
right-hand side of Eq. (36). Here, u; corresponds to the
three-body cluster integral which, for hard spherical par-
ticles, is of the order of u3 [52]. The balance between this
three-body term and the disorder-induced attractions
varying as L*/2/13/? requires I, to vary as L */5 or,
equivalently, Rg~L1/ 5. At extremely high densities of
the ionic disorder, this result is indeed recovered when
we perform calculations based on Eq. (36), supplemented
by the three-body term of arbitrary strength, u?3/I%I%.
The deviation from the close-packing exponent v~ { may
be related to the fact that disorder-induced attractions do
not extend to the nearest proximity of the particles but
rather gradually turn to repulsion at distances r <r;,.
Our results may be further affected by the approxima-
tions inherent to the variational method with the refer-
ence Hamiltonian imposing a Gaussian intramolecular
distribution. Such calculation is expected to be inaccu-
rate when short-ranged repulsive interactions dominate
the chain behavior [64,68] and cannot adequately de-
scribe the formation of distinct blobs that would occur in
the absence of the attractive regions that are sufficiently
big to accommodate the whole polymer. In spite of these
limitations of the Gaussian variational method that be-
come important at extreme strength of the disorder, use-
ful insights into disorder-induced polyion contraction ap-
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pear to be provided by the present approach. This is
demonstrated by the comparison of the variational calcu-
lations with our Monte Carlo simulations. A field-
theoretic analysis that treats the short-ranged features
less approximately is currently under way, and will be re-
ported in a forthcoming communication.

VI. CONCLUDING REMARKS

In this paper, we have studied the effects of charged
disordered media on the structure of an isolated ionized
macromolecule. Our analysis is based on the equivalence
between the effects of quenched disorder and annealed
disorder in the adiabatic limit. Based on this equivalence,
we derive expressions for the disorder-averaged pair po-
tentials between the polyion beads in the presence of ran-
dom obstacles or ionic sites that have been quenched at a
certain temperature that is higher than the temperature
of observation. As a result of the charge-density fluctua-
tions in the system, the effective interaction between
equally charged beads displays a minimum at a charac-
teristic distance r,;, and is attractive at large separations.
This feature is explained by the attraction of the beads to
the same potential wells created by the accumulation of
oppositely charged ionic sites of the quenched disorder.
The polyion tends to reduce its Coulombic energy by as-
suming configurations that favor bead-bead distances
close to the optimal distance r;,. The magnitude of r_;,
decreases with increasing density of ionic sites and with
the quenching temperature 7' of the disordered medium.
These parameters, therefore, have a notable effect on the
structure of the polyion. For polyelectrolyte coils with ra-
dius of gyration R, exceeding r;,, the attractive
disorder-induced interactions among the beads suppress
further swelling of the polyion. This is reflected in a
change in the structural behavior of the polyion that
takes place when its size reaches the magnitude R, ~7 ;.
The radius of gyration of smaller coils scales with the de-
gree of polymerization NN in a similar way as in the case of
the polyion in the absence of quenched disorder. The size
of the polyions with coil size R, >r,;,, however, becomes
very weakly dependent on N. This crossover in the po-
lyion scaling behavior near R, ~r;,, predicted on the
basis of the above physical considerations, is captured by
an approximate variational theory and is seen in Monte
Carlo simulations carried out using the same disorder-
averaged Hamiltonian of the polymer
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