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Equations of motion for super8uids
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To the principles of least action and minimum error, for determining the time evolution of the param-
eters in a variational wave function, we add a third: continuous collapse dynamics. In this formulation,
exact time evolution is applied for an infinitesimal time and is followed by projection of the state back
into the variational manifold ("collapse" ). All three principles lead to the same equations of motion
when applied to complex parameters but take two distinct forms when the parameters are real. As an
application of these principles, we study the time evolution of two variational wave functions for
superAuids. The first wave function, containing real parameters, was considered by Kerman and Koonin
[Ann. Phys. (N.Y.) 100, 332 (1976)] and leads to the Euler equation in the hydrodynamic limit. The
equation for our second wave function, a coherent state of Feynman excitations with complex parame-
ters, has essentially the same hydrodynamic limit. The latter wave function, however, has a significant
advantage in that the equation it generates is useful and meaningful on a microscopic scale as well.

PACS number(s): 47.37.+q, 67.40.Hf, 67.57.De

I. INTRODUCTION

Certain phenomena call for a description of Quid
motion that goes beyond the hydrodynamical equations.
One example, indeed the problem that motivated the
present work, is the process whereby microscopic excita-
tions in a superfluid are created [l]. A description of ex-
citations as riding on a background of Quid How is
insufficient since one is ultimately interested in how the
former evolve continuously from the latter. Aside from
phonons, excitations defy a hydrodynamical description
and a new approach is needed. Excitations of arbitrary
wavelength as well as fluid Aow can both be represented
using the superfluid wave functions introduced by Feyn-
man [2]. These wave functions are variational in charac-
ter and up to now have served to model stationary states.
The aim of the present paper is to derive the time evolu-
tion of these wave functions. Since the intent is to remain
within the class of Feynman wave functions, there arises
the problem of how to evolve the variational parameters
so as to give the best approximation of the exact
Schrodinger time evolution. This is the subject of the
first half of the paper.

Although the general "time-dependent variation al
principle" has been addressed by several authors [3—g],
there has been some confusion about different formula-
tions yielding somewhat different equations of motion.
We therefore begin by demonstrating the complete
equivalence of Frenkel's [3] least action principle and the
minimum error principle of McLachlan [4] for the case of
complex parameters. By adding a refinement to these
formulations, we show their equivalence to yet a third
principle we refer to as "continuous collapse dynamics"
[9]. We also show in detail how a difference among these
formulations arises when the parameters are real [5].

In the second half of the paper we apply the time-

dependent variational principle to two super-Quid wave
functions. We first consider a wave function introduced
by Kerman and Koonin [6] where the density and phase
are the variational parameters and by construction are
conjugate variables in the equations of motion. Our
second wave function is a coherent state formed from
Feynman's excitation wave function [9]. Both wave func-
tions lead to essentially the same hydrodynamic equa-
tions, although the Feynman wave function, in being
more explicit in its construction, can be applied to micro-
scopic phenomena as we11.

II. THE TIME-DEPENDENT VARIATIONAL
PRINCIPLE

1(t) a(t)), (2)

where A, is a complex number. In the following, the time
dependence of A, and the parameters 0. will be under-
stood and not always indicated explicitly.

In order to streamline our comparisons between the
different principles for deriving equations of motion, we
have found it useful to introduce the operator

In this section we consider a general time-independent
Hamiltonian H and a state vector a) which depends
parametrically on a set of complex parameters 0.'&, a2, . . .
Our goal is to find the best approximation to the time
evolution of ~a) by appropriately evolving the parame-
ters in time. In approximating the time derivative of

~
a )

we have available the states

a —=— aa
~~m

as well as the state ~a) itself. The evolving state should
thus be written in the form
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c=iB,—H . (3)

Since an exact time evolved state l'll ) satisfies the equa-
tion el%') =0, we expect that matrix elements of E are
small in approximately evolved states.

the vectors la ), the inclusion of P is a relatively minor
refinement. The appearance of P is a direct result of ex-
panding the freedom of the state vector's time evolution
by means of the function A,(t). As such, Eqs. (11)
represent an improvement.

A. Three formulations 2. Minimum error

l. I east action

Frenkel's least action principle [3] requires that the ex-
pression

S=fdt(a A, 'Ella)
= fd«alX*s'X a&, (4)

is stationary with respect to arbitrary variations of the
functions k(t) and a (t). Integration by parts leads to
the second expression, where the time derivative in c~

acts to the left. Under the combined variation of both k
and the parameters a, we have

5S=f dtI5A, *(alEk, la)+5k, (alk*Etla)

+X'&5alEzla&+a&ala*etl5a&] . (5)

Since A, is complex, 6A, and 6A, * represent independent
variations and we conclude,

0= &alszla)

b, =&alA, *EtEA, la& . (12)

The quantity 5 is now to be viewed as a function of the
various time derivatives k and a . The dependence on X

can be made explicit with the help of the identity

Ella)=i/a&+XEla) .

Substituting (13) and its adjoint into (12), we have

~=i*i&ala &
—t~'~&alsla&+is'i&alE' a&

+ lA, l'(alEtela) .

(13)

(14)

Minimizing this with respect to the complex number k
leads to the equation

An alternative formulation, proposed by McLachlan
[4], seeks to minimize the error in the approximation of
the state vector's time derivative. Again using the form
(2) for the state vector, the object now is to minimize

=ik(ala)+A(a Ela) . (6)

=XPEla) .

Here P is the projection operator

la&&al
&ala&

Using (6) and substituting (7) and its adjoint into (5), we
have

5S=fdtlXl'I&5alP. la&+&al "Pl5a&] . (9)

Recalling (1) to express the variation of the state vector,

Using (6), we can solve for the time derivative of A, (A, ).
We can then eliminate A, wherever it appears, in particu-
lar,

EA, la & =XEla &
—X

&alEla&

=i&ala& —ik&alEla& .

Solving for A, in (15) and using (13) we obtain

a= Xl'&alEtPsla& . (16)

Ela&=i ga la &
—Hla&, (17)

where we have made use of (1). Substituting (17) into (16)
we obtain

g a* (a lPla„)a„+i pa* (a lPHla)
m, n m

This corresponds to McLachlan's original formulation
when P is replaced by the identity operator. In order to
further minimize with respect to the a, we recall the
definition of c.,

l5a&=+5a (t)la (10) i& & a HP
1 a, & a, + & a IHPH I

a &

and again taking advantage of the fact that for complex
a the variations 6o; and 6a' may be treated as in-
dependent, we arrive at the equations of motion

IPEla) =0, m =1,2, . . . .

Equations (11) reduce to the usual equations of the
time-dependent variational principle when P is replaced
by the identity operator. From the point of view that P
a8ects at most a one dimensional subspace in the span of

and the equations of motion are given by

=g (a lPla„)a„+i (a lPHla) . (19)

These are in fact identical with Eqs. (11) obtained from
the least action principle.
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3. Continuous collapse

Our third formulation of the time-dependent variation-
al principle [9] begins with the state vector at time zero,
~a(0) ), and applies the exact Schrodinger time evolution
for a short time At. Since the resulting state is generally
outside our variational manifold of states, it must be "col-
lapsed" back into this manifold. Our criterion for the
"best" collapsed state ~a(At)) is that it have the largest
possible overlap with the correctly evolved state. As
shown below, this determines a unique state (up to overall
phase) and the process can be repeated. In the limit
At ~0, an ever decreasing amount of collapse is being ap-
plied continuously as the state vector describes a curve
on the variational manifold.

The overlap between the exactly evolved state and the
collapsed state ~a(b t ) ) is given by the dimensionless ra-
tio

or,

ig &a ~P~a„& —&a„~P~a ) a„
Pl

IPHla)+ &alHPla ) m =1 2, . . (25)

) &a~H~a)

&a /P/a„) —&a„/P/a )
&a/a&

Equations (25) may now be rewritten as

(26)

(27)

+[a ,a„]a„= a
&H), m=1, 2, . . . . (28)

Kerman and Koonin [6] observed that Eqs. (25) can be
written in a form that resembles Hamilton's equations.
Adopting their notation, we de6ne

a(b, t )
~
exp( i b, t—H) ~a(0) )

~

& a(ht ) ~a(ht) ) & a(0) ~a(0) )
(20) In the minimum error formulation, Eq. (18) is replaced

We note that the inclusion of a time-dependent scale fac-
tor A, (t) in the state vector would add nothing to this ex-
pression. Anticipating the fact that the collapsed state
vector describes a smooth curve in parameter space, we
write

~a(At ) ) = ~a(0) ) +Et ~a(0) ) + ,'(ht )'~a(0) ) +—.

b, =~X~' —,
' g a Re[&a ~P~a„&]a„

m, n

+pa Re[i&a ~PH~a)]+&a~HPH~a&

(29)
(21)

Substituting (21) into (20) and expanding to second order
in ht (and dropping explicit reference to t =0), we find

and the corresponding equations of motion take the form

&a ~P~a„&+ &a„~P~a ) a„

R =1— ' [&aiEtPEia)+ &aiH'ia)

—&a(HPH/a&]+ (22)
OI

i & alHP la

Im[&a ~Pe~a)]=0, m =1,2, . . . .

(30)

(31)
To this order in ht, only first derivatives of the parame-
ters appear. Maximizing R with respect to these erst
derivatives corresponds to minimizing the same quantity
that appears in the minimum error formulation [Eq. (16)].
The "continuous collapse" equations of motion are there-
fore no diferent from those derived from the previous
formulations.

As already noticed by Kay [5], these equations are in gen-
eral distinct from the least action equations (24) for real
parameters. The continuous collapse formulation also
leads to these equations since an intermediate step of the
derivation [see (16) and (22)] implies the minimization of

B. Real parameters

%'hen the parameters a are real, the equations of
motion take on a slightly di8'erent form. In deriving
these equations we nevertheless consider the prefactor A,

in (2) to be complex. In the least action formulation the
first point of departure follows Eq. (9):

5S= J dt~k~'. +Sa &a ~Pe~a&+&a~E P~a )

(23)

C. Conservation of energy

&alPHla &+ &alH'Pla &

dt &a~a)
(32)

Using (3) to replace H (and its adjoint) in terms of e, this
becomes

The time independence of the energy expectation
value, already noticed by several authors, is a simple
consequence of the equations of motion. Taking the time
derivative of both sides of (26), we find

Stationarity of the action now implies

Re[& ~P.
~

)]=0, m=1, 2, . . . , (24) Since

d & aiPcia) + & aietPia &

dt &a(a)
(33)
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~a&=pa (a (34)

the equations of motion for complex parameters (11) im-
ply that each term on the right-hand side of (33) vanishes.
When the parameters are real, though, the right-hand
side vanishes only in the least action formulation [see
(24)]. Real parameters thus present the following dilem-
ma [5]; either b, is minimized and the energy is not con-
served, or we choose the alternative formulation which
conserves the energy but does not minimize 6 to the full
extent possible.

III. EQUATIONS OF MOTION FOR SUPERFLUIDS

N

2M g (V; )+ V(r„. . . , r~), (35)

where the potential V is symmetric in all its arguments,
and 6=1. In this and all subsequent expressions we use
the position representation. A particularly important
role will be played by the density operator:

P(r)= g 5 (r —r, ) . (36)

In contrast to the by now classical approach for deriv-
ing equations of motion for condensed systems wherein
symmetries and conservation laws play a major role, the
equations of motion being discussed here are simply the
consequences of particular wave functions. To the extent
that these wave functions exploit the relevant sym-
metries, the hydrodynamic limit of their corresponding
equations of motion should reproduce the equations
given by the classical approach [10]. If the wave func-
tions that produced them are also meaningful on micro-
scopic scales, we might even expect their usefulness to go
beyond the description of hydrodynamic behavior.

In the following we consider two wave functions that
describe superQuids. Both apply to a system of N identi-
cal particles described by the Hamiltonian

of the wave function %0[p]. The latter should be viewed
as the lowest energy wave function having the prescribed
density p(r). A "ground state" energy that is itself a
functional of the density is thus defined by

(39)

As shown below, the explicit construction of 40[p] is
not necessary in order to derive the hydrodynamic limit
of the equations of motion. We pause, however, to con-
template such a construction because it bears upon an
important property of %0[p] that the derivation assumes.
In one approach, an external potential

Jd rp(r)U(r) (40)

is added to the Hamiltonian and the corresponding
ground state and density are computed. This determines
p[U], the density as a functional of U. Inverting this
functional (perturbatively, in practice) gives U[p] and
finally, %0[p]. Thus %0[p] emerges as the ground state of
some Hamiltonian and the question of degeneracy or near
degeneracy arises. This is where bosonic and fermionic
systems differ. While the bosonic ground state is in gen-
eral nondegenerate, this is true of fermionic systems only
in the closed-shell configurations. Moreover, in very
large fermionic systems which posses a Fermi surface, the
very high near degeneracy of the ground state makes the
choice of a particular %'o[p] very questionable. We thus
confine our attention in what follows to systems (bosonic
or fermionic) which possess a clearly nondegenerate
ground state. Because our Hamiltonian (35) is real, we
can assume that %0[p] is real as well.

Turning to the P(r) dependent prefactor in (38), we ob-
serve that when the phase P(r) is constant this merely
counts the number of particles, a conserved quantity.
Since adding an overall phase does not really change the
state, a slowly varying P(r) represents a hydrodynamic
variable. We note that this phase does not affect the den-
sity expectation value so that p(r) is also the density of
the full wave function %[p,P].

The second wave function we consider has the form [9]
r

Its expectation value in the state under consideration
defines the local density: +[a]=exp fd rp(r)a(r) 0'o, (41)

p( )=(p( )& (37)

A. Super8uid wave functions

Kerman and Koonin [6] proposed the following wave
function for a superfj. uid:

This already represents one important degree of freedom
in a Quid. The other hydrodynamic degree of freedom,
the phase, is expressed by the wave functions themselves.

where the parameters a(r) form a complex function in
space and %0 is simply the ground state wave function
with energy

(42)

Although (41) has the same phase degree of freedom as
(38) and therefore contains the same hydrodynamical
variable, its main inspiration is Feynman's wave function
for excitations [2]

%[p,P]=exp i J d rp(r)P(r) 40[p] . (38) f d rp(r)a(r) (43)

Rather than forming a discrete set, the parameters in this
wave function are a pair of real numbers p(r) and P(r) at
each point in space. The dependence on the density pa-
rameters p(r) is defined implicitly through the properties

Our second wave function is thus a coherent state of exci-
tations.

The coherent-state wave function possesses the same
number of degrees of freedom as the Kerman-Koonin
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wave function. Also, the remarks concerning the real
valuedness of %o[p] apply to %0 as well. The latter prop-
erty is exploited in the calculation of matrix elements, in
particular,

f dn %*[a]V;0'[a]

= fdn[+oV;%0+2i%'OVa(r;) V;0.'0+i%'OV a(r;)
—q ',

I
Va(r; ) I'}

= fdn[q, V', ~,—q,'IVa(r, )l'},

expectation value brackets to identify the Kerman-
Koonin and coherent-state wave functions, respectively.
In (47) the density has been given the subscript a to em-
phasize the fact that in the coherent-state wave function
the density is not a variational parameter, but an expecta-
tion value determined by the parameter function a.

The energy of the coherent-state wave function is con-
served by the equations for its complex parameter func-
tion. The energy of the Kerman-Koonin wave function,
on the other hand, is a constant of the motion only if we
apply the least action principle to its real parameters.

where the cancellation of the second and third terms in
the second line required an integration by parts and the
identity

C. Equations of motion

1. Kerrnan Kooni-n wave function

2%,V, %,=V, %,' .

B. Conserved energy

The energy expectation values take the following forms
for the two wave functions:

(H) &=Eo[p]+ f d rp(r) VP(r)l
1

(46)

(H) =ED+ f d rp (r)IVa(r)
1

2M

Here subscripts p, P, and a have been appended to the

The Kerman-Koonin wave function was constructed to
take advantage of the Hamiltonian form of the least ac-
tion equations of motion for real parameters. As already
mentioned, this choice of real-parameter equations also
has the advantage of conserving the energy. Although
the corresponding approximation of the time derivative
of the wave function is not optimized in this formulation,
we make this choice in what follows.

The parameters o. in the general formalism become
values of the functions P(r) and p(r') at particular points
in space, while partial derivatives are replaced by func-
tional derivatives. As an example, we give some details in
the calculation of one of the antisymmetric symbols (27):

f d n [
—ip(r)%'o [p]},+o[p]

6

5p r'
(r),p(r') =i

fdnle, [p] '

fdn[ —tp(r)q'o[p]}+olp] f dn vo [p], vo[p]
5p r'

+C.c (48)

f dn q'0[p]l'

Taking advantage of the real valuedness of %0[p] and the
identity

I

tonian form:

6 1 6
, +o[p]=—5, q"o[p]5pr' 2 5pr'

we see that (48) simplifies greatly:

[P(r),p(r') }
=—,(p(r) )+c.c.1 6

2 5p(r')

=5 (r —r') .

By similar manipulations, one finds

(49)
(52)

(53)

Taking the indicated functional derivative of (46) and
de6ning the Aow velocity by

Mv(r) =VP(r),

Eq. (52) is recognized as the equation of continuity:

[P(r),P(r')} =0,
[p(r»p(r') }=o .

These together with (50) show that the parameter func-
tions P and p have a conjugate relationship so that the
equations of motion (28) take on the canonical Hamil-

p+V (pv)=0. (55)

Taking the gradient of (53) and dividing through by M,
the second equation of motion takes the form

v+(v V)v= — Vp
1

M
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where p represents a nonlocal chemical potential:

5Eo [p]
5p(r)

(57)

In order to be able to call (56) the Euler equation, we
need to make the hydrodynamic approximation where p
is only a function of the local density:

V[p](r)=1 hip(r)] (58)

2. Coherent state wau-e function

In fact, this is the only instance in the derivation where
we use the fact that our wave function describes a liquid
as opposed to a solid. Clearly, approximation (58) only
makes sense if the density remains a relatively slowly
varying function of space over the course of time. The
local chemical potential function p& is obtained by taking
the density derivative of the ground state energy of a uni-
form system characterized by a constant density (and
external potential, if present).

a(r)=y(r)+i/(r) .

The imaginary part of (62),

[o o j'](r)= — V [p (r)VQ(r)],1

(64)

(65)

is recognized as the equation of continuity with the help
of (54) and the identity

p (r)=2[cr && j'](r) . (66)

Perhaps a more direct approach is to rewrite the origi-
nal wave function (41) in the form

Feynman spectrum of elementary excitations, (2) describe
the propagation of excitations in a nonuniform How field,
and (3) obtain a detailed understanding of Landau's
superAow instability as a quasiparticle pair-creation pro-
cess.

Hydrodynamics can be recovered from (62) by decom-
posing a(r) into its real and imaginary parts:

In deriving equations of motion for the coherent-state
wave function (41) we use the general formula (19) ap-
propriate for complex parameters. The functional
derivative of the state vector with respect to a(r), denot-
ed la(r) ), has the position space representation

%[a]=exp i f d rp(r)P(r) 4o[p],

where

ko[P]=exP Jd'rP(r)y(r) .qIo (68)

%[a]=p(r)%[a] .
5

(59)

Using this, the two terms in (19) are easily expressed as
expectation values:

(a(r)lP la(r') ) =(p( )p( ')) —(P( )) (P( '))
a a

=o (r, r'), (60)

=(a.)H) —(s.)) &H) .p a p a a . (61)

(62)

where the symbol o denotes the convolution operator:

In (60) we have introduced the pair correlation function
0. . The subscript a reminds us that, like p, we are
again dealing with a functional of the parameter function
a(r). Using the properties of the ground state wave func-
tion [as illustrated in (44)] to evaluate the expectation
values in (61) and combining with (60) in the equation of
motion (19), we obtain [9],

i[cr oa](r)= I
—V [p (r)Va(r)]+[o. o lVal ](r)],1

Eo[p]:&H & ( ] y=o . (69)

D. Discussioa

Although the function als Eo and Eo are indeed
diferent, we expect them to be nearly equal when the
density is close to the density of the ground state, %'o. By
definition,

is the counterpart of the Kerman-Koonin ground state
having prescribed density, 'Po[p]. As written, (68) is a
functional of g that in turn determines the density p, also
as a functional of y. Since p and g have the same number
of degrees of freedom, the functional p[y] (previously
written as p ) can formally be inverted, yielding y, and
consequently +o, as functionals of p. The di6'erence that
remains, between the coherent-state wave function %[a]
and the Kerman-Koonin wave function, is the fact that
~IIo[p] is not necessarily the lowest energy wave function
having the prescribed density. But this is the only
difference and implies the equations of motion in the p, v
variables are the same as before, but with Eo[p] in the ex-
pression for the chemical potential (57) replaced by

[0 of ](r)—:f d r'o (r, r')f(r') . (63)
Eol p] ~Eo[p]

and, moreover,

(70)

The time evolution equation (62) for the complex-
valued field a(r) is our principal result. Being nonlocal,
both explicitly through the appearance of convolution
terms and implicitly through the functionals p and o. , it
expresses information at microscopic length scales. By
linearizing the latter functionals about the state a(r) =0
it has been possible to [11,12] (1) reproduce the Bijl-

5Eo[p]
5p(r)

5Eo[p]
5p(r) po

Eol:po] =Eo[po]

where po(r) is the density of the ground state. Together,
(70) and (71) imply
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Finally, since the energy of the ground state satisfies

5Eo [p] =0
5p(r) po

it follows that

(7&)

v[p ](r)=P[po](r)=0. (74)

Beyond the simple fact expressed by Eq. (74), the two
chemical potentials are generally different. In the hydro-

dynamic approximation, where the chemical potential is
an ordinary function of the local density, an expansion
about the ground state density begins

Mc
(p po—)+ (75)

Po

where c defines the velocity of sound waves. To see that
the two wave functions lead to different sound velocities,
consider the following more explicit representation of
q'o[p]:

4'o[p]=exp ~ f d rp(r)y, (r)+ —,
' f d r f d r'p(r)p(r')yz(r, r')+ (76)

As was the case with %o [Eq. (68)], the functions y„yz, . . . are not independent degrees of freedom but really function-
als of the density. On the other hand, 4'o has more flexibility than %'o in being able to fine tune the two-body, three-

body, etc. , correlations at each density. By this mechanism, (70) becomes a strict inequality and the first nontrivial term
in the hydrodynamic approximation (75) yields different values for the sound velocity —the Kerman-Koonin wave func-
tion having the lower value.

Because of its greater "structure" (76), it should not be concluded that the Kerman-Koonin wave function is superior
to the coherent-state wave function. The requirement that the functions g2, y3, . . . be fine tuned to minimize the energy
(for a given density) is not necessarily better and certainly no less rigid than simply setting them to zero. More in line
with the original intent of the time-dependent variational approach is to improve the approximation of the wave
function s time derivative by giving it more freedom. A natural choice in this direction is an extension of the coherent-
state wave function

@[a„az,. . . ]=exp ~ f d3rpgr)a, (r)+ —,
' f d r f d r'pgr)pgr')a2(r, r')+ (77)

Here o, &, az, . . . are time dependent and complex, the latter being necessary to achieve an optimized approximation of
the time derivative without sacrificing energy conservation. The function of a single spatial variable, a„having a natu-
ral quasiparticle interpretation [11],would thus be augmented by "multiparticle" degrees of freedom represented by the
functions a2, . . . .
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