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A model of two interacting self-attracting, self-avoiding walks is proposed to study the critical
behavior of two interacting chemically different linear polymers in a solution that may have different
qualities for different chains. We solve the model exactly on truncated n-simplex lattices for 4 <n <6 us-
ing the real-space renormalization-group transformation. Depending upon the solvent quality, the tem-
perature, and the attractive interactions between interchain and intrachain monomers, the configuration

of either segregation or interpenetration or zipping of chains may arise.

It is shown that these

configurations correspond to different fixed points of the renormalized-group transformation. The value
of the contact exponent is calculated exactly at the tricritical points corresponding to the segregation-
interpenetration and the interpenetration—zipped-state chain transitions. The phase boundaries of these
states are shown on a plane of fugacity weight attached with a zipped step (i.e., a step in which both
walks move side by side) and the Boltzmann factor associated with the attraction between unlike mono-
mers. The phase diagram is shown to have different universality domains of critical behavior.

PACS number(s): 05.70.Fh, 64.60.Ak, 64.60.Kw, 64.60.Fr

I. INTRODUCTION

The physical properties observable on a polymer chain
length are calculated as statistical averages over all possi-
ble configurations of the polymers, and these
configurations are obtained by mapping the polymer
chain onto a walk embedded in an appropriate lattice
[1-3]. Depending upon the physical situations, appropri-
ate geometrical restrictions are imposed on these walks.
For example, a model of a self-avoiding walk (SAW)
simulates a polymer chain in a good solvent, while the
model of a self-attracting self-avoiding walk (SASAW)
represents a polymer chain in a poor solvent that can un-
dergo a collapse transition when the chain contracts from
an extended state to a globule state when the temperature
is lowered [4-6].

Quantities of interest in the case of the one-chain prob-
lem are the number of distinct walks C, of N steps start-
ing at the same origin, the number of closed loops P, of
N steps, and the mean radius of gyration (R2)!/2. All
these configurational properties of a polymer on a lattice
are deduced from the generating function G(x,T)
=3 NrQN,R)x NuR where Q(N,R ) are the number of
different configurations per site of a polymer chain hav-
ing N monomers, R the number of nearest neighbors, x is
the fugacity associated with each step of the walk, and
the interaction strength u is related to the temperature by
u=exp(E /kgT). Here E(>0) and kg denote the attrac-
tive energy associated with a pair of nearest-neighbor
bonds, and the Boltzmann constant, respectively.

An analogy with the power-law behavior of functions
such as susceptibility, specific heat, and correlation
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length of a critical phenomena allows one to study the is-
sue of wuniversality in polymer statistics in a
renormalized-group (RG) framework. To perform the
real-space renormalization-group (RSRG) transforma-
tions on polymer chains, here one studies the characteris-
tic quantities describing the lattice walk change upon re-
peated length rescaling of the system. When these quan-
tities remain invariant the chain is said to be ‘self-
similar” at all length scales, and this is a “fixed point” of
the rescaling transformation. The invariance of the
correlation length is either zero or infinity, and the latter
point corresponds to criticality [7].

Despite the apparent simplicity of the procedure out-
lined above, very few exact results have been found for
the Euclidean lattices. This has motivated recent studies
on fractal lattices where the asymptotic properties of the
polymer chain are obtained by using exact recursion rela-
tions. The fractal lattices, like the truncated n-simplex
lattices [8] or the Sierpinski gasket [9], are defined recur-
sively, and, by splitting the generating function in finite
subsets of partial contributions, it is possible to write a
closed set of recursion equations in terms of a finite num-
ber of coupling constants [10]. The variables in these
equations are just the partial generating functions corre-
sponding to different polymer configurations for a given
size of the fractal lattice. Linearizing the recursion near
the nontrivial fixed points, the fixed points reached by the
system depending on the initial conditions, one can find
the eigenvalues of the transformation matrix which give
the characteristic exponents of the system. Exact results
have been reported for several lattice models viz., SAW’s,
SASAW’s, TSAW’s (true self-avoiding walks), trails and
their silhouettes, etc. for a single chain on fractal lattices
[4-6,9-13]. The usefulness of some of these models has
also recently been shown for the problem of simultaneous
surface adsorption and collapsed transition of a linear po-
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lymer chain [14-16]. Aside from being interesting in
their own right, these results are often in qualitative
(some times even quantitative) agreement with their
counterparts for standard Euclidean lattices.

In this paper we show that the model of a SASAW can
be extended to study the critical behavior of two chemi-
cally different interacting polymer chains in a solution
which may have different qualities for different chains.
Depending upon the solvent quality and the attractive in-
teractions between interchain and intrachain monomers,
many different situations may arise. In the
renormalization-group formulation of this paper they
correspond to different fixed points. We show that the
system is in either of the three states described below.

(1) The system may be in a state in which the two poly-
mers intermingled with each other in such a way that
they cannot be told apart; i.e., a polymer chain cannot be
distinguished from the other chain. This state is referred
to as the interpenetrated state.

(2) When the attractive interaction between unlike
monomers (i.e., the chemically different monomers of the
two polymers) reaches a certain (critical) value, the two
chains may be zipped together in such a way that they lie
side by side. It is tempting to think that this
configuration, in some approximate sense, is similar to
the formation of double stranded DNA. Here we refer to
it as a zipped state.

(3) If the quality of the solvent is such that one or both
polymers are in a compact globule state, the two chains
at high temperatures are separated from each other
without any overlap. We refer to this as a segregated
state.

By varying the temperature or tuning the interactions,
we may transform the system from a zipped state to a
state of interpenetration or to a state of segregation. The
transition point corresponds to a tricritical point, and in
its proximity a crossover regime may be observed. In the
asymptotic limit the mean number of monomers M in
contact with each other at the tricritical point is assumed
to behave as

M <N, (1.1)

where N is the total number of monomers in a chain and
y is the contact exponent. In the asymptotic limit, the
number of monomers in a chain tends to infinity.

The paper is organized as follows: In Sec. II we de-
scribe the model of two chemically different interacting
polymer chains each described by a SASAW on a fractal
lattice, and outline the general formulation of this prob-
lem. The details of the calculation of the fixed points and
the value of the crossover exponent at the tricritical point
corresponding to different configurations of the two-chain
system using RSRG transformation on 4-, 5-, and 6-
simplex lattices are given in Secs. III, IV, and V, respec-
tively. The paper ends with a discussion given in Sec. VI.

II. TWO INTERACTING POLYMER CHAINS
ON A TRUNCATED n-SIMPLEX LATTICE

In order to describe the critical behavior of a system of
two chemically different homopolymers, denoted here as

P, and P,, in a solution which may have different quali-
ties for different polymer chains, we consider a model of
two interacting SASAW’s (hereinafter, for brevity sake,
we refer to this model as a model of two interacting walks
or TIW’s) on a family of truncated n-simplex lattices.
This model takes into account the physical condition that
the interactions between monomers is repulsive at a short
distance and attractive at a “large” distance. The non-
crossing constraint represents the repulsion, and the at-
traction between monomers occupying the neighboring
lattice sites is due to the attractive part of the interac-
tions. The strength of these interactions depends on the
solvent and the chemical nature of the monomers.

The truncated n-simplex lattice is defined recursively
[8,12]. The graph of the zeroth-order truncated n-
simplex lattice is a complete graph on (n + 1) points. The
graph of the (»+ 1)th-order lattice is obtained by replac-
ing each of the vertices by the rth-order graph by a com-
plete graph on n +1 points. Each of the resulting n
points is connected to one of the lines leading to the origi-
nal vertex. The fractal and spectral dimensions of this
lattice, respectively, are defined as

Inn ~ 21nn
m2 T Ta(n+2) @D

The lattice with n =3 are of particular interest as they
provide a family of fractals in which d can be varied to a
wide range by changing n from 3 to o, while keeping d
almost constant.

The end-to-end distance exponent for a random walk
(RW) on fractals belonging to the universality class of the
truncated n-simplex lattice is found to be [17]

dp

d

VR =—2d—F‘ . (2.2)

The subscript R used here emphasizes the fact that the
value is for a RW. Note that the result of Eq. (2.2) im-
plies that the fractal dimensionality of a RW on the n-
simplex lattice is

dR=i;=%?n 2.3)
This leads to a condition

dp22dy
or, from Eq. (2.3),

d>4 2.4)

for the repulsions between the monomers to be irrelevant.

It is worth noting that the condition of Eq. (2.4) de-
pends only on the spectral dimension of the lattice and
does not involve the fractal dimension. Since this condi-
tion is never satisfied [see Eq. (2.1)], there is no upper
critical dimension for the n-simplex lattices.

For a single chain the models of SAW’s and SASAW’s
have been solved exactly for 3<n <6 using the RSRG
transformations [5,6,10,12]. The critical exponents v, «,
and y which are referred to as the exponents of the ra-
dius of gyration (or end-to-end distance), specific heat,
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and susceptibility, respectively, have been calculated.
For the model of the SASAW the collapse transition (0
transition) is found to occur on 4- and 6-simplex lattices
but not on 3- and 5-simplex lattices. Depending upon the
temperature a polymer chain can, therefore, be either in a
swollen state or in a collapsed compact globule phase, or
at the tricritical point of the 6 transition on 4- and 6-
simplex lattices. However, on 3- and 5-simplex lattices a
polymer chain always remains in the swollen state.

The topological structure of a 3-simplex lattice is such
that it cannot have two SAW’s on it. In a previous paper
[18] we considered a model in which we allowed the
different walks to cross each other at most once on any

|

— N R N R
G(P1>P2’x3,u3)— (xll ull)(xzz u22

all distinct walks

where N, (N,) is the number of steps (monomers) in the
polymer P (P,), and x; (x,) denotes the fugacity weight
attached to each step of polymer P, (P,). Here u, (u,)
represents the Boltzmann factor associated with the at-
tractive interaction between monomers of polymer P,
(P,). x5 and u; denote, respectively, the fugacity weight
attached with zipped walks (i.e., a step in which both
walks move side by side) and the Boltzmann factor asso-
ciated with the attractive interaction between monomers
of P, and P,. N, is the total number of zipped steps (i.e.,
the number of steps in which both walks move together).
R, (R,) is the number of monomers of the chain P, (P,)
occupying the nearest-neighboring sites of the lattice, and
R, is the number of monomers of different chains occu-
pying the nearest-neighbor lattice points.

Since in all calculations reported below we take chains
P, and P, in a given configuration, the variables (x,u)
and (x,,u,) are therefore taken to be known. They are
found from the study of a single chain [5,6] on a given
lattice. Further, as is obvious from the figures given
below (see, for example, Figs. 1 and 7) we choose

X3=V xx, . (2.6)

Therefore, Eq. (2.5) involves only u; as an independent
variable.

From the generating function we can calculate the
average number of monomers of the two chains which
are in contact (nearest neighbor) with each other from
the relation

-y dInG
> du,

(R;) (2.7)

For a finitely ramified fractal lattice it is possible to
write the relevant generating function in terms of a finite
number of restricted partition functions [10,12]. These
partition functions are defined recursively as a weighted
sum over all configurations for a given stage of the itera-
tive construction of the fractal lattice. The recursions ex-
press the restricted functions for the (»+1)th-order lat-
tice in terms of those of the rth generation one. The vari-
ables in these equations are just the partial generating

N3
3

lattice point, and a lattice bond may be occupied by a
step of one or by both walks and calculated the contact
exponent. However, due to these somewhat artificial
conditions, the model may not correspond to any real
physical system. In this paper we therefore consider the
lattices with n =4, 5, and 6. These lattices can have two
interacting SAW’s or SASAW’s without the walks cross-
ing each other at any lattice point. Thus the short range
interactions between the monomers of P, and P, as well
as between the monomers in a chain are taken to be
repulsive.

The generating function for the problem we want to
study can be written as

R
us’), (2.5)

functions  corresponding to  different  polymer
configurations for a given size of the fractal lattice.
Linearizing the recursions near the nontrivial fixed
points, the fixed point reached by the system depending
on the initial conditions, we can find the eigenvalues of
the transformation matrix which give the characteristic
exponents of the system.

III. THE TRUNCATED 4-SIMPLEX LATTICE

The basic geometrical unit of construction of a truncat-
ed 4-simplex lattice is a tetrahedron with four corner ver-
tices and bonds between every pair of vertices [8]. Each
vertex connected through a direct bond is termed a
nearest neighbor. The value of dp, d, and the connectivi-
ty constant (for a SAW) p are 2, 1.5474..., and

Pr
Arsq Br+1
P
Cred Or+1

Ere

FIG. 1. Diagrams representing the four restricted generating
functions for two chains [indicated by black (P,) and white (P;)
lines] on a truncated 4-simplex lattice.



582 SANJAY KUMAR AND YASHWANT SINGH 51

2.2866. . . , respectively.

The restricted generating functions of our interest are
shown in Fig. 1, and their corresponding recursion rela-
tions are (see Ref. [8] for a single-chain problem)

A, =A*+24%°+24*+44°B+64°B?, 3.1
B,,,=A*+44°B+22B*, (3.2)
C,.,=C*+2C3+2C*+4C3D +6C?D? , (3.3)
D,,,=C*+4C3D+22D*, (3.4)
E, .= A’C*+2A4CE(A+C)+2E*
+6E%B*+D*)+4EXB+D) . 3.5)

Here and below we adopt a notational simplification in
which we drop the index from the right-hand side of the
recursion relations. In Fig. 2 we illustrate the
configuration of order r which appears in Eq. (3.5). The
starting values of these functions (see Fig. 3) are

A =x3+2x3u,+2xtu3 , (3.6)
B,=x%ut, (3.7)
C,=x3+2x3u,+2x%u3, (3.8)
D, =x%u} (3.9)
E,=x%u% . (3.10)

Note that indexes 1 and 2 on the right-hand side of Egs.
(3.6)—(3.9) correspond to chains P, and P,, respectively,
and index 3 in Eq. (3.10) indicates the variables corre-
sponding to interchain configurations, whereas index 1 on
the left-hand side of these equations represents the order
of the iteration.

We may note that the recursion relations for 4 and B
(or C and D) are independent of C, D, and E (or 4, B, and
E). This is because we ignored, for simplification, the
effect of one SAW on the self-avoidance of the other
SAW. In a dilute solution, however, the size of a chain is

AN )
‘\\/ It ‘: ] N/
aZc? 282 cE 2ac’%e
V
) ()¢ J y
[ L )
== \
24 682 E? 602g2

D)

4+E%8 4E%D

not expected to change due to interaction between mono-
mers of different chains [19]. The effect of interactions
between two polymers are taken through E. The critical
behaviors of the individual chains remain as in the dilute
case, and are given by the fixed points of Egs. (3.1) and
(3.2) and (3.3) and (3.4). The fixed point E* of Eq. (3.5)
contains information about the configurations of the two
chains in an asymptotic limit.

The fixed points corresponding to different
configurations of one polymer chain in the asymptotic
limit are found by solving Egs. (3.1) and (3.2) for chain P,
and Egs. (3.3) and (3.4) for chain P,. Since the two sets
of equations are identical, they give identical fixed points.
In Fig. 4 we plot the phase diagram, i.e., the self-
attraction parameter u; (or u,) as a function of the criti-
cal fugacity x, for a single chain. The critical line
representing a swollen state (indicated on the figure by S)
is separated from a critical line representing a compact
globule state (shown by letter C) by a tricritical (8) point
(shown by letter 7).

The state of a polymer chain depends on the quality of
the solvent and on the temperature, and can therefore be
in any one of the three states of the swollen compact glo-
bule, and at the 8 point described in the asymptotic limit
by the fixed points (4*B*) or (C*D*)
=(0.4294. ..,0.04998...), (0, 227'7%), and (%,4), re-
spectively [5]. The fixed point corresponding to the swol-
len state is reached for all values of u,; (or
u,)<u,=3.31607 at x, (or x,)=x,. The value of x, is a
function of the interaction u, (or u,), which for the swol-
len state varies between 1 and 3.31607.... The end to end
distance for a chain of N monomers in this state varies as
N with v=0.7294. .. . The fixed point corresponding
to the compact globule state is reached for all values of
u, (or uy)>u, (i.e., at low temperatures) at x; (or
x,)=x, (u;), where i =1 or 2. In a compact globule state
the polymer chain has a finite density of monomer per
site when N— . At u; (or u,)=u,=3.39607 and x,
(or x,)=x, (u,)=0.22913..., the 6-point state is
found.

FIG. 2. Various possible configurations of
rth order, which contribute to the recursion re-
lation of E, ;. The numerical factor of each
term indicates the total number of different
configurations of the type depicted by the cor-
responding figure.
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In a system of two chemically different polymer chains,
we may have six independent combinations of the indivi-
dual chains which we indicate by SS, CC, TT, SC, ST,
and CT, where letters S, C, and T stand for the swollen,
compact globule, and O-point states. Using the fixed
points (A*, B*) and (C*, D*) corresponding to these
states of the polymers P, and P, we solve Eq. (3.5). This
leads to two fixed points denoted as E* and E* for each
combination of states of the individual chains (see Table
I). We therefore have the following situations.

A. SS state

(i) The fixed point (A*=C*, B*=D* E}*)
=(0.4294. .., 0.04998. .., 0.04998...) is reached for
all values of u; <u;, (x3;) shown by line SS in Fig. 5.
Line S which terminates at point T corresponds to the
critical state of a linear polymer chain in a swollen state.

Since at this fixed point B*=D*=E}, we conclude
that when both polymers P, and P, are in a solvent
which is good for both chains and the attraction between

uy

3.0

1.0 !
0.0 0.1

0.5

FIG. 4. The self-attraction parameter u, as a function of crit-
ical fugacity x, for a linear polymer chain on a 4-simplex lat-
tice.  The tricritical point which corresponds to
u,=u{=3.31607 and x, =x { =0.233 08 is shown by 7. S and
C, respectively, indicate the swollen and compact globule phases
of the chain.

FIG. 3. Diagrams defining the initial
weights for the SASAW on a 4-simplex lattice
(a) for 4, (C,), (b) for B, (D)), and (c) for E,.
The attractive interactions between neighbor-
ing sites are denoted by broken lines (for de-
tails, see text).

unlike monomers is less than a certain critical value, the
polymer chains cannot be told apart; i.e., polymers P,
cannot be distinguished from polymers P,. Therefore the
two chains are in a state of interpenetration.

(i) The fixed point (4*=C*, B*=D*)=(0.42%. . .,
0.04998. .., 0.6125...) is reached when u;=wu;, (x;).
This is shown by line SS in Fig. 5. Linearization of Egs.
(3.1)=(3.5) about this point gives two distinct eigenvalues
greater than 1: A,=2.7965..., which corresponds to
the swollen state of a chain; and A;=2.6420. .., which

7.00~
6.00—
5.00+

4.00—

Uy, Ug
w
)
o)

T

2.00+~

0.0 0.10 0.20 0.30 0.40 0.50
X3 = VXxg 4 %

FIG. 5. The x3, u3 phase diagram of a system of two polymer
chains in a nonselective solvent for a truncated 4-simplex lat-
tice. Lines SS and CC represent the tricritical lines of the
zipped state of two chains each in the swollen state and the in-
terpenetration state of the chains each in a compact globule
phase, respectively. Point 77, at which these lines meet,
represents a transition point from a segregated to an inter-
penetrated state of the chains each at its 6 point. For a given
value of x; which corresponds to the swollen state of both
chains, the chains are in interpenetrated state when the value of
u; is less than the value given by the line SS. For the value of
x3 corresponding to the chains in their compact globule state or
at their 6 points, the two chains are in a segregated state for all
values of u; less than the value given by line CC or point 77.
We also show the x-u phase diagram of a single chain for
comparison’s sake. Note that line CC overlaps with line C, TT
with point 7. The meaning of the symbols S, C, and T are ex-
plained in Fig. 4.
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TABLE 1. Values of fixed points, relevant eigenvalues, and the contact exponent y at the tricritical
point for the 4-simplex lattice. The swollen, compact globule, and tricritical configuration of each
chain is indicated by letters S, C, and T, respectively. A, is the largest eigenvalue of the system, and A;

refers to the two chain configuration point.

State of
individual E}X E* A; A y
chains
SS 0.04998 0.6125 2.6420 2.7965 0.9447
cC 0.0 227173 2.5440 4.0 0.6735
T 0.01484 1/3 2.2222 3.7037 0.6098
SC 0.0 0.4880 2.8520 4.0 0.7559
ST 0.02687 0.4294 2.8526 3.7037 0.6311
Cc 0.0 0.3680 2.5740 4.0 0.6820

corresponds to the zipped state of the two chains. There-
fore line SS is a tricritical line. Using these eigenvalues
we calculate the value of the contact exponent from the
relation [16]

_Ina,
B InA,

y (3.11)
and find its value equal to 0.9447. This value is close to
unity and suggests that the two chains lie side by side.

B. CC state

(iii) The fixed point (A*=C*, B*=D*, EX)=(0,
227173, 0) corresponds to a segregated state in which the
two chains, each in compact globule state, are separated
from each other. This point is reached for all values of

us3(x3) <V uy(x,.)uy(x,.). For a given x3=v x,.x,.,
all points below line CC in Fig. 5 correspond to this state
of a two-chain system.

(iv) The fixed point (A*=C*, B*=D*, E« )=(0,

227173227 173) is reached for u5 (x3)=V u(x,, )u,(x,,)
and is shown by line CC in Fig. 5. Note that line CC
coincides with the critical line of a single chain in a com-
pact globule phase. This point corresponds to a state in
which both chains intermingled with each other in such a
way that they cannot be told apart. This is a state of in-
terpenetration. The linearization of Egs. (3.1)-(3.5)
about this fixed point leads to two distinct eigenvalues
which are greater than 1. The value A, =4.0 corresponds
to the compact globule state of a chain, and A;=2.5440
corresponds to the interpenetration of chains. Since the
point has two eigenvalues greater than unity, therefore
line CC, which shows the value of u ;. as a function of x;
for which the fixed point is reached, is a tricritical line
and represents the transition from a segregated state to
an interpenetrated state. These eigenvalues lead to a
value of y equal to 0.6735.
C. TT state

(v) The fixed point (4*=C*, B*=D*, EX*)=(4, 4,
0.014 84) corresponds to a state when both chains are at
their 6 point and are segregated from each other. This
point is reached for all values of u; <u,=3.31607. .. at

X3 (=Xx,,=x,,)=0.22913....

(vi) The fixed point (4*=C*, B*=D*, E*)=(}, }, J)
is reached for wu;=u,=3.31607... at x;=x,
=x,,=0.22913. .., and is shown by point TT in Fig. 5.
Note that point 77 on the phase diagram also corre-
sponds to the 8 point of a chain. This point represents a
transition point from a segregated to an interpenetrated
state. Linearization of relevant equations about this
point yields three distinct eigenvalues greater than unity.
This point is therefore a tetracritical point which con-
nects two tricritical lines of zipped states of two chains
each in the swollen state, and an interpenetrated state of
two chains each in a compact globule state. The value of
the contact exponent is found to be equal to
y=0.6098. .. .

D. SC state

(vii) The fixed point (A4*, B*, C*, D*, EX)
=(0.4294. .., 0.04998. .., 0, 227 !/3, 0) corresponds to
a segregated state. The two chains, one in a swollen state
and the other in a compact globule phase, are separated
from each other without any overlap. This point is
reached for all values of u;(x;)<u;.(x;). The value of
u,, as a function of x; is shown in Fig. 6 by line SC. For
a given x; the SC segregated state is found for all values
of u; lying below line SC.

(viii) The fixed point (A4*, B*, C*, D* E}X)
=(0.4294. .., 0.04998..., 0, 22773, 0.4880...) at a
given x; is reached for u;=u,, (x;). The variation of
u,, as a function of x, is shown by line SC in Fig. 6. This
is a state in which a polymer chain in a swollen state
wraps over a compact globule object of the other chain.
This may be compared with adsorption of a linear poly-
mer chain in a swollen state on a surface. Here the sur-
face is provided by the compact globule shape of the oth-
er chain. The linearization of the relevant equations yield
three distinct eigenvalues which are greater than 1. The
contact exponent y is calculated using the largest eigen-
value, which in this case describes the compact globule
state of a chain, and the eigenvalue which is found from
the linearization of Eq. (3.5). These eigenvalues are
A.=4.0and A;=2.8520.... The value of y is found to be
0.7559.
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FIG. 6. The x;, u; phase diagram of a system of two chains
in a selective solvent for a truncated 4-simplex lattice. Lines SC
and ST, respectively, represent the interpenetration states of
two chains when one chain is in a swollen state and the other is
in compact globule phase or at its 0 point. Line CT corresponds
to the configuration of interpenetration of the chains when one
is in the compact globule phase and the other is at its 6 point.
When the value of u; is less than that given by corresponding
lines, the two chains are segregated from each other. Note that
the individual chains configurations remain intact whether they
are segregated or intermingled.

E. ST state

(ix) The fixed point (A4*, B*, C*, D*, EJY)
=(0.4294. .., 0.04998. .., 1, 1, 0.02687...) is reached
for all values of u; less than the value given by line ST of
Fig. 6. The two chains, one in a swollen state and the
other at the O point, are segregated from each other
without any overlap.

(x) The fixed point (4*, B*, C*, D* EJ)
=(0.4294. .., 0.04998. . ., 1, 1, 0.4294) corresponds to
a state in which both chains are interpenetrated with
each other. This interpenetration is different from the
case in which both chains are in an identical state. While
in the latter case the two chains, being in identical states,
intermingle in such a way that they cannot be told apart,
in the ST state one chain is in a swollen state and the oth-
er oscillates between the swollen and compact globule
phases at the 0 point. Because of the interaction between
the two chains, their monomers come close to each other
(given by configuration E in Fig. 1) while retaining their
individual configurations. The value of the contact ex-
ponent is found to be equal to 0.6311. . ..

F. CT state

(xi) The fixed point (4 *, B*, C*, D*, E*)=(0,227 '3,
1, 1, 0) corresponds to a state in which one chain is in the
compact globule phase and the other chain is at its 6
point, and they are segregated from each other. The
point is reached for all values of u; less than the value
shown by line CT in Fig. 6. Line CT coincides on the
graph with line CC discussed above.

(xii) The fixed point (A4*, B*, C*, D*, E*)=(0,
227173, 11,0, 3.680. . .) is reached when, at a given x;,
the values of u; become equal to the value given by line
CT in Fig. 6. The point represents a state in which both
chains interpenetrate in a sense that one chain forms a
compact globule phase and the other chain oscillates on
the surface of it between swollen and compact globule
phases in such a way that configuration E of Fig. 6 sur-
vives at all length scales. The value of the contact ex-
ponent is found to be equal to 0.6820.

Point H on Fig. 6, where lines SC and ST meet, has the
values x,=0.4373..., u;=1.0 and x,=0.22913...,
u,=3.31607. ... Therefore at point H, one chain (say
P)) is in a swollen state with no self-attraction, and chain
P, is at its 0 point. For line ST, x; and u, are varied be-
tween 0.22913. .. and 0.4373. .. and 3.31607 and 1.0, re-
spectively, while x, and wu, are kept fixed at
x,=0.22913--- and u,=3.31607. At point TT,
x,=x,=0.22913 and u,=u,=3.31607. For line SC,
while x; and u, have the same range of variation as that
of ST, x, and u, are varied between 0.22913...=<x, =<0
and 3.31607<u, < .

IV. THE TRUNCATED 5-SIMPLEX LATTICE

The basic geometrical unit of the construction of a
truncated 5-simplex lattice is a hypertetrahedron of five
corner vertices and bonds between every pair of vertices,
termed as nearest neighbor [12]. For this lattice the

Ars1 Br+1
/\'/\\
Cra+1 Dra1

Ers1

FIG. 7. Diagrams representing the five restricted generating
functions for two interacting and chemically different chains on
a truncated S-simplex lattice. Other notations are the same as
in Fig. 1.
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values of dg, d, and u are 2.3219, 1.6541, and 2.976 03,

respectively. The restricted partition functions of our in-

terest are shown in Fig. 7. The recursion relations for

A, ., and B, .| are written as [6,12]

A, ;= A*+343+6A4*+54°+184°B*+96 4°B3
+184°B+784°B>+304*B+1324B*

+1324B7, 4.1

B, ,=A*+2A4°+134°B+4A4°B+324°B*>+88 42B?

+22B*+2204B*+186B° . 4.2)

These relations correspond to polymer chain P;, as
shown in Fig. 7. A similar relation holds for P, in terms
of C and D (Fig. 7). The recursion relation for the parti-
tion function E, ; can be expressed in terms of 4,, B,,
C,,D,,and E,. Thus

E,,,=6E’D?+42CE*D?+12C*E*D + 12 ACED*+2 AC?E +32E*D?
+2C?E?+8AC?ED+4AC3E + A?C?+ A?C*+6B2E?+18B*CE?
+42 AB*E*+12 AB?CE +30B*E*+4BE*+ 16BCE3+12 ABCE*
+24 ABE3+20BE*+32B3E>+16BE>D +8 ABCE + 12 A*BE?
+16BE>D +8 A?BCE + 12 A’BE*+4E3D +24CE*D + 12 ACE*D

+2A%CE +14C*E*+30E3D?>+6 AC*E*>+5 A*C?E +2E*+ 10CE*
+8ACE3+20E*D +6 A*CE*+10AE*+4 A’E*+6E°+ 16 AE>D

+4 A3CE+2A3E*+18AE*D*+ A3C? .

The starting weights of these functions are

Ay=x}+3x3u; +6xtul+6xiu, (4.4)

B,=xjut+2x3u], (4.5)

Cy=x2+3x3u,+2x%u3+6x3us , (4.6)

D,=x%uj+2x3ul , 4.7)
and

E;=x%u$+x3ulu,+x3ulu, . (4.8)

The notational details are the same as in the case of the
4-simplex lattice.

As already mentioned, a polymer chain always remains
in the swollen state for all values of intrachain (self-) at-
traction on a 5-simplex lattice. This state is character-
ized by the fixed point

A*¥(=C*)=0.3265. ..,
4.9)
B*(=D*)=0.0279. .. .

In this case we therefore have only one combination, i.e.,
SS, of chains. Using these values for 4*, B*, C*, and
D*, we have solved Eq. (4.3), which leads to the follow-
ing fixed points:

E*=0.0279. ..,
*=0.2713. .. .

(4.10a)
(4.10b)

The fixed point E* is found for all values of u; <uj,
(x3). At uz=us;, (x3) we find the fixed point E*. The
linearization of Eq. (4.3) about the fixed point E* gives
the eigenvalue A;=2.2401. This leads to the value of

4.3)

—

y=0.7664. ...

In Fig. 8 we plot u; as a function of x;=V x.x..
The interpenetrated state is found for all values of u;
which lie below lines SIS at a given x;. When the value of
u5 reaches a value given by line SS, the two chains are
zipped together. Line S indicates the critical values of
fugacity x,. and the self-attraction u, (or u,) of a polymer
chain.

7.0~
6.0~
5.0
5
- 4.0
3
3.0~
2.0~
1.0 L 1
00 005 010 035 020 025 030 035
xa-,/x‘, Xy » Xq
FIG. 8. The xj3, u; phase diagram representing the

configurations of a system of two chains for a truncated 5-
simplex lattice. Line SS, as in Fig. 5, represents the zipped state
of the chains. For all values of u; less than the value given by
line SS, the two chains intermingle with each other. Line S
represents the swollen state of a chain.



51 INTERPENETRATION AND SEGREGATION OF INTERACTING ... 587

V. THE TRUNCATED 6-SIMPLEX LATTICE

The basic geometrical unit of the construction of a
truncated 6-simplex lattice is a hexagon with six-corner
vertices and bonds between every pair of vertices [6,12].

For this lattice d=2.5849... and d=1.7233...,, re-
spectively, and the connectivity (for a SAW)
©n=3.6818. ... The restricted partition functions of our
interest are shown in Fig. 9. The recursion relations for
A, 1, B, 4+, and C, || are written as [6,12]

A, 1= AX1+36B*+384B%+5544B*+4992B2C)+4A43(1+6B +78B*+648B*+432B*C)
+124%1+10B +80B%+10C*+40BC)+24 4%(1+ A +2C+9B)

+24 AB*(14+22B +362B*+636BC +472C?)+48B*(11B +137B?+521C*+428BC) ,

(5.1

B,,,= A*1+26B+144BC+324B*+6A4%)+4 A4°(1+4C+16B)
+4 A2B*(44B +905B%+1272BC +708C?)+4 A3B(1+ 16B +308B%+208BC)
+8AB3(55B +822B2%+2140BC +2084C?)+ B%(22B?+372B*+ 5440B*+23520B3C

+48160B2C*+76800BC>+94336C*) ,

(5.2)

C, 1= A%+645(C+2B)+44*BX(94*+524B)+18 A’B*(159B +236C)+ AB*(2568B +6252C)

+2940B %+ 14448 B°C +43200B*C2+94336B3C3+541568C° .

These relations correspond to polymer chain P, as shown
in Fig. 9. A similar relation holds for P, in terms of D,
E, and F, as shown in Fig. 9.

Since the recursion relations for the restricted partition
functions G, H, and I which correspond to configurations
of two interacting chains are lengthy and run to several
typed pages, we do not give them here. These relations
can, however, be made available to the reader on request.

The starting weights of these functions are

A =x3+4x3u,+12x%ud +24x3u$+24x8u 10, (5.4)
B,=x%ut+4xju] +6xSull, (5.5)
C,=x%ul?. (5.6)

The expressions for D,, E,, and F; are found from Egs.
(5.4)-(5.6) by replacing variables x; and u; by x, and u,,
respectively. The starting weights for functions G, H,,
and I, are as follows:

Gi=x5u+2x3us(u,+u,)

+2xSulud+ud+uu,u,), (5.7)
H,=x%%u%, (5.8)
I=x%ubu} . (5.9)

Notational details are the same as outlined in preceding
sections.

The solutions of Egs. (5.1)—(5.3) with starting weights
of Egs. (5.4)-(5.6) lead to three different positive real
fixed points [6] with features given below.

(i) The fixed point (A4*, B*, C*)=(0.2623...,
0.01758..., 0.00070...) corresponds to the swollen
state of the chain with v=0.5506. .. and a=0.5767. ...
For x,=x_, (u,) this fixed point is reached for all
u; <u,=4.9998. . ..

(ii) The fixed point (A4 *, B*, C*)=(0, 0,0.07132. . .) is
reached for all u,>u, (i.e., at low temperatures) and

(5.3)

—

x;=x, (u;). This phase has a finite density of monomers
per site when N;— oo. This is a fixed point which de-
scribes the collapsed phase of the polymer.

(iii) The fixed point (A4*, B*, C*)=(0.1294...,
0.09572..., 0.05344. . .) is obtained for u; =u_. Since
this point has two eigenvalues greater than 1, this point is
identified as the tricritical point of the 0 transition.

The other two fixed points (4%,  B¥*,
C*)=(0.2540..., 0.02215..., 0.07098...) and
(0.200. .., 0.0660..., 0.666...) cannot be reached
starting with any suitable initial condition, so they are
spurious [6].

Since the 6-simplex lattice exhibits a collapsed transi-
tion, there are six independent combinations of single-

Br,1 Cri1
Ers1 Fre1
Gr.1 Hryq Ire

FIG. 9. Diagrams representing the nine generating functions
for two interacting chains on a truncated 6-simplex lattice.
Other notations are the same as in Fig. 1.



588 SANJAY KUMAR AND YASHWANT SINGH 51
TABLE II. Values of fixed points G&, HY, I¥, G, H, and I}*. The labeling is the same as in Table I, but for 6-simplex.
State of
individual Gs H? ¥ G* H* I* A A y
chains

SS 0.0175 0.0007 0.0007 0.1406 0.0147 0.0147 2.2054 3.4965 0.6318
cC 0.0 0.0 0.0 0.0 0.0713 0.0713 4.1201 0.6318 0.7902
T 5.4X107* 5.4X107* 5.4X107* 0.0957 0.0535 0.0535 3.2225 5.4492 0.6902
SC 0.0 0.0 0.0 6.75%X 1073 0.1049 0.0711 5.0529 6.0 0.9041
ST 0.0028 0.0003 0.0001 0.229 0.1047 0.0776 5.1434 5.4492 0.9659
CcT 0.0 0.0 0.0 0.0060 0.0714 0.0806 4.4019 6.0 0.8271

chain states, similar to the case of 4-simplex lattice. In
Table II we list the values of fixed points corresponding
eigenvalues and contact exponents. With the initial con-
ditions given by Egs. (5.7)-(5.9), the two fixed points,
namely (G*, H*, I*)=(0.0651, 0.1023, 0.1023) and
(0.0338, 0.1033, 0.110 33), belonging to SS configurations
could not be reached.

Since the qualitative features of the phase diagrams are
the same as that of the 4-simplex lattice discussed in Sec.
II1, we do not present them here.

VI. DISCUSSION

We have examined the possibility of studying the criti-
cal behavior of two chemically different interacting linear
homopolymer chains in their asymptotic limit dissolved
in a solution which may have different qualities for
different chains in a renormalization-group framework.
The system is represented by two interacting SASAW’s in
such a way that (i) these walks do not cross each other at
any lattice point, and a lattice bond can be occupied by at
most a step of any one walk; and (ii) each pair of nearest-
neighboring sites occupied by different walks interacts
with a constant attraction. We call this model the model
of two interacting SASAW?’s or, for brevity, a model of
two interacting walks (TIW’s).

The lattice model of a SASAW has been used to
represent a linear polymer chain in a poor solvent that
can undergo a collapse transition, where the chain con-
tracts from an extended state to a compact globule state
when the temperature is lowered [5,6]. Note that the
model of a SAW is a critical O(q) model with a ¢ —0
component [1]. The SASAW changes the behavior of the
phase transition of the SAW from second order to first
order into a compact globule phase at a low temperature.
At the intermediate temperature (6 point), its behavior is
described by a tricritical point of O(gq), ¢ —0 spin model
[1]. In this regime the upper critical dimension changes
from 4 to 3 with the consequence that for d =3, v is equal
to 1 plus a logarithmic correction. The phase diagram
for a SASAW model has been studied on both regular
and fractal lattices [4—-6,20].

The problem with which we have been concerned here
is to predict the effect of attraction between unlike mono-
mers on their configurations leading to interpenetration
or zipping chains. In writing the recursion relations for
the restricted partition functions of individual chains, we
neglected the effect of one chain on the self-avoidance of
the other chain; i.e., the critical behavior of a chain

remains unaffected by the presence of the other chain.
This is a reasonable approximation in a dilute solution
[19]. We solved exactly models of TIW’s on truncated n-
simplex lattices for 4 <n <6 using real-space RG trans-
formations.

When the solvent is good for both chains, and the at-
traction between unlike monomers is less than a certain
critical value the magnitude of which depends on the crit-
ical fugacities of both chains, the system of two chains is
found to be in a state of interpenetration. In this regime,
therefore, the chemical difference between P, and P,
chains completely drops out of the thermodynamics of
the solution. A similar result was found by Joanny, Jei-
bler, and Ball [19] within the framework of the direct re-
normalization method introduced by des Cloizeaux [21].
Experimentally, however, one finds that the two chains
have a tendency to segregate. Note that in actual experi-
ment one never works exactly in the asymptotic limit. In
dilute solution the degree of polymerization is never
infinite. In terms of critical phenomena the segregation
between P, and P, polymers is governed by a correction
to scaling [19].

When the interaction between unlike monomers
reaches a certain critical value the magnitude of which
depends on the critical state of individual chains (shown
by line SS in Figs. 6 and 8, respectively, for 4- and 5-
simplex lattices), we find that the two chains form a
zipped state in which the unlike monomers lie side by
side.

For TT and CC states the chains are in a segregated
state for Uy <Vuy (xy)uy (xy). When
uy=4"u; (x,.)u, (x,.) the two chains form a state of
interpenetration. In this state a polymer chain, say P,
cannot be distinguished from P,.

In the case of a selective solvent (i.e., when both chains
are in different states) we find that they are segregated un-
til u; reaches a certain critical value. At the critical
value of u; the two chains become interpenetrated, but
this interpenetration is different than the one found in the
case of nonselective solvent. For example, for an SC state
in which a chain (say P,) is in a swollen state and the oth-
er chain (P,) is in a compact globule phase, the inter-
penetrations means that chain P, while remaining in the
swollen configuration, wraps around the compact globule
configuration of chain P,. This is similar to a surface ad-
sorption transition.

In spite of the fact that the model developed here ig-
nores the effect of one chain on the critical behavior of
the other chain, it provides a qualitative description of
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the phase diagram of a system of two polymer chains in a
solution which may have different qualities for different
chains. Our approach may serve as a starting point for
more thorough investigations of segregation and entan-
glements in a real system.
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