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Bernhard Michel' and Akhlesh Lakhtakia
Max Pla-nck Ges-eiischaft, AG "Staubin Sternentstehungsgebieten, "Schillerga'@chen 2-3, D 077-45 Jena, Germany
Department ofEngineering Science and Mechanics, 227Hammond Building, The Pennsylvania State University,

University Park, Pennsylvania 16802-1401
(Received 19 December 1994)

A statistical description of the electromagnetic wave propagation in a two-component chiral compos-
ite is presented. We develop the strong-property-fluctuation theory which is a generalization of the
strong-permittivity-Auctuation theory for nonhomogeneous chiral media. The Dyson equation for the
exciting electromagnetic field is solved in the bilocal approximation. Wave propagation in the composite
can be described in this manner by a nonlocal effective medium containing information about the spatial
correlations of the material properties. For length scales larger than the correlation length, the system
may be homogenized and we obtain a local effective medium theory.

PACS number(s): 82.70.—y, 83.70.Hq

I. INTRODUCTION

Isotropic chiral media are ubiquitous in the literature
on physical chemistry [1] and have gained prominent
mention in the areas of electromagnetics and optics, too
[2]. Naturally occurring, isotropic chiral media have
molecules with mirror-asymmetric conformations. When
an electromagnetic plane wave traverses a chiral medium
of a certain thickness, it emerges with its vibration ellipse
completely altered: The handedness of the chiral mole-
cules causes the rotation of the major axis and changes
the eccentricity of the vibration ellipse. These two
phenomena —named optical rotation and circular di-
chroism, respectively —are together called natural optical
acti Ui ty.

In nature, isotropic chiral media display their unique
behavior only at optical frequencies. Naturally occurring
materials have not been found to be appreciably optically
active at the lower microwave frequencies. Recent ad-
vances in the construction of artificial chiral materials in
the form of particulate composites are, however, promis-
ing [3] and have motivated the formulation of effective
medium or homogenization theories.

Several effective medium rules have been set up for
chiral composites [4], which are the analogs to the
Maxwell-Garnett and the Bruggeman mixing rules for
dielectric composites. These rules are derived under cer-
tain assumptions that may not always be justified. Let f
denote the volumetric proportion of the particulate ma-
terial 0&f &1. Single-scattering mixing rules are valid
only for very small f [5,6]. Although it has never been
experimentally ascertained that the Maxwell-Garnett
(MG) rule for chiral composites is valid only for dilute
suspensions of chiral particles in an achiral matrix medi-
um, we suspect it to be thus from studies on dielectric
composites [5]. For high values off it will fail to give re-
liable results, because of the neglect of correlation effects
between neighboring particles; see, e.g., [7]. In the ex-
treme case f=1 where the particulate medium alone is
present, the effective medium and the particulate medium

should be the same; this turns out to be true for the MG
rule [8], but not for an extended MG rule [9] wherein the
effect of the finite sizes of the particles have been mean-
ingfully considered.

Moreover, the MG rule and its variants cannot predict
the percolation threshold at all, because the electromag-
netic properties of the particulate and the matrix media
are incorporated asymmetrically therein [10]. That is not
a problem with the Bruggeman rule, in which the two
sets of properties are treated at par with one another [11].
However, there is a major drawback in the Bruggeman
rule: it always yields f=

—,
' for the percolation threshold

in dielectric composites, without regard to the shapes and
the sizes of the particles. This cannot be true, e.g. , for a
composite with filamentary particles; we should expect
percolation well below f=

—,'.
What one apparently needs to do, in order to improve

the quality of homogenization predictions for chiral and
other composites, is to take into account the micro-
structural topology in a more detailed fashion, but
without inadvertently subverting the concept of homo-
genization [9,12]. Beyond the filling factor f, which gives
only the minimal geometric information, one should at
least include the effects of spatial correlations between
the particles relative to the electromagnetically
significant length scales for dense composites.

An attractive theoretical approach often used to de-
scribe wave propagation in nonhomogeneous dielectric
media, which includes these correlation effects rigorously,
is the Feynman-diagrammatic technique of Frisch [13].
In this approach for the homogenization of particulate
composites, one must make a preliminary ansatz about
the nature of the homogenized medium, and then use this
approach to perturbatively calculate corrections in orders
of the statistical cumulants of the spatial distribution of
the particles. However, the straightforward application
of this approach is limited to very small spatial Auctua-
tions of the material properties, i.e., when the contrast
between the particulate and the matrix permittivities is
small. This limitation is due to secular terms in the per-

1063-651X/95/51(6)/5701(7)/$06. 00 5701 1995 The American Physical Society



BERNHARD MICHEL AND AKHLESH LAKHTAKIA

turbation expansion of the electric field equation. The
secular terms are generated by the singularity of the
dyadic Careen function [14]. But, by properly treating
this singularity, one can reformulate the approach to
make it applicable for strong spatial Auctuations of the
permit tivity. This theoretical approach is called the
strong-permittivity-fluctuation theory, and so far it has
only been applied to dielectric mixtures [15].

Our goal in this paper is to generalize this approach to
chiral-in-chiral composites, i.e., particulate composites in
which the particulate, as well as the matrix media, are
chiral. We shall call this approach the strong-property-
fluctuation theory (SPFT). For the derivation of the
SPFT, we shall closely follow the argumentation in [15],
translating it step by step into a formalism for chiral-in-
chiral composites. Let us also observe that, as the parti-
culate and matrix materials are treated at par with one
another in the SPFT, it is sensible to refer to a chiral-in-
chiral composite simply as a two-component mixtu re.
This term is particularly relevant when f is not small.
Parenthetically, we note that our approach can also be
used for homogenizing bi-isotropic —in —bi-isotropic com-
posites [16];however, it has been recently shown that bi-
isotropic media are not allowed in modern electromag-
netic theory [17].

This paper is organized as follows: After some general
statements about chiral media and particulate compos-
ites, we explain the structures of the various dyadic
Green functions in a homogeneous chiral medium. We
then discuss the Dyson equation for the average elec-
tromagnetic field in a two-component mixture and obtain
the lowest-order estimate of the effective medium proper-
ties. This lowest-order estimate is exactly the same as the
one from the Bruggeman rule for chiral-in-chiral compos-
ites [11],and it also serves as the preliminary ansatz for
our perturbative approach. We derive the relation be-
tween the exact effective medium, which includes all
correlation effects, and the so-called mass operator of the
l3yson equation. Then we investigate the behavior of the
mixture on a length scale that is larger than the correla-
tion length, so that the two-component mixture can be
regarded as a homogeneous medium. Finally, we imple-
ment the SPFT in the bilocal approximation [18]. This
paper is exclusively devoted to the formulation of the
SPFT for two-component chiral mixtures, and applica-
tions are planned for future papers.

V X F(r) =%(r)F(r),

E(r)
F(1 )=

A(r) =@+(r)y (r)
tahoe(1 )

k(r)

icop(r)
k(r)

k(r)=co&e(r)p(r) and y
—(r)=k(r)/[1+k(r)/3(r)]. For

later convenience, we rewrite the constitutive relations (3)
and (4) in compact matrix notation as

C(r) =4%'(r)F(r), (8)

D(r)
C(r) =

B(r)

III. TWQ-CQMPQNKNT MIXTURE

We now look at a two-component mixture consisting
of two chiral components mixed at the microscopic, but
not molecular, length scale. Let all space be divided into
two disjoint parts V, and Vb containing the components
labeled a and b, respectively. For rE V~ (p=a, b) we
write

(10)

so that

y+—(r) =y —,k(r) =k

where e(r) is the permittivity scalar, p(r) is the permea-
bility scalar, and /3(r) is the chirality pseudoscalar, all
three being implicit functions of the circular frequency co.
In Eqs. (3) and (4) we explicitly allow for position-
dependent material properties for notational compact-
ness.

From the Maxwell postulates (1) and (2) and the consti-
tutive relations (3) and (4), we find the first-order field
equation [19]

A(r) =A (12)

We start with the frequency-dependent version of the
source-free Maxwell curl postulates,

V XE(r) = icoB(r),

V X H(r) = —i coD(r ),

%'e introduce the characteristic functions 0 as

1 for rEV
0 r='

0 elsewhere; (13)

D(r) =e(r)[E(r)+/3(r)VXE{r)],
B(r)=p(r)[H(r)+/3(r)V X H(r)],

(3)

where we have assumed an exp( —

idiot)

time dependence.
The Drude-Born-Fedorov constitutive relations of a
nonhomogeneous chiral medium are given as [4]

0, (r)+0b(r)=1 . (14)

Any of the r-dependent quantities occurring in Eqs.
(10)—(12) can be expressed euerywhere in terms of the
characteristic functions 0 (r); for example,

W(r)=%, 0, (r)+Ab0b(r) .
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Let us now turn to a statistical description of the mix-
ture. Throughout the paper we shall use the concept of
ensemble averaging, i.e., averaging over a large number
of different samples of the two-component mixture. We
denote ensemble averages by ( ). Only in Sec. IV shall
we also need spatially averaged quantities in order to
define macroscopic fields. The complete statistical infor-
mation about the mixture is contained in the moments of
the characteristic function 8, (r). The nth moment is the
expectation value (8, (r, ), . . . , 8, (r„)) and is the proba-
bility for r„.. . , r„being inside the component a
(equivalently we may use b instead of a). We assume
that, on average, the mixture is homogeneous and isotro-
pic.

The first moment for the component a is the filling fac-
tor

+~~ Br VBr3 Br

Br

E COEBr

E Q)PB

kB,

Br

(19)

V X FB,(r) =KB,Fii,(r),
with

(20)

EB,(r)
Fii,(r ) = (21)

For later convenience, we also introduce the intrinsic im-
pedance ilB, =Qpii, /eii, . Propagation in this local
effective medium can be described by

f, =( 8( r)), (16)

r, (R)= (8,(r)8, (r') ) —(8,(r) ) (8, (r') ) . (18)

Because the two components are supposed to be isotropi-
cally mixed, r, (R ) depends only on the distance
R = ~r —r'~. If the mixture is disordered —and for most
practical applications of the SPFT this assumption is
justified —it is usually possible to define a correlation
length L such that r, (L)/~, (0)=e ' and that r, (R) is

negligible for R ))L. On scales larger than L the mix-
ture may be considered homogeneous.

Higher-order cumulants can be defined in a similar
way, as in Eq. (18); see [13]. In fact, for a rigorous sta-
tistical treatment of the effective medium problem, cumu-
lants of arbitrarily high order are required, but in this pa-
per we assume that the filling factor (16) and its covari-
ance (18) suffice to describe the mixture.

which is constant with respect to r. The same holds for
the filling factor of the component b, which is defined by
fb=(8&(r)). Obviously,

f, +fb=l .

These two filling factors contain only the minimal geome-
trical information about the mixture: namely, the volume
fractions of the two components. A more detailed
description is provided by the second moment of the
characteristic function, (8,(r)8, (r')), or, equivalently,
by the second cumulant or covariance

denoting the spatially averaged electromagnetic field. At
this stage, it is appropriate to define the Green matrix
[20]

GB, (r —r') Gii, (r —r')
I

Br( GHE(r r~) GHH(rr r Br

which corresponds to the differential equation (20) with
the usual radiation conditions fulfilled; that is,

I 0
V X QB,(r —r') —%'B,Qa, (r —r') =

0 I 5(r —r') . (23)

1A=-
i /r)B,

E 9Br
(24)

which has the inverse

i /riB, —
l /Br

(25)

The transformed Green matrix

The four components of the Careen matrix QB,(r —r') are
dyadic Green functions, I is the identity dyadic, and
5(r —r') is the Dirac delta.

In order to obtain the explicit form of the Green ma-
trix QB,(r —r'), we transform the matrix equation (23)
into the so-called Beltrami representation [4]. We intro-
duce the transformation matrix [19]

IV. EQUATIONS FOR A LOCAL KFFKCTIVK
MEDIUM

Qg(r —r') =A QB„(r—r')A (26)

We assume that electromagnetic wave propagation in

V, U Vb can be approximately described with the help of
an effective medium with constitutive parameters EB„ps„
and pB,. These parameters are not r dependent; hence
this effective medium is not only homogeneous but also
spatially local. This effective medium will later on serve
as the preliminary ansatz for the SPFT and will be shown
in the next section to actually be in complete agreement
with the Bruggeman rule [11].

In analogy to the formulas given earlier, we use the no-
tation kii, =coV' epasy „=Bk, B(I/+ kB,pB, ), and

+
YBr 0

A =A%B~ 0 —yB,
(28)

is diagonal, and so is

satisfies the Beltrami field equation [4] with a point-
source excitation as per

I 0
VXQ (r —r') —AQ (r —r')=

Q Q 0 5(r —r') . (27)
L

The transformation is such that
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3l 31+
O'R (o R )2

X [uRUR 3 I] g(o",R ) (30)

with the unit vector uR=R/R and the scalar Green func-
tion g(o;R)=e' /R.

The singular behavior of the Beltrami-Green dyadics
may be formally expressed through [21]

6-(o ~R) =P6+-(~ ~R)+ li(R),
30

(31)

where P is the principal value operation excluding an
infinitesimal spherical region around R =0. Iriserting Eq.
(31) into Eq. (29), we find the matrix identity

Qg(R) =PQg(R) —
—,'A '6lR) . (32)

The Green matrix QB,(r —r') can be calculated using
Eq. (26) as

6, (R) =
—,'[6+(y+,~R)+6 (y, ~R) j, (33)

6, (R)= [6+(y+„~R)—6 (y, ~R)],

6"„'(R)= [6+(y,+,~R) —6-(),—,~R)],
1

l'gg~

6HH(R) 6EE(R )

6+(7,+,~R)
(29)0 6-(y,—,~R

The Beltrami-Green dyadics 6—(o ~R) outside the source
region (R %0) can be stated as [4]

6—(o ~R) =+ ~ —I+ i — uRX Io '2 . 1

4m 3 oR

region [14]. The singularities can be removed from the
right side of Eq. (39) by taking advantage of Eq. (37);
thus,

F(r) =FB,(r)+Pf d r'QB, (r —r')[A(r') —AB, ]F(r')

—
—,'AB„'p((r) —%'B,]F(r) .

Next, after introducing the exciting field

F,„,(r) =
—,'AB, 'P((r)+ ZRB, ]F(r),

we rewrite the integral equation (39) as

F,„,(r) =FB,(r)+Pf d r'QB, (r —r')X'(r')F, „,(r'),

with a generalized polarizability matrix defined as

X(r) =3p((r) —AB, ][A'(r) +2KB, ]

(40)

(42)

(43)

(X(r) ) =0 . (44)

This condition may look somewhat arbitrary at first
glance, but it can be shown [14] to be necessary for re-
moving the secular terms from the Born series expansion.
Inserting Eqs. (15) and (16) into Eq. (44), we obtain

P(, —AB, ][%',+ORB, ] 'f,

Equations (42) and (43) together constitute the basis for
the strong-property-fluctuation theory for two-com-
ponent chiral mixtures.

The next steps are canonical: We calculate the ensem-
ble averages of the exciting field (F,„,(r)) by ensemble
averaging both sides of the integral equation (42). For
this purpose, we formally represent this equation in terms
of a Born series and average each term of the series sepa-
rately. Details of this procedure are available in the
literature [13,22].

Now let us fix the lowest-order estimate of the effective
medium properties, mentioned in the previous section, by
demanding that

and we thus establish that the singular behavior of
QB,(r, r') at r=r' can be accommodated through [~b Br]%'b +~Br ] fb (45)

~B,(R)=PUB,(R)—3KB,'5(R),

a result of great importance in the following section.

V. DYSON EQUATION

(37) which is nothing but the Bruggeman mixing rule for
chiral media, first given in [11].

Equation (42) may now be ensemble averaged using the
Feynman-diagrammatic technique introduced by Frisch
to arrive at the Dyson equation,

The stage is now set to obtain the Dyson equation for
the ensemble-averaged electromagnetic field. We begin
by combining Eqs. (5) and (20) as

V X F(r) —AB,F(r) = [A(r) —AB, ]F(r) .

Using QB,(r —r') and FB,(r), next we transform this equa-
tion to the following integral equation:

F(r) =FB,(r)+ f d r'gB, (r —r')[A(r') —%'B,]F(r') . (39)

Equation (39) cannot be evaluated perturbatively when
the constitutive parameters e(r), p(r), and P(r) fiuctuate
strongly. This is due to secular terms produced by the
singularities of the dyadic Green functions in the source

(F,„,(r) ) =FB,(r)+Pf d r'd r"QB,(r —r')X(r' —r")

X ( F,„,(r" ) ),
where the quantity X(r' —r") is called the mass operator,
a name coming from quantum field theory. The mass
operator consists of an infinite series, each term of which
contains products over PQB,(r —r') and the statistical cu-
mulants of X'(r) [13].

For pragmatic reasons, approximations to the Dyson
equation are unavoidable. They are usually implemented
by truncating the series expansion of the mass operator
X. To the lowest (i.e., second) order in X we have

X(r—r') = ( X'(r)PQB, (r —r')X(r') ),
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which is called the bilocal approximation. Now,

X(r) =X,O, (r)+X'i, Ob(r) (48)

C(q)= fd"&C(r)&e-'q'

X(q) = f d r X(r)e

(59)

(60)

for all r. Inserting this expression into Eq. (47) and using
the condition (44), we obtain %'D (q)= f d'r&D„(r)e (61)

X(R)=(X', —X'b )PQii, (R)r, (R )(X', —X'b ) (49)

after some algebraic manipulations, with the covariance
r, (R) having been introduced in Eq. (18).

VI. EQUATIONS FOR THE NONLOCAL
EFFECTIVE MEDIUM

In order to complete the SPFT formulation, we go on
to determine the relation between the ensemble-averaged
fields &C(r) & and &F(r) &. The ensemble average of the
constitutive relation (8) may be stated as

q being the three-dimensional spatial frequency vector.
The Fourier-transformed version of Eq. (57) reads as

P(ii,.——,'R(q)]%'B,'d 'C(q) = [%'B„+—', R(q)]F(q) . (62)

Solving this equation for C(q) gives

C(q)=PA', [A „——,'X(q)] '[A, +—', X(q)]F(q)

=8%'B,[AB,——,'2(q) ] '[AB,——,
' X(q)+ X(q) ]F(q)

=8[KB,+KB,[AB,——,
' Rlq) ] 'Rlq) ]F(q) . (63)

This can be rewritten as

& C(r) & =+&~(r)F(r) & . (50) C(q) =HA»(q)F(q), (64)

Because we are examining linear matter, there must exist
a linear relation between &%(r)F(r) & and &F(r) &. Fur-
thermore, this relation has to be of the form

where

WD„(q) =%'ii, +KB,[A'B, ——,'X(q)] 'Rlq) .

&W(r)F(r) &
= f d RWD„(R) & F(r —R) & (51) The eft'ective medium matrix%'D„(r) is then obtainable as

an integral, i.e.,

F,„,(r) =—', F(r)+ —,'%'B,%'(r)F(r),

X(r)F,„,(r)=%'(r)F(r) —AB,F(r), (53)

due to translational invariance. The matrix AD„(R) con-
tains the constitutive properties of the effective medium
consistent with the SPFT. In general, this matrix is non-
local and, therefore, signifies spatial dispersion. All we
have to do now is to find the connection between the
quantities discussed in the preceding section and AD„(R).

Let us note from Eqs. (41) and (43) that

VX &F(r) &
—fd'R%'D (R)&F(r—R) &=0 . (67)

1
%'Dy(r) =,f d'q%'D„(q)e'

(2ir )'

The Dyson equation (46) involves the ensemble-
averaged exciting field &F,„,(r) &. In order to determine
the ensemble-averaged electromagnetic field &F(r) & it-
self, we take the ensemble average of Eq. (5) and use Eq.
(51) to get

their respective ensemble-averaged counterparts being

& F,„,(r) &
=

—,
'

& F(r) &+ —,'~,,'&~(r)F(r ) &,

& X(r)F,„,(r) &
=

& JV(r)F(r) &
—~,& F(r) & .

The Fourier-transformed version of this equation is

i q XF(q) —%'D (q)F(q) =0,
(54)

which can be solved with standard dyadic techniques [4].
55)

Furthermore, on taking the ensemble average of Eq. (42)
and comparing it with the Dyson equation (46), we get

& X(r)F,„,(r) &
= f d'r'&(r r') & F,—„,(r') & . (56)

'& C(r) &
—

—,
' f d r'X(r —r')A~, '8 '& C(r') &

=%'ii, &F(r)&+—', f d r'X(r r')&F(r')&—. (57)

This integral equation gives a linear relation between
& C(r) & and & F(r) &. After solving this integral equation
for & C(r) &, we shall be able to obtain the desired eff'ective

medium matrix AD„(R).
Since the integral equation (57) is of the convolution

type, it can be solved by the Fourier transform technique.
Therefore, we define the following quantities:

F(q)= f d r&F(r)&e (58)

Finally, after rearranging Eqs. (54) —(56) and inserting the
constitutive relations (50), we obtain

VII. LONG-WAVELENGTH APPROXIMATION

In principle, the electromagnetic field equation (67)
gives an exact description of the electromagnetic proper-
ties of the mixture. As mentioned in Sec. III, disorder
usually introduces an intrinsic length scale, viz. , the
correlation length L, . Let us recall that there are four
basic wave numbers in a two-component chiral mixtures,
two in each component. Hence, we can think of four
wavelengths. When the maximum of these four wave-
lengths is smaller than or comparable with L, in
magnitude —i.e., the scale is microscopic —the details of
the particulate geometry are resolvable and make the
effective medium nonlocal.

However, when the minimum of the four wavelengths
is much larger than L, , we can achieve a macroscopic
description of the mixture. Although it has a different
provenance, this description is conceptually no different
from that available from the Maxwell-Garnett and the
Bruggeman mixing rules: the mixture is considered
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homogeneous in the so-called long-wavelength approxi-
rnation [9].

Suppose the long-wavelength approximation is ap-
propriate. I.et us then introduce the macroscopic fields
C „,o(r) and F „,o(r) by spatially averaging the micro-
scopic fields (C(r) ) and (F(r) ) over a volume V; thus,

F „„(r)=—f d r"(F(r+r")), (69)

C „„(r)=—f d r"(C(r+r")) .1

V U

(70)

=8f d R AD„(R}F „„(r+R)
=otf d R%'D„(R) F „„(r).

This leads to the macroscopic constitutive relation

C „„(r)=8&D~(q=O)F „„(r),

(71)

(72)

where 0 is the null vector. In deriving this estimate of
the effective medium properties, we used the fact that
macroscopic fields can be regarded as uniform on micro-

The minimum linear cross-sectional extent of the volume
V must be much larger than I., but much smaller than the
minimum of the four wavelengths in the two components.
Inserting Eqs. (50) and (51) into (70), we find

C „„(r)=8f d R A'D„(R)—f d r"(F(r+r"—R})
V v

VHI. BILOCAL APPROXIMATION

We now go on to determine the effective medium prop-
erties using the bilocal approximation. For this purpose,
we have to calculate the Fourier transform (60) of the
mass operator given in equation (49). Therefore, we com-
mence by writing

g(q) =(X', —X'i„)$(q)(X', —Xb ), (73)

where

S(q) = f d R PQ&,(R)r, ( R)e (74)

Inserting the matrix elements of Qii, as given in Eqs. (33)
et seq. , we get

scopic length scales. In a long-wavelength description,
the mixture is treated as homogeneous; so we obtained a
local effective medium.

We must pause here to note that AD„(q=O)WJV&, .
Hence, the estimate of the effective medium properties
obtained in this section difFers from the Bruggeman esti-
mate T. he matrix WD„(q=O) contains, via its relation to
the mass operator (65), information about spatial correla-
tions in the two-component mixture. It therefore gives a
better description of the two-component mixture than the
Bruggeman rule, which only contains the filling factors
[Eq. (45)].

—,'[4+(r+, lq)+4 (y, lq)]
&( )='q =

[&+(r;,lq) —+ (yB, lq)]
2l 7/Bz.

2" [&+(rB,lq) —& (rs, lq)]
(75)

with

&+-(rn*, lq)= f d'R &~+-(rB,IR)r. (R)e " (76)

I

l(uR) = g Vl Yl (UR)
rn = —I

(78)

Let us recall the coordinate-free form of the Beltrami-
Cireen dyadics as

G+(olR) =+i(o'/4~) [-', h,"'(oR)T,(uR)

with the dyadics Vl independent of uR. The partial
wave decomposition of the plane wave e 'q is [23]

oo I
e '~ =4~ g ( i)jl(qR) g—

Yl (uR)Y, (u ), (79)
1=0 m= —l

+ h'i" (0'R)Ti(uR)

+h'"(OR)T (u )I,
where we introduce the spherical Hankel functions

ho(z) = iz 'e" h', "—(z) = —(iz + ')e"

h z" (z) = i( —3z + 3iz +z ')e"

and the irreducible dyadics

(77)

+ s i ( r s l q ) Ti ( llq )

l's2(ra. lq)Tz(u )] (80)

with the spherical Bessel functions jl(qR), uq=q/q, and
the asterisk denoting complex conjugation.

We insert Eqs. (77)—(79) into (76) and use the orthonor-
mality properties of Yl (uR) on the unit sphere to obtain

&*(rB.lq) =+(rB.)'[—', &so(r B.lq) "To«q)

0(uR) & +1(uR) uR X I& 2(uR) uRuR

Because of their irreducibility, these tensors can be writ-
ten in terms of spherical harmonic functions Yl (uR) as

where the integrals

sl(y,*,lq)= f dR R'h, '"(r„RJ),(qR)~. {R) (81)
0

have to be evaluated numerically. We plan to discuss nu-
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merical results in a future paper.
Let us return to the long-wavelength approximation

discussed in the preceding section; i.e., q =0 and
yBQ ((1. Correct to the lowest order in yBQ, we get

2(q=O) = U(X, —X'b )%'B,(X', —X't, ), (86)

$(q =0)= ,'A—B,I dR R r, (R ) .
0

Finally, we get the following result for the mass operator:

so(yn, ~O)= — I dR Rr, (R), (82)
where

s, (y —,0)=sz(yB, 0)=0 . (83) U= ', J— dR Rr, (R) . (87)

+
4 (ys, iq=O) =+ j dR Rr, (R)I .

3 0
(84)

Inserting into the Eq. (75) and using the definitions from
Sec. III we obtain

Thus, the only surviving integral does not depend on the
constitutive parameters of the two chiral components,
but only on the mixture's microscopic structure. Using
the foregoing expressions, we obtain the simple result

Hence, the macroscopic constitutive relation in Sec. VII
can now be ascertained in terms of the spatial correla-
tions in the two-component mixtures.
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