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Convection in binary fluid mixtures. II. Localized traveling waves
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Nonlinear, spatially localized structures of traveling convection rolls that are surrounded by qui-
escent Quid in horizontal layers of binary fluids heated from below are investigated in quantitative
detail as a function of Rayleigh number for two diferent Soret coupling strengths (separation ratios)
with Lewis and Prandtl numbers characterizing ethanol-water mixtures. A finite-difFerence method
was used to solve the full hydrodynamic field equations numerically in a vertical cross section perpen-
dicular to the roll axes subject to realistic horizontal and laterally periodic boundary conditions with
different periodicity lengths. Structure and dynamics of these localized traveling waves (LTW's) are
dominated by the concentration field. As in the spatially extended convective states that are in-
vestigated in an accompanying paper, the Soret-induced concentration variations strongly infIuence,
via density changes, the buoyancy forces that drive convection. The spatiotemporal properties of
this feedback mechanism, involving boundary layers and concentration plumes, show that LTW's
are strongly nonlinear states. Light intensity distributions are determined that can be observed in
side-view shadowgraphs done with horizontal light along the roll axes. Detailed analyses of all fields
are made using color-coded isoplots, among others. In the frame comoving with their drift velocity,
LTW s display a nontrivial spatiotemporal symmetry consisting of time translation by one-half an
oscillation period combined with vertical reflection through the horizontal midplane of the layer. A
time-averaged concentration current is driven by a phase difFerence between the waves of concen-
tration and vertical velocity in the bulk of the LTW state. The associated large-scale concentration
redistribution stabilizes the LTW and controls its drift velocity into the quiescent Quid by generating
a buoyancy-reducing concentration "barrier" ahead of the leading LTW front. All considered LTW's
drift very slowly into the direction of the phase velocity of the pattern. For weak Soret coupling,

—0.08, LTW's have a small selected width and exist in a narrow band of Rayleigh numbers
above the stability threshold for growth of TW's. For stronger coupling, g = —0.25, LTW's exist
below the bifurcation threshold for extended TW's in a narrow band of Rayleigh numbers. In its
lower part, LTW's have a small selected width. For somewhat higher Rayleigh numbers, there exist
two LTW attractors with two difFerent widths. For yet higher Rayleigh numbers, there is again only
one LTW attractor; however, with a broader width. Dynamical properties and the dependence on
the system length are analyzed. Comparisons with experiments are presented.

PACS number(s): 47.20.—k, 47.54.+r, 47.15.—x, 47.10.+g

I. INTRODUCTION

In this paper we investigate, by numerical integration
of the hydrodynamic field equations, localized traveling
wave {LTW) convection in binary 8uid layers heated from
below, i.e. , convective structures that are spatially con-
fined and surrounded. by quiescent Quid. The convec-
tively active region consists of a few straight, parallel roll
vortices traveling under an intensity envelope which itself
drifts, albeit very slowly compared to the phase velocity
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of the roll pattern. So a particular roll vortex grows
under the trailing front of the LTW intensity envelope
and travels towards the leading front, where its intensity
smoothly decreases to zero.

Since a recent review [1] covers many of the experi-
mental LTW observations [2—25] and many of the vari-
ous theoretical approaches [26—45] capturing to a varying
degree the experimental observations, we shall add only
a few complementary comments —see also [26,27]. The
fact that LTW structures of roll vortices do not exist in
one-component Quids like water already suggests that the
degrees of freedom of the concentration field play a de-
cisive role: First, they cause roll vortices to propagate
when the separation ratio @ il], i.e., the Soret coupling
between temperature and concentration field, is negative
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and of sufIicient size, whereas in pure fIuids the primary
convective structures are stationary. Secondly, traveling-
roll vortices generate a large-scale concentration current.
In LTW states, it causes a characteristic large-scale con-
centration redistribution that inQuences, via its contribu-
tion to the local density, the driving profile of the local
buoyancy force. The balance of the latter turns out to
be dominated by the current-induced. concentration re-
distribution and to be of a form that (i) stabilizes the
convectively active region against invasion of the quies-
cent conductive state and vice versa and (ii) controls in
a delicate balance the drift of the LTW into the conduc-
tive state to be very slow by a buildup of a concentration
"barrier" which impedes the LTW motion.

Our investigation of LTW's is based upon results of
an analysis [46] of spatially extended convection struc-
tures of stationary rolls, so-called stationary overturn-
ing convection (SOC) states, and of traveling rolls, so-
called TW states, and, simultaneously, it is a contin-
uation of this analysis. We have calculated and ana-
lyzed several ITW states for two negative Soret cou-
pling parameters, @ = —0.08 and Q = —0.25, that
have also been investigated in experiments [2—15]. Here,
the stronger Soret coupling @ = —0.25 causes richer
and more complex LTW bifurcation behavior than the
smaller one, g = —0.08. We should like to stress that
all these LTW's are strongly nonlinear. Their spatiotem-
poral behavior can be described quantitatively neither
by a weakly nonlinear expansion around the oscillatory
bifurcation threshold r, for onset of TW convection,
nor by simple heuristic amplitude-equation approaches.
We therefore solved the full hydrodynamic field equa-
tions numerically with realistic boundary conditions, us-
ing an explicit Gnite-differences method. We restricted
ourselves to two-dimensional (2D) convection in the form
of straight rolls by suppressing spatial variations along
the roll axes. We imposed laterally periodic boundary
conditions with a periodicity length of 20 or 40 times
the height d of the Quid layer. In particular, we wanted
to elucidate the role of the concentration Geld. With-
out Soret coupling, g = 0, concentration deviations from
the mean eventually diffuse away. It is the combination
(i) of the linear coupling of its degrees of freedom to the
temperature field via the Soret effect and (ii) of its con-
tribution to the buoyancy force —the concentration Geld
directly infIuences the driving mechanism for convection—that causes the additional richness of convective dy-
namics and structures in mixtures in comparison to pure
one-component fIuids. On the one hand, concentration
is advected, and since the concentration diffusion con-
stant is small, it is transported almost passively by the
How, except for boundary layer effects. But, on the other
hand, the structural dynamics of the concentration field
actively feeds back via the associated density variations
into the buoyancy force that drives convection.

LTW's have been investigated so far only in ethanol-
water mixtures. They were found close to the oscilla-
tory threshold r

„

for sufFiciently negative Q. After the
first observations of LTW's in short rectangular convec-
tion cells by Moses et al. [2] and Heinrichs et al. [3] for
@ = —0.08, Kolodner et al. [4,5] also saw, for g = —0.25,

in an annular channel, i.e., a system uninfIuenced by lat-
eral end walls, spatially confined regions of TW activity
surrounded by the quiescent conductive state. The con-
vectively active region was stable, did not drift, and could
have practically any width in different experimental runs
for the same parameters. Then, in an ad hoc Gfth-order
amplitude equation, Thual and Fauve [28] found pulse so-
lutions with selected width that drifted with the critical
group velocity v'" of a linear wave packet of TW pertur-
bations at the oscillatory threshold. Furthermore, they
showed that stability of these pulse solutions required
complex coe%cients. Also, the connection to soliton so-
lutions of the nonlinear Schrodinger equation with imag-
inary coefFicients was discussed [29—32]. Bestehorn et
aL [33—36,47] investigated localized structures using their
order-parameter equation. Van Saarloos and Hohenberg
[37,38] found, for their amplitude equation, an analytical
unstable pulse solution of selected width with a shape
similar to a stable one. While all these pulses drift with
v ', it was shown [39,40] that nonlinear gradient terms
change drift velocity and pulse shape. With additional
nonlinear terms in their amplitude equation, Levine and
Rappel [41] reported solutions of arbitrary width and ar-
gued that the appearance of selected or arbitrary-width
pulses sensitively depends on the coefFicients in their
equation. These simple amplitude-equation models have
been very useful in providing a language to express cer-
tain aspects of the real LTW states. But they do not
seem to be the appropriate theoretical framework for an
explanation and a quantitative description of the physi-
cal phenomena appearing in the spatiotemporal behavior
of LTW's.

Niemela et al. [6] observed nominally the same
LTW states with selected width for @ = —0.08 in annular
channels as well as in straight channels with end walls.
Their top-view shadowgraph intensity profiles seen with
vertical illumination were similar to analytical pulse pro-
files of [37,38]. The LTW's in the annular channel came
to rest after a transient drift with a positive or nega-
tive drift velocity that was small compared to the phase
velocity v„ofthe roll structure. Furthermore, LTW's
were generated [16,17] in finite, straight channels that
rested in the middle and not near an end wall. Note that
LTW's touching a lateral end wall change their structure
slightly but their &equency strongly. For more details,
see [17]. Anderson and Behringer [7,8] found LTW's of
selected width above r, in an annular cell. They also
observed complex, transient, long-time behavior in their
convection cells. With a photochromic technique, simi-
lar to the method of Moses and Steinberg [48,49], Katoh
and Sawada [18] investigated the Lagrangian motion of
a contaminant in LTW's of selected width in an annular
channel.

Reference [42] then determined LTW states of the full
2D hydrodynamic field equations for @ = —0.25 and
@ = —0.08 and ethanol-water parameters for one value
r of the reduced Rayleigh number, each in good agree-
ment with the experiments [4—6,9]. The LTW's exhib-
ited a strong similarity in their structure and their in-
trinsic mechanisms. Their group velocities were very
small, vg « vz, but finite and positive. The struc-
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ture of the concentration Geld showed that the LTW's
were definitely not weakly nonlinear structures the con-
centration Peclet number was of the order of 1000.
(Whether LTW's at smaller Soret coupling strength ob-
served [17,19,20] in small rectangular cells are weakly
nonlinear depends again on the structure of the concen-
tration field or the size of the Peclet number. ) A time-
averaged circulation and redistribution of concentration
over the entire extension of the LTW states was found
[42]. It was related to the lateral mean concentration
current in extended TW's [50,51]. The infiuence of the
concentration current and the time-averaged concentra-
tion field via the time-averaged local buoyancy force on
the group velocity vg of the LTW states was discussed
[42,26]. The connection of the stability of the LTW
states for g = —0.08 above r „with the finite peri-
odicity length of the system and the convective nature
of the instability of the conductive state was mentioned;
see also [21,22,52,53]. A comparison for @ = —0.25 [9]
and for g = —0.08 [10] showed quantitative agreeinent
in the lateral structure of the numerically calculated [42]
and the experimentally measured top-view shadowgraph
intensity profiles of LTW's. Winkler and Kolodner [23]
also discussed side-view shadowgraph intensities of a kind
of transient LTW structure in a finite, rectangular cell.
However, quantitative extraction of the LTW concentra-
tion Geld from experimental shadowgraphs, being more
difficult than for extended TW's [23], has not yet been
reported.

Kolodner [11] observed, in a thermally and geomet-
rically more homogeneous [11] annular channel, that
LTW's at @ = —0.08 have the predicted [42] small but
finite drift velocity. Furthermore, he found [10] that
vg increases with r and is mostly positive, i.e. , in the
same direction as v„. Such an r dependence was also
seen by Ahlers [16] for slowly decelerating transients. At
g = —0.123, LTW's at the lower end of the r band of
LTW stability had negative drift velocity [10]. Kolodner
[10] used this fact to investigate the collision of LTW's.
He found [12] different interaction behavior than that re-
ported by Brand and Deissler [40] for coupled fifth-order
amplitude equations. Yahata [43] calculated and ana-
lyzed, with a 2D MAC inethod [54], LTW's for the pa-
rameters of Katoh and Sawada [18], i.e. , @ = —0.12, in a
finite cell with rigid lateral boundaries. His LTW s touch
a lateral wall with their leading &ont. Various snapshots
reveal a structure, also for the concentration field, that is
similar to that of the drifting pulses of Ref. [42], despite
the different lateral bound. ary conditions.

Riecke [44,45] developed a kind of amplitude-equation
system that describes a LTW not by just; one single com-
plex amplitude. He used an expansion for small Lewis
numbers and found analytically, for idealized permeable
boundary conditions, that he needed, in addition to the
critical mode, an x-independent concentration mode that
enters into the effective local Rayleigh number. The
model of Cross [55—57] for counterpropagating TW's was
thereby extended &om four to five coupled partial difFer-
ential equations. Compared to the pulse of Thual and
Fauve [28,29], the critical mode is practically unaffected,
but the drift velocity of the pulse is strongly reduced

[44,45]. The behavior of the concentration mode shows
similarities [44] to the time-averaged concentration field
obtained in the simulations of Ref. [42].

For a detailed discussion of the most recent develop-
ments concerning numerical solutions of the full Geld
equations [27] and experiments [14,15], we refer the
reader to the main part, of this work; in particular,
Secs. IV and V where our results are presented in quan-
titative comparison with recent, experiments. Our work
is organized as follows. In the accompanying paper [46],
we investigate spatially extended convection as the basis
for understanding the more complicated LTW structures.
Section II describes the system we study. In Sec. III,
the common structure of LTW states is discussed, espe-
cially focusing on the concentration field, its influence on
the buoyancy balance, and the transport properties of
LTW's. A comparison with extended TW convection is
given. In Sec. IV, we discuss bifurcation behavior and
the structural dynamics of narrow LTW's for v/r = —0.08.
Section V investigates the dynamics and the more com-
plicated bifurcation behavior of LTW's for g = —0.25,
including Gnite-size effects. Special emphasis is given to
the selection of the width of these states. A detailed
comparison with recent experiments is presented. The
conclusion in Sec. VI lists our main results on strongly
nonlinear LTW states.

II. THE SYSTEM

We consider a horizontal layer of a binary fluid mix-
ture like alcohol-water under a homogeneous gravita-
tional Geld, I = —ge„that is directed downwards. A
positive temperature difFerence LT between the lower
and upper confining boundaries is imposed externally,
e.g. , via high-thermal-conductivity plates in experiments.
Some of the unscaled quantities are underlined for dis-
tinction from the scaled ones. Here, we consider convec-
tion in the form of straight, parallel rolls, as seen in many
experiments. Ignoring variations along the roll axes, we
investigate 2D convection in an x-z plane perpendicu-
lar to the axes described by the balance equations for
mass, heat, concentration, and momentum in Oberbeck-
Boussinesq approximation [58—61] as documented in [46,
Eqs. (2.1)—(2.4)]. Lengths are scaled with the height
d of the layer, time with the vertical thermal diffu-
sion time d2/r, and the velocity field u = (u, O, io) by
r/d Here, r. is the .thermal difFusivity of the mixture.
bT = (T —To)/b, T denotes the deviation of the temper-
ature from the mean temperature To in the fluid, scaled
by the temperature difference between the plates. The
field bC = (C —Co)P/(nAT) is the scaled deviation of
the concentration C &om its mean Co. The thermal ex-
pansion coefIicient o; and the solutal expansion coefIicient
P of the fluid come from a linear equation of state of the
mass density p = p [1—n(T —To) —P(C —Co)] for small
deviations from the mean values To and Co.

Assuming the fluid to be incompressible the veloc-
ity Geld u is divergence-&ee. The reduced. heat cur-
rent Q consists of the convective part uST and the dif-
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fusive part V—'bT. In the reduced concentration cur-
rent J = ubC —LV'(bC —@bT) the difFusive part is

L—V (bC g—bT). Here, we suppress the convective trans-
port uEp of the mean quantity Fp, since it drops out in
the balance equations. The Lewis number I = —is the
ratio of the concentration difFusivity D to the thermal
diffusivity r, and the Prandtl number cr = —is the ratio
of the momentum difFusivity v and K. For room tempera-
tures (10 C—40 C), the Prandtl number of ethanol-water
mixtures lies between 5 and 20 [62]. The Lewis num-
bers are around 0.01. All our LTW calculations were
done for L = 0.01 and o = 10. The Rayleigh number
R = g" AT and the separation ratio @ = —~ &~ are—0
considered to be control parameters that can be varied
independently. B measures the externally imposed ther-
mal stress. The Soret coupling g between temperature
and concentration, into which enters the thermodifFusion
ratio kz of the mixture, reflects the influence of tem-
perature gradients on the concentration Geld. For room
teinperature ethanol-water mixtures, @ values between
about —0.5 and +0.2 can be easily realized experimen-
tally [62].

The buoyancy force (p —p )g due to density devia-—0
tions from the mean is the driving mechanism for con-
vective motion. It enters into the momentum balance [46,
Eq. (2.4)] via the buoyancy term B = OR(bT + bC)e, .
Taking the divergence of the momentum equation [46,
Eq. (2.4)], one gets, via the continuity equation, a Poisson
equation [46, Eq. (2.8)] for the pressure p which builds to-
gether with [46, Eqs. (2.2)—(2.4)] a coinplete set of equa-
tions for the fields u, bT, bC, and p.

The horizontal boundaries of the layer, which we shall
call plates for shortness, are at z = 0, 1. The lateral
boundaries are at x = 0, I". The plates are rigid for the
fluid, and perfect heat conductors, so that the temper-
ature of the fluid at z = 0, 1 is constant and laterally
homogeneous. The plates are impermeable to the fluid,
so there is no concentration current through the plates:
J . e, = 0 or B,bC = v/jg, bT at z = 0, 1. These no-
slip impermeable (NSI) boundary conditions have to be
contrasted with the idealized free-slip permeable (FSP)
boundary conditions that are suited for expanding the
fields in trigonometric functions and that are often used
in theoretical approaches. However, since the latter allow
vertical concentration transport through the plates, they
probably misrepresent the delicate concentration balance
of LTW states.

In lateral direction, all Gelds E = u, m, T, C, p are peri-
odic with a given lateral periodicity length I': I" (x, z; t) =
P(x + I', z;t). Since the pressure p is determined via
the Poisson equation by u, bT, and bC, we do not need
boundary conditions for it. Here, we report the results
of calculations done in periodicity intervals of I' = 20
and 40. To integrate the partial differential equations
we used a modification of the sor.A code that is based
on the MAC method [63—66]. This is a finite-difFerences
method of second order in space on staggered grids for the
diferent fields, with an explicit first-order Euler step in
time. The pressure field was iteratively calculated from
the Poisson equation using the artificial viscosity method
[66]. Calculations were done with uniform spatial reso-

lution Ax = Az = 0.05 on a Cray supercomputer. For
more details, see [27].

The conductive state u g
——0; bT g ——

2
—z, and

b C, „g= g ( 2
—z), is globally stable for small ther-

mal stress. It describes vertical heat diffusion through
the layer without convective motion. The heat cur-
rent is Q, g = e, . The constant temperature gradi-
ent induces a vertical concentration gradient given by
—vP which enforces the concentration current to van-
ish: J g

——0. The concentration stratification causes
a modification by the factor (1 + @) in the buoyancy
B, g = crR (1+g) (2 —z) e„relative to the thermal
part. So, depending on the sign of the Soret coupling,
the Soret effect enhances or depresses the buoyancy.

To describe convection, we use the velocity field, in
particular the vertical component m and the deviations
from the conductive state: 0 = bT —bT, d, c = bC—
bC~~~g, b = B —B,~~g ——be, and b = 0+ c. A global
measure of convection is N —1, where the Nusselt number
K =

& f dxQ, is the total vertical heat current through

the fluid layer, f d2:Q„reduced by the conductive part,
r

fo dxQ«~d = I . In our scaling, Q«„q= 1.r

The stability properties of the conductive state against
infinitesimal convective perturbations [67—70] are sum-
marized for ethanol-water parameters, I = 0.01 and
o = 10, in [46, Fig. 1] as a function of @ for the
experimentally accessible g range. We use the scaled
Rayleigh number r = &, that is reduced by the critical

e

Rayleigh number B, for onset of convection in a pure
Quid with the critical wave number k . The analytical
values are B = 1707.762 and k = 3.11632. In the
Gnite-differences approximation of the Geld equations of
our MAc algorithm, however, the threshold for onset of
pure-fluid convection [71] lies at R, = 1686(+0.2%%uo) for
Lx = Az =

2p with which we scale our Rayleigh num-
bers here.

III. LOCALIZED TRAVELING-WAVE STATES

In this section, we discuss common properties of LTW's
that we have obtained for a weaker Soret coupling of
g = —0.08 and a stronger one of @ = —0.25 as stable
solutions of the 2D hydrodynamic field equations in a
vertical cross section perpendicular to the roll axes. In
fact, experiments so far seem to suggest that the proxim-
ity of walls in narrow convection channels which orient
the axes of the convection rolls perpendicular to the walls
and parallel to each other thus enforcing a configura-
tion we are simulating —is necessary to stabilize spatially
localized traveling convection rolls [24].

In Fig. 1, we show in the bifurcation diagrams of fre-
quency and maximum flow velocity versus Rayleigh num-
ber the location of our LTW attractors by open circles
in comparison with the attractors of extended TW states
(full circles) and of extended SOC states (full squares).
For better comparison, the reduced Rayleigh numbers
are shown relative to the respective oscillatory convec-
tion thresholds r, . For the stronger Soret coupling
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—0.25, the LTW's are subcritical with respect to
r, , and they compete with extended TW states and
the stable quiescent conductive state. For the weaker
coupling Q = —0.08, LTW's lie above r, in a regime of
Rayleigh numbers where the conductive state is only con-
vectively unstable [68,70] but not yet absolutely unsta-
ble. Here, the competing extended state attractor is not
TW convection but SOC convection for g = —0.08,
the band of stable LTW's lies above the transition r*
where stable extended nonlinear TW's cease to exist and
SOC states become stable [46].

Despite these differences —the states at g = —0.08
and —0.25 are discussed in detail in Secs. IV and V, re-
spectively —the LTW's display similar physical proper-
ties to be discussed in this section, e.g. , a nontrivial spa-
tiotemporal symmetry. We compare the Geld structure of
our LTW's in the x-z plane perpendicular to the roll axes
with each other and with extended TW states. Further-
more, we elucidate the eÃect of the large-scale, current-
induced concentration redistribution on the buoyancy
profile of the LTW and its consequences.

0.4
I

0.2s
3

0

A. Structure

Here we first briefly review and then expand our results
[42,26,27] on the structure of LTW's. While they differ
in spatial extent and somewhat less in frequency, group
velocity, and convection intensity, they exhibit similar
structure and behavior.

Eields

If one considers LTW's to consist of three characteris-
tic parts a leading front, a central part, and a trailing
front, relative to the propagation direction of the TW
phase —then one can roughly say that all our LTW's
differ only in the extent of their central part. Struc-
tural properties at the leading front seem to be universal.
The trailing fronts of the LTW states also resemble each
other, but the field structure there is distinctly differ-
ent from the leading front. These features can be seen in
Fig. 2, where narrow LTW's at g = —0.25 and g = —0.08
with different widths are shown next to each other. In
fact, the structural properties at the leading and trailing
fronts, respectively, of the two different LTW's agree with
each other even in detail. This is documented in Fig. 2,
where we compare (a) the shape of the wavelength vari-
ation A(x), (b) the vertical velocity field t//(x, z = 0.5),
(c) the streamlines of the large-scale mean concentration
current, and (d) the lateral profiles of the time-averaged
convective temperature (8), concentration (c), and buoy-
ancy force (5) = (c+ 0), to be discussed further below.
For a more detailed presentation of the structure of the
various fields, see [42,26,27].

The top-view shadowgraph intensity distributions

D

x
E

'P = —0.25

G)
D

CL
E 0

COND

—0.10 —0.05
r —r

OSC

FIG. 1. Localized and extended convective states in
ethanol-water mixtures (L = 0.01, o = 10) in the bifurcation
diagrams of frequency u and of maximal vertical How veloc-
ity m vs Rayleigh number for two different separation ra-
tios g. Symbols represent numerically obtained stable states.
Curves are Htted splines to guide the eye. Schematic dashed
curves for unstable lower branches show the bifurcation topol-
ogy of TW's [79] and of SOC's [80]. For V'/ = —0.08 (—0.25)
the oscillatory bifurcation threshold is at r „=1.0965
(1.3347); Hopf frequency u1// = 5.753 (11.235); TW saddle
rY~ 1.06 (1.215); transition TWE-ASSOC r' 1.09 (1.65).
Properties of the LTW states X, Y, Z and Dq, E, Aq, B, I"
shown here are listed in Tables I and II and are discussed
in Secs. IV and V, respectively.

1

I(x) = A dzB (bC + bbT)
0

(3 1)

bE(x, z;t) = bE(x, z;t+~), (3.2)

with v" being the oscillation period of the LTW in its rest
frame Z. Remarkably enough, our LTW states display
an additional nontrivial spatiotemporal symmetry

'V 'V

bE(x, z; t) = +bE'
~

x, 1 —z; t + —
[

with + for u and p and —for m, bT, bC, and B. This
syinmetry (3.3) of LTW's is the analog of the symmetry
[46, Eq. (3.16)] of extended TW's.

of LTW's obtained in recent experiments [9,10,15] show
structural properties [72] that agree nicely with our pre-
dictions for the LTW fields bC and bT entering into (3.1).
A is a constant and 6 = —0.919 with our parameters for
a real mixture [73,62].

After transients have died out, all our LTW's drift with
a Gnite but small group velocity vg forwards, i.e. , into
the propagation direction of the phase of its TW con-
stituents, while the width E remains constant. In the
coordinate system Z comoving with the center of mass
velocity vg, the LTW fields are periodic in time:
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2. LTW versus TW

3.0'.-

2.5
08

2.0.

The fields in the center of LTW states have a sim-
i ar structure to that in extended TW states. This is
demonstrated in Fi
and a TW

e in Fig. 3, where we compare a LTW t ta sac
10 = —0

state for the same parameters L = 0.01,
—0.25, and r = 1.246. The TW state is the

S = . )0

one of [46, Fi . 3(b)]. he hig. ~ ~~; ere, however, presented as mov-
ing to the left like the LTW. The LTW is the one of

ig. 2 (left column), but presented at a difFerent time,
so t at t e node positions in Figs. 2 and 3 d'fI'

t an the TW frequency uT~ —2.2. Furthermore, the
LTW wavelength [left column of Fig. 2(a)] varies later-

ally [42,9,17,10,15] and is about A = 1.8 in the
part near x =

in t e center

in the extended state. Nevertheless, the LTW structure
in t e center is very similar to that of the TW. Com-
pare, e.g. , the color-coded concentration fields with their

side-view shadowgraph intensity distributions in the re-

LTW is bigger than that of the TW, the concentration
contrast between adjacent rolls is significantly higher in

of th
the former than in the latter state. The wavelen th [72]e eng

umnofFi. 2a
he LTW increases towards the leadin front 1 f

umn o ig. 2(a)] and with it the local phase velocit .
The increase of v als

p ase ve ocity.

46 the
so causes, for reasons explained

'

[ ], concentration contrast betwee d t
in

een a jacent ro s
to increase —see the lateral LTW concentration fil

ig. . Thus the mean lateral concentration current is
a so increased.

B. Buoyancy balance and the large-scale
current-xnduced concentration redistribution
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Analyzing the balance of buoyancy forces that drive
convection is central to understandin th

's. So in this section we demonstrate how the dis-
tribution of the mean concent t dra ion averaged over one
oscillation period of the LTW) that is associated with ag, &ose~, mean concentration current circulat-
ing over the whole LTW state infIuences the local efI'ec-

ive driving force for convection.

Time averages

We average over one oscillation period w = —of the
LTW. Since the spatial variation of the wave number, to-

group ve ocity, causes
a small ambiguity in the definition of the frequency in
t e laboratory system, we always define u in the center
of the LTW state. The average

(3.4)

x (d) x (d)

FIG. 2.
left co

. 2. omparison of the narrow LTW A for vp = —0.25

Both are
e column), and the LTW X for g = —0 08 (

'
h(rig t column).

o are presented as traveling to th l ft ~ ~ W
(z) in the center part of the LTW mith sufhcient convec-

tive intensity. A~x~~= v

frequency u and the phase velocity v~(a) of the nodes of the
vertical velocity Geld at z = 0.5 in the f
th d'

xn e rame comoving with
e rj.ft velocit of the Lf y TW and was checked against the

node distances. ~b~~S( ) napshot (thin line) and envelope (thick
line) of vertical velocity field to(x s = 0.5) ( )x, z = . j. ~c~ Streamlines of

e iine-averaged concentration current (J). (d) Lx)ateral pro-

Geld e an
ra ure e ~ ~, concentration

c ~ at z = 0.25.
r resolution, the right column for g = —0.08 shams

2ui in (b) and 3 (8), 3 (c), and 3 (c+ 8) in (d). Profiles st
s = 0.75 are related by the symmetry (3.6).

(3.5)

Because of ~3.3~ these averaged fields are stationary and
show the symmetry

bE x, z = + bE x, l —z (3.6)

with + for u and p and —for m, bT, bt, and H.
In the center part of the LTW, as in an extended TW,

— verage vertica tempera-convection reduces the time-avera d t
ure and the concentration gradient in the bulk of the

acts like a low-pass filter that only the slowly varying
parts of the fields can pass. The fields (3.4) are not con-
stant in time. But, since v « v thv„, ey are very similar
to the properly averaged fields in the system Z comoving
with the LTW's group velocity
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Huid layer. Figure 2(d) presents evidence for this con-
vectively induced fIattening of the vertical field profiles
in the pulse centers: in the lower warm and alcohol poor
region of the layer, say, at z = 0.25 one has (9) ( 0 and
(c) ) 0, while in the upper cold and alcohol rich region
of the layer, the reverse holds, according to (3.6). Figure
3, third row, shows the convective homogenization of the
mean concentration by the green color in the center part
of the LTW as compared to the strong vertical gradient
in the surrounding quiescent conductive regions.

2. Buoyancy force profiles

The above described convection-induced vertical con-
centration redistribution enhances the mean buoyancy
force (b) = (c+ 0) [cf. Fig. 2(d)] relative to that in
the conductive region, while the convective temperature
equilibration in the bulk of the layer has the opposite
effect of weakening (b). Note that a positive (negative)
(b) in the lower (upper) half of the Huid layer implies an
enhancement of the force (b) e in upwards (downwards)
direction.

It is obvious from Fig. 2(d) that the convection-induced
mean buoyancy proHle (b) of the LTW is dominated by
the concentration contribution. Furthermore, since the
temperature pulse is significantly smaller than the con-
centration pulse [cf. Fig. 2(d)] one observes that (i) far
outside the center part of the LTW, where (8) vanishes,
it is the concentration distribution (c) alone that deter-
mines the buoyancy (b), and (ii) the combination (c+ 0)
is largest right under the two fronts [cf. the extrema in
Fig. 2(d)]. This increase of the local buoyancy force (b)
right under the leading and trailing &onts stabilizes the
LTW at both fronts against an invasion of the surround-
ing conductive state. On the other hand, ahead of the
leading front, the concentration distribution is such as to
weaken the buoyancy —the negative dip in (c) and (b) lo-
cated at x = —4.5 in the left LTW of Fig. 2(d) implies in
the lower half of the fIuid layer a depression of the concen-
tration and of the upwards buoyancy force relative to the
conductive state. By symmetry, (c) and (b) are positive
in the upper half, thus depressing the downwards buoy-
ancy. The concentration depression in the lower half of
the layer ahead of the front at x —4.5 can also be
seen in the snapshot of the ITW concentration field in
the fourth row of Fig. 3(a). The large, red, upwards-
bending bulge refIects a concentration-depressed region
that contains less alcohol than in the conductive state.
Half a period later, one would observe a correspondingly
shaped blue bulge at x —4.5 in the upper half of the
layer with alcohol concentration above the conductive
reference level. This peculiar concentration distribution
ahead of the leading LTW front acts like a "barrier. "
By reducing the local buoyancy force there, it stabilizes
the conductive region ahead of it against the invasion of
convection located behind it.

To conclude, the vertical profile of the time-averaged
concentration "barrier" ahead of the leading &ont shows
a surplus, (c) ) 0, in the upper half of the layer and sym-
metrically a depletion, (c) ( 0, in the lower half relative

to the conductive concentration distribution. So in the
"barrier" the vertical concentration gradient is enhanced.

8. Mean concentration current

(J) = IB (hC) e— at z=0, 1, (3.8)

which transports concentration out of the conductive re-
gion into the LTW at the upper plate and vice versa at
the lower plate. This increases slightly the primary con-
centration circulation at the trailing &ont; see the small
dents in the outer concentration streamlines. But at the
leading &ont this diffusive effect counteracts the primary
concentration current and generates the two small sec-
ondary countercirculating current loops [solid lines in
Fig. 2(c)] under the leading front. Spurs of very low
intensity of the primary, left-turning concentration cir-
culation, that reach into the conductive region, are not
resolved in our plot.

Concentration current and drift velocity

All in all, the time-averaged concentration current sus-
tains a small concentration surplus in the upper half of
the layer ahead of the leading &ont and a small concen-

The presence of this concentration "barrier" ahead of
the leading front can be related to the existence of a
strong mean circulating concentration current

(J) = (uhC) —IV' (bC —@bT) . (3.7)

Its streamlines are shown in Fig. 2(c) and in the third row
of Fig. 3(a). The origin of this current is the phase shift
between the concentration field and the velocity field in
the center part of the LTW. This shift leads, as in ex-
tended TW's [46], to a strong time-averaged concentra-
tion current in the center of the LTW. In the upper half
of the layer, (J) Hows parallel to the phase velocity of the
LTW, i.e., here to the left, and vice versa in the lower
half of the layer. So (J) has nearly horizontal streamlines
in the central part of the LTW. On the other hand, there
is almost no concentration current in the conductive area
surrounding the LTW. Hence the two currents that fIow

oppositely to each other in the center part of the LTW
bend over vertically, thus forming a large-scale, closed
circulation loop [dashed lines in Fig. 2(c)] extending over
the whole LTW. The horizontal currents in the center
part are convective, while the vertical currents are partly
diffusive.

In addition to the large-scale concentration current
that circulates counterclockwise along the dashed stream-
lines in Fig. 2(c), there are two small, secondary loops
with clockwise circulation under the leading front. They
are caused by the strong convective reduction (increase)
of the mean concentration (hC) in the center part of the
LTW in the upper (lower) half of the Huid layer relative
to the surrounding conductive state. Near the plates,
where diffusion dominates, the resulting lateral concen-
tration gradients drive a lateral diffusive current
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tration deficiency in the lower half of the layer, as com-
pared to the conductive state, which reduces the buoy-
ancy force there. This current-induced "barrier" seems to
be the reason why the LTW drifts with a much smaller
group velocity vg than the phase velocity of the rolls.
This explanation is supported by the experimental and
numerical fact that vg increases as the phase velocity, i.e. ,
the LTW frequency decreases with growing r: As u de-
creases, so does the mean concentration current, cf. [46,
Fig. 8]. Thus the concentration redistribution forming
the "barrier" and its "braking" efFect becomes weaker.
Also, the experimentally observed [11,10,12,14,15] reduc-
tion of vg even below zero for smaller r, i.e. , larger w, fits
into this picture: For larger u, the concentration-current-
induced, buoyancy-reducing vertical concentration gra-
dient ahead of the leading front becomes so strong that
convection cannot penetrate into the conductive state at
the leading front and is even for sufIiciently large w

(small r) pushed back by the expanding conductive
state, so that the LTW drifts backwards (see also the
discussion in Sec. IV A).

S. Eur th,e~ m, ean transpov t

(a) Mean heat transport. The phase diff'erence be
tween temperature wave and velocity wave causes a time-
averaged lateral heat current (Q ) in the center part of
the LTW as discussed in Sec. IIIE for extended TW's.
But, since there is also a large mean vertical heat cur-
rent (Q, ), heat is transported mainly upwards. The lat-
eral heat current (Q ) only leads to a lateral bending of
the streamlines of (Q) and also of the mean convective
heat current (Q) —Q, g in the center part of the LTW.
All in all, the time-averaged heat current (Q) has, with
its open, nearly vertical streamlines, a strongly difI'erent
structure than the concentration current (J). In partic-
ular, there is no circulation of heat.

(6) Mean going While extended TW's do generate
a small lateral mean flow (Sec. III E), its LTW analog
would drive a kind of circulating Poiseuille fIow in the
conductive region surrounding the convective part of the
LTW state in annular geometry. The symmetry (3.6)
only yields the information that, in the system Z comov-
ing with the group velocity vg of the LTW,

(u) (T", z) = + (u) (x, 1 —z) (3.9)

and

(3.10)

For our calculation accuracy, the MAc algorithm shows
an extremely small lateral mean Bow of the order of 10
remember that the mean Bow in extended TW states is of
the order of 10 [51,46,74]. We cannot exclude a physi-
cal origin for the mean fIow in the LTW's, but we suppose
that it is a numerical artifact, which has its source in the
iterative adjustment of the velocity fields and the pres-
sure to each other. In this procedure, incompressibility
of the Quid is guaranteed only within a given accuracy
limit.

C. Other theoretical work

Recently, pulse solutions [28,40,31,32,37,41,38,1] have
been found in amplitude equation models containing un-
systematically some fifth-order terms. However, these
models should not be expected to yield a full, realis-
tic description of the structure and dynamics of LTW
fields in binary mixtures, since one common ampli-
tude A(z, t) for all fields multiplying a harmonic wave
e'~" ' ~ cannot represent the fields appropriately—
TW's and LTW's, being strongly nonlinear states, dif-
fer significantly from linear convective plane-wave per-
turbations. Furthermore, the concentration Geld, with
its nonharmonic structure that difI'ers dramatically from
the temperature and velocity Gelds, controls the buoy-
ancy dynamics described in the previous section. Thus,
approaches using single-mode amplitude models fail to
incorporate the LTW dynamics related to the large-
scale concentration redistribution. Indeed, this seems
to be one reason for the fact that the pulses of sim-
ple amplitude-equation models have a fast group veloc-
ity, comparable in magnitude with their phase veloc-
ity. Such equations, when enlarged [44,45] to contain a
mean concentration mode in an idealized way, i.e., under
FSP conditions, show a concentration redistribution ef-
fect and thus a slowing down of the group velocity. This
seems to be in line with our earlier explanation [42] that
the concentration redistribution in real LTW s, described
above, leads to a stabilization of the conductive (convec-
tive) region at the leading (trailing) edge against pene-
tration of convection (conduction). The propagation of
the two fronts separating the two regions is thereby hin-
dered. Derivation of a model for realistic, impermeable
boundary conditions that would ensure an appropriate
concentration balance without allowing leakage through
the plates and more quantitative tests of its results would
be very useful to assess its validity and predictive power.

Considerations of concentration currents [75,2] and
speculations on a concentration redistribution [50,76] in
connection with lateral concentration currents [77,50]
have been presented earlier.

IV. NARROW LTW PULSES AT Q = —0.08

In this section, we discuss bifurcation behavior, gener-
ation, stability, and decay of LTW's for @ = —0.08. We
start with this g because the LTW properties are simpler
here than for g = —0.25. In experiments [6,13,10,15],
only LTW states of selected small width, like the state X
on the right side of Fig. 2, have been found for @ around
—0.08. We get the same result with our simulations.

A. Bifurcation properties compared to experiments

For the Rayleigh numbers r~ ——1.104, r& ——1.106,
and rz ——1.109 above r, where we performed calcu-
lations, we found only narrow LTW pulses (Fig. 4 and
Table I). One of them, namely, A has been described in
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[42,26]. They compete with stable extended SOC states—here r' lies below r „,cf. [46, Fig. 9]. We have not
systematically determined the basin of attraction of these
difI'erent stable states by varying initial conditions. For
r = 1.099 and 1.102 below r~ and for r = 1.111 above
r~, LTW's were unstable in a characteristic manner. So
we find stable LTW states in an r interval which is larger
than 0.005 but smaller than 0.009. In experiments, this
r band is about 0.02, i.e. , at least twice as big. Our LTW
band lies clearly above r, , cf. Fig. 1. This also holds for
the experimental LTW's [10] for g = —0.072. Niemela et
al. [6] have observed in their experiments for g = —0.08
and Kolodner [10] for g = —0.102 that the LTW band
also reaches somewhat into the "subcritical" region be-
low r„.For g = —0.123, the experimental LTW band
[10] lies substantially below r „andreaches only some-
what into the "supercritical" region above r„.The be-
havior at g = —0.127 [15) is nearly identical to that at
@ = —0.123.

The maximal Qow amplitude m of our LTW's
[Fig. 4(b)] increases by about 20% in the LTW band.
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FIG. 4. r dependence of narrow LTW states at vP = —0.08.
(a) Frequency t5, (b) maximum tv of the vertical velocity
field, (c) width f, defined by FWHM of intensity envelope of
vertical velocity field m at midheight of the layer, and (d)
group velocity vg. See also Table l.

TABLE I. LTW states for @ = —0.08, L = 0.0l, cr = 10.
The LTW state X was already presented in [42,26].

State [[

l
AX

Vg

x
1.104

20

0.0137
2.75
2.29
4.8
1.40

0.052

1.106
20

0.0155
2.98
2.02
4.9
1.42

0.066

1.109
20

0.0173
3.15
1.55
5.0
1.44

0.083

At the lower band end, iv reaches about 75% of the
competing SOC flow amplitude and at the upper end
about 82%. The experiments for @ = —0.123 also show
an increase with r. But the amplitude variation in the
experiments seems to be much stronger than in our calcu-
lations since the maximal amplitude of the experimental
shadowgraph signal doubles [10, Fig. 17(a)].

We define the width S of our pulses by the full width at
half maximum (FWHM) of the intensity envelope of the
vertical velocity field ur at midheight of the Quid layer.
The similarly determined width of the shadowgraph in-
tensity envelope I(x) obtained froin (3.1) is for our states
with vP = —0.08 slightly smaller than f by about 0.3. The
main reason for this difFerence is the second derivative of
the concentration field that enters into I(x): whereas the
LTW of the concentration field is broader than the LTW
of the temperature Geld which itself is broader than that
of the velocity field (cf. the profiles of iv, (0), and (c) in
Fig. 2 or in [42]; for more details see [27]), this is not the
case for the second derivatives, since the concentration
Beld is much smoother at the fronts than in the center of
the LTW. Note that an experimentally determined LTW
width E „qmeasures the FWHM of the shadowgraph in-
tensity I(x), where a low-pass filter is sometimes used;
this procedure reduces the influence of the concentration
field [73]. As an aside we mention that the width of the
pure temperature contribution to I(x) is here and also
for the LTW states with @ = —0.25 nearly identical to E.
Figure 4(c) shows that E is nearly constant, exhibiting a
small increase 5% with r. The LTW's of Niemela et al.
[6] for @ = —0.08 also show a constant width within the
experimental accuracy. An inspection of [10, Fig. 17(b)]
and [15, Figs. 5 and 32] also seems to suggest a constant
or slightly increasing width with r for Kolodner s exper-
iments at g = —0.123 and —0.127. The widths of these
experimental pulses seem to be of the same magnitude
as our numerical pulses at @ = —0.08. But the r band
of experimentally stable narrow LTW's at g = —0.127
[15, Figs. 5 and 32] is considerably wider than of the
numerical pulses at @ = —0.08.

The group velocity vg [Fig. 4(d)] of the numerical
pulses is small and grows sublinearly. This agrees with
experiments [10]. Our group velocities are positive, i.e. ,
parallel to the phase velocity, as in the experimental mix-
tures with g = —0.072 and Q = —0.101. For g = —0.123,
Kolodner reports a small r region of negative group veloc-
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ity. The numerical vg at @ = —0.08 lies slightly above the
experimental one at @ = —0.072 [10, Fig. 11]. Indeed, for
the smaller r values, the experimental vg reaches down
to zero. But, all in all, experiment and simulation show
group velocities which have the same order of magnitude.

Kolodner [11,10] explains the pinning of LTW pulses
in earlier experiments, i.e., the reduction of vg to zero,
with too large spatial variations of the local Rayleigh
number in the experimental cell. But also those con-
vection cells in which pulses do travel still have small
inhomogeneities [10] which might explain part of the dif-
ferences in the group velocity between simulation and ex-
periment. Furthermore, experiments in narrow annular
channels observe 3D LTW convection which is infIuenced
by the radial sidewalls, whereas the calculation simulates
truly 2D convection.

Finally, there are also difI'erences in the experimen-
tal and numerical Lewis and Prandtl numbers, e.g. , in
experiments, L is mostly smaller than 0.01. It is tempt-
ing to speculate about the consequences of the smaller
I in experiments. (i) It will cause a larger concentra-
tion contrast in the TW pattern, thus a larger oscillation
frequency, thereby a larger mean horizontal concentra-
tion current, and a larger concentration redistribution.
(ii) Diffusion being reduced, the concentration "barrier"
ahead of the pulse described in Sec. IIIB3 will tend to
be stronger. While both efI'ects have the tendency to
slow down the pulse, we do not know whether their mag-
nitude can explain quantitatively the difference between
the faster numerical drift and the slower experimental
one.

The LTW frequency ~ [Fig. 4(a)] in the comoving
kame Z was determined unambiguously from one-half
the frequency of the Nusselt number. The latter oscil-
lates slightly because convection rolls are created under
the trailing front and annihilated under the leading front.
The LTW frequency decreases strongly with growing r.
Such an r dependence has also been observed [17] for
LTW states resting in the middle of small rectangular
cells and very recently [15, Fig. 1(b)] for drifting pulses
in an annular channel at @ = —0.127. Note that the in-
crease of vg and the reduction of u with r lead to a yet
stronger decrease of the ratio of phase velocity to group
velocity from 13.5 for state X to 6.5 for state Z.

B. Vfhy LTD's are stable above v,

Our LTW's for g = —0.08 and many experimen-
tal LTW's exist above r, in the convectively unstable
regime [68,70]. So spatially confined TW convection sta-
bly coexists with the surrounding conductive state, which
is unstable at r ) r, against extended TW perturba-
tions. To explain this, it has been proposed [16,42,26],
experimentally seen [7,8], and analyzed [21,22] that with
laterally periodic boundaries initially localized distur-
bances of the conductive state, growing as weakly nonlin-
ear structures, move with the fast linear group velocity
into the LTW. They are absorbed in the LTW state and
so do not have enough time to grow to an extended state.
An elegant way to reduce efFectively the time and/or

space that is available for the disturbances to grow before
they are swept into and. absorbed by a LTW is to prepare
[10] more than one LTW in an annular container. Such
a multi-LTW state is stable to higher r values than a
single-LTW state. With the smaller mean travel time or
distance of disturbances before absorption, they do not
reach a dangerous size. See also the experiments and the
discussion of Kaplan and Steinberg [25] of the question of
how LTW's grow unstable at the upper end of the stable
r band for various lengths of (rectangular) cells.

LTW's are stable against weak disturbances, and only
stronger disturbances destroy them [21]. So the reasons
that disturbances do not have enough time to grow are
(i) the conductive state is only convectively but not ab-
solutely unstable, (ii) the group velocity of linear distur-
bances of the conductive state is much larger than that of
the strongly nonlinear LTW, and (iii) the absorption ca-
pabilities of the latter. For further discussions, see Refs.
[21,17,25]. But these arguments do not explain the fixed
width of the LTW pulses, i.e. , why and how the leading
and trailing fronts of the LTW are coupled to have the
same velocity.

C. Generation of LTD's

To generate the first LTW X, we "filled" half of our
system of length I' = 20 with an extended SOC state
and the other half with the conductive state. These ini-
tial conditions evolved at r~ into the LTW state X. To
show that this state is uniquely selected, as we expected
from experiments [6], we proceeded from state X as fol-
lows. We increased the drive to r = 1.145, i.e. , clearly
above the stable LTW band. There, the phase velocity
strongly decreased, and the width of the convective re-
gion rapidly increased. After 50 dift'usion times, it was
about three times as big as at the beginning and nearly
filled the entire system. The frequency was about 8~0
and the wavelength about 2 in the convective area. This
transient solution —which we checked in a difI'erent run
at the fixed r = 1.145 to evolve into a transient slow
TW relaxing towards the stable extended SOC state
was then used as initial configuration for reducing the
drive down to r~. With this reduction, the LTW state
X developed again. Since this time, however, the ini-
tial condition was completely different, we conclude that
there is only one stable LTW available at r~, namely,
the state X.

The transition from the broad and slowly traveling
transient to state X, as shown in Fig. 5, is typical. Af-
ter reduction of r to r~, the velocity, temperature, and
Nusselt number adapted within 1 or 2 difFusion times to
the new r value. We determined an intensity center X(t)
of the velocity field, not to be confused with the state X,
by

f d2:xiU (x, z = 0.5;t)
f dx u) 2 (x, z = 0.5; t )

(4.1)

It travels only slightly during this time. The standard
deviation AX(t) defined via the second moment of tv2,
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f dx x m2(x, z = 0.5; t) (t, (4.2)
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decreases by about 15% during this short time [Fig. 5(d)].
During the next 100 diffusion times, X'(t) traveled with
a group velocity of about 0.07. Since the leading &ont
moved with a velocity of about 0.05 and the trailing front
with about 0.09, the width of the LTW state decreased by
about 10—15%. The phase velocity [see u in Fig. 5(a)]
increased to about 0.14 and got twice as large as the
group velocity [Fig. 5(c)], while the wavelength remained
about 2. During the next 100 difFusion times, the width
halved and N —1 [Fig. 5(b)] decreased by a factor of 3,
while the phase velocity more than doubled. The group
velocity increased further to a maximum value of about
0.13 at t 200. By then, the transient LTW had nearly
reached its end structure. The higher phase velocity has
led to a stronger concentration contrast between adjacent
rolls. The wavelength A now varies already strongly in
the convective region. The maximal upward How ampli-

tude ur has decreased by about 15%.
In the time interval &om 200 to 250, the end state X

was reached. During this time, the width of the state
decreased minimally, but the phase velocity doubled, the
group velocity nearly halved, N —1 further decreased by
about 25%, and tv~ by 10%. Connected with the in-
crease of the phase velocity, the concentration contrast
between adjacent rolls increased again. The transition to
the Anal state happened in a characteristic manner. The
change of the group velocity happened between t = 200
and t = 220. Simultaneously, N(t) —1 and the width
of the state showed a slight "undershooting" under the
value of the stationary LTW, combined. with a sharp de-
crease of the group velocity. It is not clear whether this
"undershooting" is a hint of an oscillatory relaxation into
the stable LTW end state, since, if there are indeed such
oscillations, then they lie within the order of magnitude
of the oscillations generated by the propagation of the
rolls under the front. In any case, we did not observe
such an "undershooting" for @ = —0.25 (cf. Sec. VD.).
Since the velocity of the leading &ont stayed nearly con-
stant during the entire process, the behavior of the width
and also the "undershooting" in the width of the state by
about 5%%uo reflects the time behavior of the trat'ting front.

At the upper end rz of the LTW band, we observed
the selection of the narrow LTW state Z. Starting with a
broad LTW state, we saw qualitatively the same behavior
there as we have just described for the state X. At ry,
we investigated the transition behavior in the LTW band.
Starting from the state L, the system reached the stable
end state Y about 50 diffusion times after the increase of
the drive from r~ to r~, exhibiting a simple relaxation
behavior.

D. Decay of LTW's
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PIG. 5. Time evolution into the LTW X at r = 1.104 and
—0.08. (a) Frequency c5, (b) Nusselt number N —1,

(c) group velocity vs, and (d) standard deviation AA (4.2).
Since frequency data were not recorded in the time interval
between 200 and 220 we show in (a) a linear interpolation
for this interval.

The fate and evolution of LTW's difFers significantly
after crossing the lower or upper stability boundary of
the stable LTW band. We first consider the decay of an
LTW pulse at the lower end of the ITW band. Starting
froxn the state L, we reduced the drive by about 0.002
to r = 1.102, where the LTW state is unstable and de-
cays towards the conductive state. But still being above
r, the conductive state is also unstable. (As an aside,
we mention that, after reduction to r = 1.084 ( r, ,
the system ended in the then stable conductive state al-
though there is also a stable extended TW state cf. [42,
Fig. 1].) Let us now consider the behavior in more detail.
The LTW retains its width up to the time t 60, while
the strength of convection decreases by about 30%. The
group velocity decreases to about 0.03, which we would
extrapolate f'rom Fig. 4(d) for a LTW at this r value.
Over the next 20 difFusion times, convection nearly dies
out. But with the conductive state being unstable, con-
vection starts to grow again, predominantly at the lead-
ing &ont, and there is an interplay between decay of the
LTW and growing extended convection. Now the con-
centration Geld no longer has the trapezoidal structure,
but is nearly harmonic, like the temperature and velocity
fields. At t = 90, an extended transient TW has devel-
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oped with strong amplitude modulation. The strength of
the modulation decays fast—for a more detailed descrip-
tion, see [27, Chap. 8.2.2.2]. At t 150, the amplitude of
the transient TW is still very small and grows exponen-
tially. At t 170, the relaxation into the "strongly non-
linear" extended SOC state begins. Together with the
increase of the amplitude, the phase velocity decreases
and decays in the long-time limit to zero. So, when cross-
ing the lower band limit of stable LTW's, the convection
intensity first decreases and then grows again.

At the upper end of the LTW band, the dynamics of
unstable LTW's is completely difFerent and similar to
what has been seen by Kolodner [10]. There, the LTW
expands, and finally its &onts touch one another. Then
the gap between the two &onts closes, and a slow, spa-
tially modulated, extended transient TW develops which
then relaxes into the stable SOC state. For longer convec-
tion cells, one would expect that the "filling" of the con-
ductive region with convection could also be determined
by growing disturbances of the conductive state. See the
experimental work of Kolodner and Glazier [21,22] and
Kaplan and Steinberg [17,25].

(a) Multistability. Bensimon et aL [4,5] and Surko et
al. [9] reported experimental LTW states within an in-
terval Ar —0.02 that were stable with continuously dif-
ferent widths. We have shown [42,26] that at least for
one Rayleigh number, r~ ——1.246, there are stable states
Ai and Bq in a I = 20 system and Ci in a I' = 40 sys-
tem having different widths. The strength of convection

, &equency ~, and group velocity vg are essentially
the same for these states Ai, Bq, and Ci. For more de-
tails on these different states at r~ and our conclusion
that there is in fact bistability at r~, cf. points (f) and
(g) below.

(b) Finite r band of stable LTW states Our. states at
ro ——1.241 and r@ ——1.244 below r~ and at r~ ——1.248
above r~ show that there is a finite r band in which
LTW's exist. Within this band, the frequency u does
not vary much, while io [Fig. 6(a)] and vg [Fig. 6(c)]
increase slightly with r. For all states, vg is small and
positive, i.e. , parallel to the phase velocity. Their width
is discussed further below. While we did not determine
the lower existence limit of the r band, we can say that
it lies between rD ——1.241 and 1.2155. At the latter
Rayleigh number, which is just above r7~, a broad, tran-

V. LTW'S AT Q = —0.25

For more negative Soret coupling, at g = —0.25,
LTW's show richer and more complex bifurcation prop-
erties than at @ = —0.08. The situation is indeed more
complicated than we expected from the early experiments
[4,5,9] and also seems to be more intricate than the one
reported in recent experiments [14,15]. We found on the
one hand stability of different LTW states with differ-
ent widths in a narrow interval of Rayleigh numbers and
on the other hand below and above it uniquely selected
LTW states with a uniquely selected width, indicating
monostability.

L = 0.01

X

5.1
E

5.0

10

A. Properties

Since the determination of complete LTW bifurcation
diagrams clearly exceeds our computational resources, we
discuss a skeleton (Fig. 6) based on 12 stable LTW states
Ai, A2, . . . , I"i,F2 that we have generated at four differ-
ent Rayleigh numbers. All of them lie well below r „,as
expected from experiments. Their characteristic proper-
ties are listed in Table II. States Ai, Bi, and Ci have
been described in [42,26]. These solutions of the field
equations were obtained with laterally periodic bound-
ary conditions and periodicity lengths I' = 20 (circles in
Fig. 6) or I' = 40 (triangles in Fig. 6). Some of them
are identical, for all practical purposes, e.g. , state Di ob-
tained with I' = 20 is the same as state D~ obtained with
I' = 40. The index either identifies I' as in the case of Dq
and Dq and/or it identifies different histories that led to
the respective final states, as explained in the text. For
example, states Eq ——E2, both in I = 20 systems, have
different histories. Now we list and discuss the problems
and questions (a)—(g) that we have addressed together
with our findings.

0.06

0.05

0.04
E ABC F

1.240 1.245 1.250

FIG. 6. r dependence of narrow (open symbols) and wide
(filled symbols) LTW states at g = —0.25. (a) Maximum
io of the vertical velocity field, (b) FWHM of vertical fiow
intensity l, and (c) group velocity v~. States in a system of
periodicity length I' = 20 are given as circles and states in
a system of length I = 40 as triangles. Line through the
I' = 20 states is a guide to the eye. The thin S-shaped part
is schematic to indicate the bifurcation topology discussed in
the text. See also Table II for an identification of the different
states.



51 CONVECTION IN BINARY FLUID MIXTURES. II. 5675

TABLE II. LTW states for Q = —0.25, L = 0.01, cr = 10. Due to improved evaluation techniques,
e.g. , for the frequency, some of the data of the 6nal LTW states presented here differ slightly from
our earlier estimates [42,26] for Ai, Bi, and C'i.

State
f/

N —1,
~max

l
AX

Vg

1.241
20

0.043
5.0
4.38
5.4
1.50

0.042

1.241
40

0.021
5.0

4.37
5.4
1.49

0.042

1.244
20

0.048
5.06
4.31
5.9
1.61

0.050

1.246
20

0.053
5.17
4.33
6.3
1.74

0.054

1.246
40

0.029
5.08
4.38
6.5
1.84

0.053

1.246
20

0.079
5.25
4.35
9.0
2.43
0.052

c„c,
/(

1.246
40

0.042
5.18
4.46
9.6
2.59
0.048

1.248
20

0.083
5.28
4.34
9.4
2.54
0.056

sient LTW shrank to a narrow, still strongly nonlinear
transient LTW which then decayed into the conductive
state. Concerning the upper band limit, we can say that,
in a I' = 20 system, it lies between r~ ——1.248 and 1.251:
Starting with state Bi at r~ ——1.246 and increasing r
to 1.251, convection spread in both directions into the
conductive region. In a I' = 40 system, on the other
hand, some test calculations described in (e) below give
a hint that the upper band limit for stable LTW's there
lies at a smaller r, somewhere between r~ ——1.246 and
ry ——1.248.

(c) Irregular behavior When . leading and trailing
fronts of the above described expanding LTW transient
in a system of length I' = 20 at r = 1.251 touched
each other, they interacted strongly. In this case, width,
shape, and Nusselt number showed complicated, irreg-
ular behavior [27] for several hundred thermal diffusion
times. We have hints that this aperiodicity is not tran-
sient but genuine long-time behavior. (i) Upon reducing
r to r~ ——1.246, the system did not show a transition to
a regular LTW state but continued to behave erratically,
so we stopped the simulation. (ii) At r = 1.256 we also
observed such an irregular behavior for more than 1000
diffusion times before we stopped the calculation. For
r = 1.266, this &ont interaction period lasted only about
200 diffusion times. Then, convection invaded the entire
space, and the system relaxed into a stable extended TW
with 10 roll pairs.

For g = —0.08, we did not find erratic behavior
triggered by the interaction of the LTW &onts. This
phenomenon does not seem to have been reported be-
fore. For instance, the erratic behavior discussed in [15,
Sec. VIII] seems to be a bulk phenomenon that is not re-
lated to an interaction of leading and trailing &onts that
touch each other in our periodic system.

(d) Narroui LTW states beloved r~. The narrow LTW Di
evolved in a I' = 20 system out of Bz after instantaneous
reduction of r from r~ to rD, while D2 evolved in a I' =
40 system out of a very broad transient LTW that filled
half of the entire space. The narrow final states being
practically identical strongly suggests monostability or a
unique selection mechanism at r~ [27]. Also, the LTW's
Ei ——E2 at rE, seem to be uniquely selected: Ei resulted
&om Bi after instantaneously decreasing r from r~ to
r~, while E2 developed out of Bi as r was very smoothly

ramped down from r~ to r~. Note that Bi is a broad
state, while Di ——D2 and Ei ——E2 are narrow states.

(e) Broad LTW states above r~. We also found mono-
stability or unique selection above r~ in a system of
length I' = 20 —the two states Fi ——F~ at r~ ——1.248
have completely difFerent histories [27]. I'i developed
out of Bi, which has a large width comparable with Fi,
whereas F2 evolved out of Ei, which has a much smaller
width at rE. Note that the selected LTW at r~ ) r~
has a broad width —9.4, while the LTW's selected below
r~ are narrow pulses like those at g = —0.08. Recent
restricted test calculations for a I' = 40 system, on the
other hand, seem to indicate that there might be no sta-
ble LTW at r~ in a system of length I = 40. There
we performed two simulations. (i) While starting with
a transient of width 20, we got the LTW C2 at r~ after
a shrinking process. But after increasing r to r~ this
LTW transient having initially a length of 8 15 ex-
panded during 1200 diffusion times to E 20 before we
stopped the run. (ii) Starting with the LTW C2 at r~,
we increased the drive linearly to r~ over 100 diffusion
times. During this time, E increased from 9.6 to about
10.5. Then we kept the drive at r~, and the width still
increased and grew to about E = 16 after 1000 further dif-
fusion times. The width LX increased sublinearly from
2.81 to 4.27 during this interval, which is well above the
widths of the states Fi, F2 and also Ci, C2. We do not
know whether there is a LTW attractor at r~ in a I' = 40
system or whether the expansion proceeds until there is
an erratic interaction of the leading and trailing front as
in the I' = 20 system. Furthermore, data for r values
between rA and r~ are not available to determine, e.g. ,
the upper band limit of broad LTW states in a I = 40
system.

(f) Multistability of different LTW's at r~. Points
(d) and (e) above already suggested that the vicinity of
r~ ——1.246 is somewhat special, as we discuss now in
more detail. Consider first the behavior in a I' = 20
system. On the one hand, there is the narrow LTW
Ai that grew out of Di after increasing r &om rD to
r~. On the other hand, there are the broad states Bi
that evolved out of a somewhat broader LTW transient
and the state B2 —being practically identical to Bi-
which was generated with a completely different proce-
dure. Starting &om B'i, we reduced r to r~ but did not
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wait until state Ei developed. Instead, we increased r
back to r~ as soon as the transient LTW had reached. an
extension LX 2.16 between Ai and Bi. Thereafter,
the width grew to B2. So with the two scenarios of a
transient shrinking to Bi and a transient growing to B2,
we have a selection of the state Bi ——Bq. In addition,
there is the other stable state Ai with a smaller width.

(g) System length dependence. To test for length de-
pendences, we compared runs for a I' = 20 system with
runs for a I' = 40 system. Comparing the narrow monos-
table states Di in a 1 = 20 system and D2 in a 1 = 40
system at ro, below r~, we did not find any difference:
Not only the final-state properties but also the relax-
ation rates towards the final states were the same. On
the other hand, at r~, above r~, our recent calculations
discussed in (e) seem to argue against the existence of a
stable LTW in a I' = 40 system, while for I' = 20 there
is a monostable LTW state I'"i ——F2.

Now consider the situation at r~. To test for system
length dependence of the two bistable states Ai and Bi ——

B2 that we found at r~ in a 1 = 20, system we did the
following runs. First, we used Bi as initial condition in a
I' = 40 system and observed an expansion (Fig. 7) to the
slightly broader state Ci. So there is indeed a small 1
dependence of the broad state at r~ which is absent for
the narrow states Di and D2 at r~. In another run, we
"filled" half of the I' = 40 system with an extended TW
and the other half with the conductive state. This initial
condition shrank to a broad LTW transient that slowly
relaxed with monotonically decreasing width [Fig. 7(d)]
towards C~ ——Ci. These two scenarios show that we also
have a state selection of Ci ——C2 in I' = 40 systems.
Furthermore, the slow width-reducing relaxation from a
transient that filled half of the I' = 40 system towards
C2 suggests that Ci ——C2 is the broadest stable LTW at
rA. But C is not the only stable LTW in 1 = 40 systems.
As for I' = 20, there is multistability. This we showed
with the generation of A2 starting from D2 at rD and
increasing r to r~ (Fig. 7). A2 is distinctly narrower (by
3.1) than C and only marginally wider (by 0.2) than its
I' = 20 analog A.i.

While the final-state properties of our LTW's at r~
like phase velocity, extension, group velocity, and Geld
amplitudes do not differ much for the two different sys-
tem lengths, there is a big difI'erence in relaxation times.
In our I' = 40 system, the relaxation rate into one of
the bistable states at rA was about 0.001, i.e. , a factor of
15 smaller than the rate in the I' = 20 system not just
a factor of about 4 as one might expect from dift'usive
processes. So we had to wait some thousand diffusion
times. Below r~ at ro, on the other hand, there was
no difference in the relaxation rate towards the narrow
states Di ——D2 obtained for difFerent 1 's.

Since Kolodner [14,15] did not see bistability in his
system of length I" = 82, but rather states of several
different widths for 1.335 r 1.338 [14, Fig. 4], one
wonders whether bistability might be a finite-size effect
that vanishes in the limit of I' ~ oo or ind. eed already
for large finite I'. On the other hand, if by increasing
the system size by another factor of 2 from our I' = 40
to his 1 = 82 the relaxation time increases again by a

factor of 15 to about 15 000 one wonders whether such
ultraslow dynamics could be changed by ultrasmall inho-
mogeneities.

(6) Conclusion. So we found monostability or unique
selection of a narrow (broad) LTW at r~ and r@ (r~)
in a l = 20 system in the lower (upper) part of the r
band of LTW states. In a I' = 40 system, we found
unique selection of the same narrow LTW state as in the
I' = 20 system at rD, i.e. , in the lower part of the r
band. Above r~, we have only test data available for a
1 = 40 system at r~ which are not conclusive but hint
against the existence of a broad LTW. In that case, the
upper band limit of stable LTW's would be somewhere
between r~ and r~ in the I' = 40 system, i.e. , below the
band limit of the I' = 20 system. Right at r~, our results
show, both in a I' = 20 as well as in a I' = 40 system,
bistability of two different LTW attractors —a broad one
and a narrow one. But the relaxation times towards them
are significantly longer in the I = 40 system than in the
l = 20 system. Thus, we speculate that (at least) the
I' = 20 data points shown by circles in Fig. 6(b) should be
connected by an S-shaped curve which accommodates the
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monostable states on the upper and lower branches away
from the turning-point region around r~, as well as the
pair of bistable states in between, as shown schematically
in Fig. 6(b). The I' dependence of io, I., vg (cf. Fig. 6),
and of the relaxation time of the states seems to suggest
that the r subrange of bistability for the I' = 40 system is
somewhat narrower than for the I = 20 system. Lacking
the resources to perform additional calculations, say, for
r values between r~ and r~, we cannot presently quantify
the precise width of the bistability subrange in the two
systems.

B. Comparison with experiments

Very recently, Kolodner [14,15] has done experiments
in an annular convection channel of periodicity length
I' —80 with an ethanol-water mixture with parameters
L = 0.0079, 0 = 8.93, and @ = —0.253. A comparison
with them shows some agreement, but also some differ-
ences with our calculations done with I' = 20 and I' = 40
for vP = —0.25. Given that the experimental Prandtl
number and in particular the Lewis number differ from
our o = 10 and L = 0.01, we will also include in our com-
parison his results for the next nearest separation ratio,
Q = —0.210 [15].

A.gt'eernent8

(i) The r interval in which stable LTW's exist is very
narrow its width is of the order of 10

(ii) LTW's drift with group velocities that are small
compared to their phase velocity.

(iii) For small r values, there is a unique selection of
a narrow pulse, the properties of which depend slightly
on r. This can be seen in our calculations at rD and
at r~, in the experiment for g = —0.253 at r = 1.334
[14, Fig. 4], and in the experiment for @ = —0.210 in the
interval 1.327 r 1.335 [15, Fig. 19].

(iv) For high r values there is also a unique selection
however, of a broad state, the properties of which depend
on r. The selected width is significantly larger than the
narrow width selected at lower r. The broader states
are found at r~ in our calculations with I' = 20 and for
1.339 r 1.340 in the experiment [14, Fig. 4].

(v) From the recent experiments [14,15], one can in-
fer that the "arbitrary-width" LTW states that were ob-
served earlier [4,5,9] in less uniform cells do not appear in
more uniform systems. This agrees with our calculations.

(vi) Structural properties of the experimental LTW's
[9,10,15], i.e. , the top-view shadowgraph intensity profiles
and the wave number profiles [72], agree nicely with the
numerical ones.

2. Digger ences

(i) The absolute r values at which LTW's are found in
the experiinents at @ = —0.253 and at v/i = —0.210 are

larger than the calculated ones by about 8%%uo. This, we
think, is nothing to be worried about.

(ii) The smallest monostable narrow states that are re-
ported for g = —0.253 have a width E, „q 6.8 versus

5.4 for g = —0.25. Since we have not determined
the width at the lower end of the r band of stable LTW's,
the smallest E might even be slightly smaller, as can
be inferred from the plot of E(r) in Fig. 6(b). Remember
also the slightly different width of shadowgraph intensity
and vertical velocity field, as discussed in Sec. IV. On the
other hand, for g = —0.210 narrow pulses were observed
[15, Fig. 19] in the r interval (1.327,1.335) with widths

4.2 E „t 5.9 that are comparable to our 8, but
broad LTW's with widths up to 30 [15, Figs. 15 and 18]
were also seen in the r range (1.3355, 1.3385). Also, the
broad monostable states for @ = —0.253 in the r interval

(1.339,1.340) of [14, Fig. 4] have l, zq 15, while our
broad, monostable states have 1 —10. Furthermore,
Kolodner observes stable LTW's of width E, zq

——21.059
and E, &q

——32.72 [15, Figs. 14 and 13]. Since the dif-
ferent definitions of LTW widths (cf. Sec. IVA for a
discussion) via the profiles of the top-view shadowgraph
intensity distribution and of the vertical Bow intensity,
respectively, difFer here by at most O(0.5), they cannot
account for the width differences of broad experimental
and numerical LTW's. However, we should mention that
we cannot investigate very broad states in our I' = 20
system and have not done it extensively in our I' = 40
system. If very broad, stable LTW's, e.g. , with length
15 E 30 should exist in our I' = 40 system, then they
should exist between r~ and r~, and their r range would
have to be smaller than Lr 0.002.

(iii) The experimental drift velocities for @ = —0.253
are negative. They scatter around —0.02 [14, Fig. 2] but
show no particular r dependence. For the narrow exper-
imental states of @ = —0.210, they increase considerably
from —0.05 to about 0 [15, Fig. 19(b)]. Our calculated
group velocities of Fig. 6(b), on the other hand, do not
vary much. They increase only slightly with r, except
for the bistable range, where the behavior is somewhat
more complicated. Furthermore, all our drift velocities
are positive —around 0.05. This difference might have
several causes. (1) The drift velocity with which lead-
ing and trailing fronts of the LTW move results from a
complicated balance between stabilization and destabi-
lization of conduction and convection in which concen-
tration currents and buoyancy forces play an important
role and which therefore is presumably quite sensitive to
details like, e.g. , the cell width. For example, too strong
a current-induced stabilization of the conductive state
ahead of the leading front (Sec. IIIB4) should cause an
invasion of the conductive state there into the convective
region, i.e. , a recession of the leading front. (2) The Lewis
numbers in the experiment are smaller than in the sim-
ulation, and L is very important, at least for extended
states —see also the discussion in Sec. IV A 1 on the
effect of reducing I upon the drift velocity. (3) The cal-
culations are 2D, while the experiments probe convection
in an annular channel with a small channel width —see,
for instance, the comparison of experimental and numer-



5678 W. BARTEN, M. LUCKE, M. KAMPS, AND R. SCHMITZ 51

ical LTW's by Surko et al. [9].
(iv) Kolodner [15] states, despite the scatter of the data

[14, Fig. 4] for 1.335 r 1.338, @ = —0.253, that he
always observes only one stable selected width. He also
observes such monostability with less scatter for g
—0.210. This has to be contrasted with the bistability
that we see in the narrow r interval of Fig. 6(a). Before
concluding that there is indeed a discrepancy here, one
should consider the scatter of the data, the smallness of
the r region of bistability, and the question of system
length dependence and long relaxation times mentioned
above.

VI. CONCLUSION

The main goal of this paper has been to provide a
quantitative description of spatially confined traveling-
wave convection in binary fluid mixtures and thereby to
come to an understanding of these strongly nonlinear
LTW states that compete with spatially extended con-
vection for negative separation ratios in a narrow interval
of Rayleigh numbers. Since the concentration field plays
a decisive and very important role after all, without it,
i.e., in pure fluids there are neither TW's nor LTW's
the analysis of its influence on the balance of buoyancy
forces that drive convection has turned out to be central
to understanding the spatiotemporal behavior of LTW's.
Simply constructed, heuristic amplitude-equation mod-
els that do not incorporate the degrees of freedom of the
concentration field appropriately should therefore not be
expected to provide a proper description of LTW's.

We have numerically determined LTW solutions of the
full, 2D field equations in laterally periodic systems of
length I' = 20 and I' = 40 for ethanol-water mixtures
(L = 0.01, o = 10) with negative Soret coupling param-
eters vP = —0.08 and g = —0.25, for which experiments
[2—15] have been performed.

Structure. Our LTW''s drift with a finite but small
group velocity vg forwards, i.e. , in the propagation direc-
tion of the phase of its TW constituents. In the frame
comoving with velocity v~, LTW states are time periodic.
Remarkably enough, they are also symmetric under time
translation by one-half an oscillation period combined
with reflection through the horizontal midplane of the
fluid layer. LTW's consist of three characteristic parts:
a leading front (with respect to the phase propagation
direction), a central part, and a trailing front. Roughly
speaking, all our LTW states differ only in the width
of the central part. Structural properties under the two
fronts are universal but different for trailing and leading
fronts. The amplitudes of velocity and convective tem-
perature fields in the center of LTW's are slightly smaller
than in the extended states at the same parameters. The
LTW frequency, being about half the Hopf frequency at
r „,is considerably bigger than that in the competing
nonlinear extended state. Consequently, the LTW con-
centration contrast between adjacent rolls and the mean
lateral concentration current is significantly larger than
in the extended state.

The LTW profiles of the velocity, temperature, and

concentration field have different shapes and widths and
thus cannot be described by one common amplitude.
The wavelength A of a particular roll pair, and with
it its phase speed vz, increases monotonically while it
moves from its generation under the trailing front to-
wards its decay under the leading front. In the center, A

is about 10% smaller than in the extended state. Other-
wise, the fields in the center of LTW states have a similar
structure as in extended TW states of similar frequency.
This includes the mixing and boundary layer behavior of
the concentration field with its characteristic plumes and
trapezoidal lateral profiles.

Buoyancy balance and concentration redistribution.
Averaging over one oscillation period of the LTW, one
finds that the convection-induced mean buoyancy force
(6) = (c+ 0) is dominated by the concentration contri-
bution. The different widths of the pulses of (c) and
(0) give rise to a relative enhancement of (6) right un-
der both fronts that stabilizes the LTW against invasion
of the conductive state. On the other hand, ahead of
the leading front, a current-induced. concentration redis-
tribution or "barrier" is produced so as to weaken (b)
there and thus to impede a rapid invasion of the qui-
escent conductive region by convection. The large-scale
concentration redistribution is induced by a large-scale
mean concentration circulation extending over the whole
LTW. This mean concentration current is driven by a
phase shift between the concentration wave and the ve-
locity wave which occurs in the center part of the LTW,
as in an extended TW. In the center part, the current is
horizontal and of convective nature, and it Bows in oppo-
site directions in the upper and lower halves of the layer.
Under the fronts, the current loop is closed by vertical
parts with gradient-related diffusive contributions.

With decreasing LTW frequency, i.e. , with increasing
r, the mean concentration current decreases and with it
the concentration redistribution, the "barrier" ahead of
the front, and the associated hindering of the forwards
motion of the leading front. Thus the forward drift ve-
locity increases. Vice versa, for larger w, the current-
induced, buoyancy-reducing vertical concentration distri-
bution ahead of the leading front (the "barrier" ) becomes
stronger and reduces more effectively the forwards drift
velocity of the pulse into the conductive region. The
experimentally observed reduction of vg below zero for
LTW's with even larger ~ also fits into this picture: the
concentration distribution piled up by the fast waves
w and with it the concentration current is large at
the leading edge is strong enough to stabilize conduction
there and to push back the convective LTW region.

%arrow pulses at small negative Soret coupling. For
—0.08, we found LTW's of uniquely selected nar-

row width as in experiments [6,13,10,15]. The r band
in which these pulses are stable lies in the "convectively
unstable" regime above the threshold r, for growth of
extended infinitesimal TW perturbations. So these states
ultimately owe their stability to the finiteness of the sys-
tem in the "convectively unstable" regime wave pack-
ets of infinitesimal perturbations of the conductive state
move with the fast critical group velocity and thus are ab-
sorbed in a finite system by the strong LTW state before
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they reach amplitude levels that can destroy the LTW
pulse [21,22, 17,10,12]. In an infinite system an infinite
string of properly spaced pulses would be necessary. The
stable LTW band also lies above the end point r* of the
stable nonlinear extended TW solution branch, so that
the LTW attractor coexists with the one of the extended
SOC solution.

The r variation of various properties of the pulses
within the stable band is in good agreement with ex-
periments by Kolodner [10,15] and Niemela et aL [6], if
one ignores that the latter pulses [6] have zero drift ve-
locity presumably due [11,10] to some experimental
pinning inhomogeneities. In particular, the LTW fre-
quency decreases strongly with r, which has also been
found for experimental pulses resting in a straight, rect-
angular convection channel [17] and for driftiiig pulses in
an annular channel [15]. As an aside, we mention that
the decay and temporal evolution of a pulse differ signif-
icantly after crossing the lower or upper boundary of the
r band for stable LTW's.

I.TW's at stronger negative Soret coupling. At g
—0.25, LTW's show richer and more complex bifurcation
properties than at g = —0.08. Again, there is a finite,
narrow band of r values in which stable LTW's exist.
Here, the band lies below r, , and the attractors of LTW,
extended TW, and conductive state coexist therein with
each other. Our results can be summarized and inter-
preted as follows. In the lower (upper) part of this band
there is a uniquely selected narrow (broad) LTW state
for each r, i.e. , only one LTW attractor. But in between
there is bistability of two different LTW attractors with a
narrow and a broad width, respectively. Our findings are
compatible with an S-shaped curve E(r) of LTW width I.

versus r that accommodates the monostable narrow and
broad states on the lower and upper branches as well as
the two bistable LTW attractors in the turning region
of the curve E(r). Our less extensive results for the sys-
tem length I' = 40 suggest that there (i) the upper band
limit of stable LTW's lies below that of the I' = 20 sys-
tem and (ii) the r subrange of bistability is narrower than
for I" = 20. For a detailed quantitative comparison of our
LTW solutions of the 2D hydrodynamic field equations
with experimental properties of LTW convection in an-
nular channels obtained recently [14,15], and a discussion
of common and different properties, we refer to Sec. V B.

We 6nally mention that we found irregular behavior
when crossing the upper existence boundary of the LTW
band. First the LTW pulse expanded into the surround-
ing conductive state —either at both fronts or with the
leading &ont moving faster into the same direction as
the trailing one. When, in our laterally periodic sys-
tem, both &onts "touched" each other they interacted
strongly and caused long-time complicated irregular be-
havior, e.g. , with strong variations in the Nusselt number.
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