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Fractal dimension of velocity signals in high-Reynolds-number hydrodynamic turbulence
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In this paper the fractal nature of velocity signals as measured in turbulent Bows is investigated. In
particular, we study the geometrical nature of the graph (x,f(x) ) of the function f that gives one com-
ponent of the velocity at position x. Special emphasis is given to the effects that a limited resolution of
the signal, or natural small-scale cutoffs, have on the estimate of the fractal dimension, and a procedure
to account for such finite-size effects is proposed and tested on artificial fractal graphs. We then consider
experimental data from three turbulent Aows: the make behind a circular cylinder, the atmospheric sur-
face layer, and the rough-wall zero-pressure-gradient boundary layer developing on the test-section ceil-
ing of the 80X 120 ft full-scale NASA Ames wind tunnel (the world's largest wind tunnel). The results
clearly indicate that at high Reynolds numbers, turbulent velocity signals have a fractal dimension of
D =1.7+0.05, very near the value of D= —', expected for Gaussian processes with a ——', power law in

their power spectrum.

PACS number(s): 47.27.—i, 47.53.+m

I. INTRODUCTION

Most of the applications of fractals to turbulence have
so far been devoted to the study of subsets of the region
occupied by turbulent flow where a given property is
satisfied. For example, isoconcentration surfaces of ad-
vected variables and interfaces, or the structure of spatial
distribution of dissipation rates, have been characterized
as fractals or multifracta1s and the appropriate dimen-
sions have been measured (see Refs. [1—7]). The main
goal of this paper is to establish to what extent it is possi-
ble to treat signals representing any of the three turbulent
velocity components as self-affine fractal. Figure 1 shows
a times series of the streamwise velocity component mea-

sured in the atmospheric boundary layer (details will be
given later). Using Taylor's hypothesis, such a signal can
be regarded as a spatial one-dimensional "cut*' through a
frozen three-dimensional field. We are led to believe that
the fractal dimension of the velocity profile u (x) is not an
integer mainly because of the well-known power-law de-
cay of the energy spectrum in the inertial range [8,9].
For such a signal, the second-order structure function is
itself a power law and we have

(u(k)u'(k))-k (iu(x+r) —u(x)~ )-r ' . (1)

It has been proven [10] that for processes with multipoint
Gaussian statistics Eq. (1) implies that the fractal dimen-
sion of almost all realizations of such a random signal is
given by
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FIG. 1. Typical turbulent signal of streamwise velocity mea-
sured by a hot-wire anemometer in the atmospheric surface lay-
er, using Taylor's frozen How hypothesis.

Therefore, for a turbulent velocity signal at high Rey-
nolds number one might expect to find a fractal dimen-
sion equal to —,

' =1.66. Yet it is well known that the mul-

tipoint statistic for a turbulent Aow is not Gaussian [9],
so that it becomes necessary to establish whether the
derivation from Gaussianity affects the fractal nature and
the value of the dimension (see Ref. [11]for some related
numerical experiments). For this purpose, in this paper
the fractal dimension of velocity signals in a variety of
turbulent Bows is measured, mostly using the well-known
box-counting method [12] but at times complementing it
with the variational method [13]. In Ref. [14], similar
techniques have been applied to fractional Brownian
motion and to turbulent signals, with special emphasis on
the dimension of level sets. For the turbulent signals the
fractal dimensions found were consistent with df = 3.
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For level sets the situation became less clear, as scaling
ranges and dimension appear to depend on the threshold.
Level sets of turbulent velocity signals were also con-
sidered in Ref. [15].

In the present paper we focus attention on the signal
and not on level sets and we analyze in detail how small-
scale cutoffs affect the power-law behavior. To gain
confidence in the results, stringent tests of power-law
detection are applied. This leads to the conclusion that
pure power-law behavior is absent in all but the highest
Reynolds number data set analyzed, essentially because
of finite-size corrections to scaling. The same effects are
observed during analysis of synthetic fracta1 functions
with known dimension but finite cutoff scale. A function-
al form for these scaling corrections is proposed, which
can be used to both check for fractality and to measure
the dimension. This procedure is applied to some syn-
thetic fractals and then to the experimental data sets.

Section II reviews some traditional schemes for obtain-
ing numerically the fractal dimension of signals, while
Sec. III applies these to synthetic graphs of known di-
mension. The results are analyzed in Sec. IV, where a
procedure for taking scaling corrections explicitly into
account during data analysis is proposed. Section V gives
a description of the turbulence data sets and Sec. VI
presents the main results of the analysis of the experimen-
tal data. A summary and conclusions are given in Sec.
VII.

II. NUMERICAL SCHEMES
FOR THK COMPUTATION

OF THE FRACTAL DIMENSION OF GRAPHS

Several numerical schemes have been devised to corn-
pute the fractal dimension of time series or graphs (see
Refs. [16] and [13]). The simplest consists in a straight-
forward application of the definition of box-counting di-
mension: one covers the graph with a grid of rectangles
c XOc. in size, where 0 is an arbitrary aspect ratio. Then
one counts the number N(e) of rectangles that contain a
portion of the graph [see Fig. 2(a)]. The dimension is
then defined as

bV(e)= I u(x, e)dx .
a

The fractal dimension can be obtained by

(6)

logV(e)
df —llm 2

c~0- loge

Since V(e) is continuous, it typically exhibits fewer fluc-
tuations at 1arge scales than the box-counting method. A
disadvantage of the box-counting algorithm for analysis
of self-aFine sets is that the aspect ratio 0 must be proper-
ly selected. It is known (see Refs. [17,18]) that if 8 is so
large as to imply rectangular boxes that are of a height
comparable to the range of the function, the box dimen-
sion may tend to 1. However, if 0 is chosen such that
even at 1arge a one needs severa1 boxes to cover the
graph's vertica1 extent, box counting will yield the
correct dimension. Thus we wi11 make use mainly of box
counting (using very small 8), resorting to the variational
method when the former is spoiled by Auctuations, and
for consistency checks.

Local fractal dimension
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Regardless of the method employed, the fractal dimen-
sion is always associated with the exponent of a power

(a)

logN(e)
df = 11m

c~o logE,
(3) 1.4

1.2

u (x e) = sup f(x') — inf f(x'),
x'&8(x, c) x'EB(x, c, )

B( , )x=E[ Ex[a, b]: ~x —x "~ &e] .

The area is given by

(4)

Although this method is not completely free from de-
fects, especially at large scales where the discrete nature
of the boxes can lead to fluctuations, box counting has
the advantage of being conceptually simple, easy to code
and discuss. As an example of other methods that can be
used, we mention the so-called "variational method" [13],
which has recently gained popularity. Instead of count-
ing the number of boxes required to cover the graph, one
measures the area of the envelope that contains the graph
[see Fig. 2(b)], this envelope being defined on scale E as
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FIG. 2. Covering a signal using (a) rectangles for the box
counting method or (b) the "variation sausage" for the method
of Dubuc et al. [13].
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law, that is to say, there exists a quantity X+(E) (number
of boxes, area of the envelope, etc. ) such that

+d
X+(E)—c, f. For a number of reasons it is not advisable
to compute df explicitly from its definition —at small
scales X+(e) can be affected by sizable errors and also,

»nce X+(E)=CE in general, the limit converges very
slowly [as (loge) 'j. Hence, traditionally df has been
evaluated by plotting log%(E) vs loge and measuring the
slope of the best linear fit. Recently, some arguments
have been made that such an approach can be misleading
[7,19]. Praskovsky et a/. in Ref. [7] show with a coun-
terexample that what may seem like a straight line in a
log-log plot can actually be far from a true power law.
Following these references we consider taking the loga-
rithmic derivative

d log%+(c. )
d (E)=+

d loge

We refer to df(E) as the locaI dimension (local in scale),
as opposed to df, which we may call globa/. For a fractal
set df ( E ) has to tend to a (noninteger) constant at small
c.. For a fractal arising in the real world, there are neces-
sarily cuto6' scales below which the scaling changes. In
addition, if a signal is discretely sampled at a finite rate,
an "artificial" cutoF scale may be introduced. Mandel-
brot calls these objects "prefractals" [20]. Again, the
common belief is that df(E) should remain constant over
a range of scales somewhere above this cutofF scale. To
test these ideas, we consider synthetic prefractals, gen-
erated in di6'erent ways, with known fractal dimension.

III. LOCAL DIME%SIC)N
(3F SYNTHETIC PREFRACTAL GRAPHS

1 —cos(b "x, )

n =- —50

d =1.6, b =2.0,x;=ibex, i =1, . . . , 1/Ax .

As Fig. 3(a) shows, besides depending on E, the resulting
local dimension strongly depends on the number of sam-
pling points (here we have used bx =2 ', 2 ', 2
and 2 ' ). Unresolving small scales affects the result on
scales that are larger than the smallest resolved scale
(proportional to the inverse of the sampling frequency).
We can understand this if we consider Fig. 3(b), where we
have plotted a portion of the Weierstrass function sam-
pled at diIterent levels of resolution: unresolving the small
scales leads to an underestimation of the total variation
of the function over some region and therefore to an un-
derestimation of the number of boxes needed to cover the
signal (this result is similar to the one discussed in Yor-
danov and Nickolaev [22] for random time series). Also
note that at large scales box counting tends to underesti-
mate the local dimension, almost independent of the sam-
pling frequency.
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A. %'eierstrass functions

Let g: [0, 1]—+C be a complex function defined as
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This is the Weierstrass function, originally introduced by
Weierstrass as an example of a continuous but nowhere
diA'erentiable function. The graphs of both the real and
the imaginary part are fractal, with box dimension d [at
the time of this writing, it is apparently not known in the
literature whether the Hausdorfr' dimension coincides
with d or is smaller (see [21] for more details)]. An in-
teresting case occurs if all the phases P„are set to zero.
Then the function has the exact scaling property

«.0-

0 A i I I I I I t I l i

5.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80
(al b. iJPIts)

g(bx)=b g(x) . (10)

As will be seen later, this feature makes g (x) an excellent
test case to understand the inAuence of the sampling fre-
quency on the measured local fractal dimension. Next,
we present the results concerning the approximated
Weierstrass function

FIG. 3. (a) Local fractal dimension of the Weierstrass func-
tion sampled at di6'erent levels of resolution hx =2 ', 2
2 ', and 2 ' (diamonds, stars, crosses, and squares, respective-
ly). (b) Weierstrass function plotted at di6'erent levels of resolu-
tion (solid line, Ax =2 '; dashed line, Ax =2 ', dotted line,
Ax =2 'o).
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B. Graph generated by fractal interpolation

i=0 X~ Xp

provided g; ~d; ~
& 1. The process that generates the

graph is similar to a multiplicative one. One starts with a
piecewise linear interpolation and then proceeds to repli-
cate the graph on smaller and smaller intervals by means
of affine transformations that contract by a factor d; in
the y direction.

Another method to generate graphs with fractal di-
mension df & 1 is to apply the fractal interpolation tech-
nique (FIT) to a set of points [23,24]. Given n +1 pairs
in the real plane (x;,y;), i =0, . . . , n, a =xo( (x„
=b, the FIT produces the graph of a continuous functionf: [a,b]~R, y; =f (x, ), with a prescribed fractal dimen-
sion. The FIT introduces n affine transformations of the
real plane into itself m;: IR —+IR, each depending on a pa-
rameter —1 & d; & 1; the graph is defined as the fixed
point of the transformation W= U,"=,w;. The fractal
dimension is given by solving

'd —1x.—xi i —1
(12)

With this technique it is possible to generate very
quickly signals with high resolution. We have chosen to
interpolate between four points selected randomly. The
vertical scaling factors were chosen to be different
(d& =0.8, dz=0. 9, and d3=0. 3). The resulting fractal
dimension is df =1.63 [Fig. 4(a)]. We have used three
different sampling frequencies Ax '=2', 2', and 2' .
In this case too, as Fig. 4(b) shows, the local fractal di-
mension depends on the sampling frequency. From these
results it is apparent that if the local slope of the log-log
plot is to be used to test for fractal behavior and for
finding the true dimension, one would need at least
hx -2 ' . This is an enormous scale-ratio not often en-
countered in physical experimental data. It is then neces-
sary to understand the origin of the deviations from
df(c, )=df at small scales and how these depend on the
small-scale cutoff.

IV. ANALYSIS

A modified power-law form for the scaling of measured
number of boxes consistent with the preceding results can
be

N (s)-s ff (E, bx), (13)
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i.e., N (E) is the product of two factors: s f (called the
leading scaling) and a function f that encompasses the
observed corrections. In this section we relate the devia-
tion from pure power-law behavior to the smoothing of
the signal at small scales caused either by filtering and
discrete sampling or by the natural occurrence of a cutoff
scale (prefractals). Thus we call f, defined in Eq. (13), the
scaling correction. It accounts for the fact that on scales
close to the smallest resolved scale the graph of any frac-
tal looks smoother than what it actually should be [see
Fig. 3(b)].

A. Accuracy of variation
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FIG. 4. (a) Signal obtained by fractal interpolation. (b) Local
fractal dimension of the FIT function samples at different levels
of resolution b,x =2 ', 2 ', and 2 ' (diamonds, stars, and
squares, respectively).

a(x;, E)= lim

In order to illustrate the effect of sampling frequency
on the accuracy of box counting, we employ the approxi-
mated (prefractal) Weierstrass function g, (x) introduced
in Sec. III A. To fix the notation, let
I,(x;,bx) = tx E [x;—s/2, x;+E/2]: x =x, E/2+ibx, —
i H [1, . . . ,p],p =s/dx J, i.e., I,(x;,bx ) is the subset of
the interval [x;—E/2, x;+E/2] that consists of the
p =E/bxsampling points, where b,x ' is the sampling
frequency. Box counting evaluates V(x;, E, b,x )

=sup„~El i„z„i~g,(x)—g, (y)~ in order to get

V(x, , c, , hx )
N(x;, E) = (14)

Oc
where again 0 is a constant factor that depends on the
choice of the unit of measure used to express g&(x). The
total number is obtained by summing the contributions
from all the points x;. We are concerned about the accu-
racy that can be achieved in measuring the total variation
V(x;, E, hx) at scale E when the signal has a cutoff on
scale b,x. The accuracy is defined naturally as

i V(x, , s, b,x;„)—V(x, , E, b.x ) i

(15)
V(x;, e, hx;„)
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Yet in practice, we only have V(x, , c, ,hx;„) available,
where Ax;„ is the nonzero spatial resolution of the sam-

pling points. (In our numerical experiment Ax
=2 ' . ) We can overcome this limitation in the follow-
ing way. For the zero-phase Weierstrass function we

d —2
know that g, (x)-2 f g, (2x). The equality is exact for
the Weierstrass function with infinitely many terms, but
here we add only 100 terms. The error is very small be-
cause the transformation shifts all the terms in the sum
one position to the left. This implies that V(O, E,O)-
2 f V(0, 2E, O), i.e., an interval of length 2E sampled at
frequency Ax ' is equivalent to an interval of half the
length, but sampled at a frequency twice as large. On the
other hand, the definition of accuracy is essentially
unaffected by the rescaling, because it is a ratio. Also, it
is reasonable to assume that a (x;,e) depends weakly on

x, so that the accuracy calculated near the origin reflects
the order of magnitude of the accuracy calculated at any
other point. Therefore the limit Ax;„—+0 can be substi-
tuted by the limit E~ ~ in Eq. (15).

With the aid of this method we have plotted the sam-
pling frequency b,x '(a, b,x;„) required to have
a (10% and a (1% for a segment of length 1 known
with a resolution Ax;„(Fig. 5). We see that in the re-
gion where Ax;„ is less than a critical value,
b,x '(a, b,x,„) grows almost linearly, showing that the
sampling frequency is not high enough to reveal all the
relevant features. When the critical value is reached at
the beginning of the plateau, we are at the point at which
the fluctuations below the cuto8' scale contribute to the
total variation less than the prescribed accuracy. Self-
similarity allows us to conclude that the ratio c/Ax must
be larger than a critical value, to estimate the variation
with a given accuracy, and this ratio depends on the ac-
curacy and the fractal dimension (in our numerical exper-
iment, with b =2,df =1.6, and a =0.01, this value is
—1000). This result indicates that, qualitatively, one
needs to consider data with very large separation between
scales to obtain a realistic estimate for X(E). Yet this is

not always possible, whence there is a need to account for
the scaling correction in a quantitative fashion.

B. Scaling correction

The goal is to predict the form of f defined from Eq.
(13) as

f(E,bx)=E fX (E) . (16)
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Qualitatively, f should tend to one for large values of s or
for small values of Ax. Since for the Weierstrass function
we know what the leading scaling is, we have computed f
from the measured N (E). The results are plotted in Fig.
6(a) for both the Weierstrass and the FIT function (semi-
log plots). As can be observed, f appears to collapse
when plotted as function of c/Ax. We also see that as
e~b,x, f ( E, b,x ) approaches a linear function of

E
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FIC. 5. Logarithm of the minimum resolution ( Ax '
) need-

ed for a given accuracy a as a function of the sampling frequen-
cy Ax „ for the %'eierstrass function. Squares, a =1%,' trian-
gles, a =10%.

FIG. 6. Small-scale limit of the scaling correction for the
Weierstrass and the FIT function. Circles, squares, and trian-
gles are for the Weierstrass function, for sampling resolutions of
Ax =2 ', 2 ', and 2 ', respectively. Diamonds, stars, and
crosses are for the fractal interpolation function for resolutions
of 5x =2 ', 2 ', and 2 ', respectively. (a) Scaling correction
f (cc, bx) vs e/hx calculated with the true leading exponent for
the Weierstrass function (df =1.6) and for the FIT (df =1.63).
(b) Same as (a) but with a smaller leading exponent df = 1.5.
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log(E/bx). In order to show that both the universal
shape and the log-linear dependence on c, /Ax is lost if the
incorrect value of df is used for the leading scaling, in
Fig. 6(b) we plot f computed with the leading scaling
given by df = 1.5. Clearly the collapse disappears.

To find an expression for f we proceed as follows. Let
N' (c.) be the number of boxes of side E in a column re-
quired to cover the graph at x, and let I,(x, , b,x) be, as
before, the subset of the interval [x;—E/2, x;+s/2]
covered by a sampling frequency Ax '. This number is
computed as

C. Limiting behavior of scaling correction

N (e) = —F ~ 1 —(P,. ) + (P, )(2—d&)log

—
d~ f,=ye ~ log- +q

Ax
(22)

If (2—d&) & 1 and c. is close to bx we recover the log-
linear behavior observed in Fig. 6(a):

N' (E) =
sup g(x) — inf g(x)

x EI (x, , Ax) xEI (x, , Ax)
1 —(P, &

(P, )(2—d, )
'

where 0 is the unit of measure chosen for the vertical
axis. The real Weierstrass function, as well as any self-

aKne signal, satisfies at all scales the bound

lg(x) —g(z) I

» c lx —x I

(18)
2 —d

where c is some constant. Therefore, coax is the or-
der of magnitude of the Auctuations that we cannot see, if
we sample the function at scale Ax. Hence the observed
variation is related to the "ideal" one by the relation

sup g (x)— inf g (x)
x E I {x,,O) x EI,(x, , O)

2 —d
sup g (x)— inf g (x)+P, coax

x EI (.x,. , Ax) x EI (x., Ax)

(19)

where 0 (p, =0 ( 1 ) is a

fluctuating

function. This esti-

mate is the crucial ingredient of the results to follow.
From Eq. (19) it follows that on scale E, the measured
number of boxes can be expressed as

2 d
c ~

—d AxN' (E)=—E ~ —pm g

y= —(P )(2—d ) .
c
g I f

logN (E)=log ——d&logE

+log 1 —(P)
2 —df

c—log Of 1ogE
t9 f

(d~ —2)log(E/Ax)—(,. )e (23)

valid for c ))Ax. Hence the local fractal dimension reads

d logN (E)
d/(E) =

18 log

This is consistent with the results of Fig. 6, if the
"correct" value of d/ is used. Unfortunately, Eq. (22)
cannot be used by itself to calculate (2 —d&) unambigu-

ously, because we have no precise estimate of ( p, ) and c.
However, we can extract more information from Eq.

(21). Taking the logarithm of N (E) we have

2
) —

d~ Ax f
E, (20)

=d, —(P, &(2—d, ). ' (24)

[ I /c, ]
N (e)= g N' (e)

= —'E ' 1 —(p)
g

' c

2 f

~f(e/hx) .

The total number of boxes measured is

The result is that dj(e) as a function of log(E/bx) ap-
proaches the asymptotic value df exponentially from
below, but with very slow "half time" of order
(2 —d/) '. Now, however, we can actually calculate this
half time from our data, by examining the logarithm of
[dI —d/(E)]. If Eq. (24) holds, log[df df(E)] as a func-
tion of log(E/Ax ) should be a straight line of slope

(d/ —2). We note that the same analysis applies to the

graph generated by the FIT. The numerical experiments
agree with this analysis, as shown in Fig. 7. The dotted
line represents a perfect exponential approach with the
correct value of the half time.

The averaging of the p s over all [1/E] columns of boxes
yields (p; ), which is expected to be o(1). This discus-
sion applies to all the methods that use the quantity on
the right-hand side of Eq. (19) to compute the dimension.
Therefore, we expect a scaling correction of the same
kind for the variational method [see Eq. (4)].

D. From local to global dimension

The results of the numerical experiments show that
small-scale cutoA's can be a considerable source of error if
fractality and the value of the dimension are to be estab-
lished with accuracy. Since, as well be seen in Sec. V, all
the experimental data to be considered are aftected by
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FICx. 7. Analysis of the scaling correction in the middle scale
range for the Weierstrass and the FIT functions at difT'erent

resolutions. Squares, Ax =2 '; triangles, Ax =2 '; dia-
tnonds, bx =2 ' . (a) [1.6—df(e)] vs e/bx for the Weierstrass
function. The slope of the dotted line is —O. 4. (b)
[1.63—df(e)] vs e /ax for the FIT function. The slope of the
dotted line is —O. 37.

this feature, it needs to be considered carefully. So far we
have been mostly concerned with the local fractal dimen-
sion df(s). However, it is the fractal dimension df that
we want to measure, thus we need a way to calculate df
based on information we have about the local behavior.
A first way is to follow the traditional approach (see, e.g.,
[12,20]) and assume as the fractal dimension the value of
the slope of the line that best fits X (E), possibly discard-
ing some values at the edges. However, as already point-
ed out, ambiguities in choosing the scaling range and
"curving" in the log-log plots often complicate this ap-
proach. Alternatively, we can look instead if there is a
range of scales where df(E) remains constant and take
that value as the fractal dimension. However, we would
then have to conclude that even artificially constructed
fractals are not fractals, as, e.g. , the measured dimension
of the Weierstrass function g (x) depends on external fac-
tors, such as the sampling frequency. Dubuc et al. [13]
suggest to interpolate only the points within a range win-

dow, scanning the whole range and retaining the value of
the slope that has, say, the best correlation coefficient (the
local fractal dimension is then equivalent to the slope of
the best fitting when the window includes only three
points). They also seem to be aware of the problem
represented by undersampling, especially when df ) 1.5,
but do not discuss any further the implications.

The problem is that all these methods assume that the
information provided by X (E, ) about the behavior on
scale E is realistic. Yet, as we have seen, this is generally
not correct. We can better understand this point if we
compare the evaluation of X (E) with the computation
of the power spectrum E [k], which also carries informa-
tion about the behavior on scale c-1/k. The finer the
resolution, the higher the number of Fourier frequencies
that can be computed via a fast Fourier transform. But
the resolution infIluences only the number of Fourier com-
ponents that can be calculated, not the precision with
which a single component is known. Instead, the accura-
cy with which X(E) is known depends on the number of
scales below E that are actually resolved. The reason is
that the local fractal dimension is related to the measure
of the graph on that scale, a notion that involves the
knowledge of all the points that make up the graph.
Moreover, in dealing with real turbulent signals, we have
to keep in mind that the self-affine behavior is expected to
cerise above the integral scale l, and also that below the
Kolmogorov scale g& a turbulent signal becomes smooth
because of the action of viscosity (in this respect, a tur-
bulent signal is intrinsically a prefractal). Therefore, we
expect significant scaling corrections of the kind we have
considered in Sec. IV C for scales below 10 gz. In partic-
ular the scaling can be modified over the entire range if
the ratio I/ilx. &10. The same considerations apply if
we filter the signal. In this case the Kolmogorov scale is
replaced by the inverse of the filtering frequency. In
practice, it thus becomes necessary to infer the fractal na-
ture and dimension from a suitable combination of lead-
ing scaling and scaling correct;ion. As we have seen, the
correction to the scaling of a prefractal has specific
features that can be thought as a sort of "fractal signa-
ture. " These are (i) the exponential approach of
df(E) —df to zero with half time (2—df) in the inter-
mediate scale range (if df is the correct value) and (ii) the
log-linear behavior near the smallest resolved scales of
the scaling correction f(E, b,x). These are features that
can be checked in practice. In both cases one has to try
several Ansatze for the leading scaling, until a self-
consistent behavior is obtained. When this value is
reasonably larger than one, we can conclude that the sig-
nal is indeed a prefractal. To systematically establish
fractality and fractal dimension of a signal, we propose
the following general guidelines.

(i) In order to obtain a first estimate of the dimension,
evaluate the fractal dimension from the power spectrum's
decay exponent a according to df*=(5—a)/2. If the
process is known to be multipoint Gaussian, then
df =df .

(ii) Measure the local fractal dimension df(c. ).
(iii) Check if the scaling correction (at least in some

ranges) is consistent with the assumed fractal dimension
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TABLE I. Experimental parameters of data sets. f, is the sampling frequency, f~ the cutoF frequen-

cy, gJ; the Kolmogorov scale, and g, the cutoff scale. Pairs with and without the asterisk denote values

for bands 1 and 2, respectively.

Flow

Parameter

Re= U „„L/v
L (m)
U „„(m/s)
gz (cm)

f, (kHz)

fp (kHz)

q, = U „„if~ (cm)
Number of points for each record
Total number of records

BLL

6.75 X 10
—11
9.2

0.054
0.8, 80*
0.2, 20*

4.5, 0.045*
212

100

CYL

10'
0.05
27.3

-0.01
60
30

0.091
213

100

BLH

3.6X10'
—11
49.1

0.015
4, 80
1, 20

4.32, 0.22*
212

100

ATM

—7X 10
—18
—6

-0.07
6
2

0.3
216
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FIG. 8. Power spectra of (a) the atmospheric data and (b)
cylinder wake data. The slope of the dotted line is —1.5.

df*. This amounts to verifying that Eqs. (22) and (24) are
satisfied with df =df .

(iv) If the slope is the one expected and this happens in
a range of scales consistent with the analysis of the power
spectrum, then we can conclude that the signal is prefrac-
tal and that the fractal dimension is df =df .

(v) If not, repeat step (iii) with different values for df
and see if Eqs. (22) and (24) are satisfied. If they are (with
some df Wdf* ) we may conclude that the graph is prefrac-
tal, but that non-Gaussian statistics a8'ect the relation-
ship between u and df.

(vi) If Eqs. (22) and (24) cannot be satisfied with any
reasonable df ) 1 value over any reasonable scale range,
then the graph is not a prefractal.

V. DESCRIPTION QF DATA SETS

Hot-wire measurements taken in four types of tur-
bulent fIows have been analyzed. They are the turbulent
wake past a cylinder (CYL), a low-speed turbulent
boundary layer generated by a rough wall (BLL), a high-
speed turbulent boundary layer generated by a rough
wall, (BLH), and the turbulent atmospheric layer (ATM).
Table E summarizes the experimental parameters for each
data set.

A. Atmospheric surface layer (ATM)

These are the data strings with the largest scale ratio
that we have analyzed. As the power spectrum shows
[Fig. 8(a)], almost the entire data lies inside the inertial
range. The spectrum follows a ——', law for more than
two decades. Given the length of the strings and the
good scaling of the power spectrum, we expect to be able
to observe fractal scaling. However, due to the fact that
this is a geophysical Aow where significant large-scale
variability existed, the length of the measurement is
insufhcient to yield well-converged statistics. More de-
tails about this data set are given in Ref. [3].

B. Cylinder wake (CYL)

These data were taken in the turbulent wake behind a
cylinder. The experiment was performed in the Corrsin
wind tunnel (see Ref. [25]). Only fluctuations of the
streamwise component of velocity were recorded. The
power spectrum is shown in Fig. 8(b). Since in this case
the wire length exceeds the Kolmogorov scale, the value
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of qz given in Table I (computed as in Ref. [25]) is only
approximate.

C. Boundary layer: Low-speed case (BLL)
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These data were collected in the test section of the
80X120 ft Full Scale Aerodynamic Facility at NASA
Ames Research Center. Due to the size of this facility, it
is possible to reach very high Reynolds numbers in a con-
trolled fashion. Measurements were taken in the outer
region of the boundary layer, at y/5-0. 9, where 5 is the
boundary layer thickness (5 —1. 1 m). See Ref. [26] for a
more detailed discussion of similar data taken at lower
y /6 values. Fluctuations of the vertical as well as
streamwise velocity component were measured. To
enhance the bandwidth resolution for each component,
data were taken in two different spectral bands, with
different sampling frequencies and low-pass cutoff filters.
In Fig. 9(a) the power spectrum of the two bands com-
bined together is shown. The first band presents a good——', scaling over about 1.5 decades, while the second one
curves down after one decade. For this reason we have
analyzed only the data in band 1.

D. Boundary layer: high-speed case (BLH)

This is the second set of measurements taken in the
NASA Ames facility, at a free stream velocity U of 50
m/s, at y/6-0. 8. In this case the data have also been
acquired in different bands, but using three bands, due to
the longer inertial range. Table I contains the relevant
Aow parameter and sampling and cutoff frequencies.
Only the first two bands have been considered, due to the
presence of noise in the high-frequency region of the last
band and spatial attenuation of the smallest scales due to
the length of the wire (see Ref. [26]). In Fig. 9(b) the
power spectrum of the two bands are combined together
to give a global view. The ——', scaling is evident over
more than two decades. For the second band we expect
to find fractal scaling with possibly some scaling correc-
tions due to the filtering. The first band lies in part out-
side of the inertial range, the part inside covering less
than two decades.

Both the high- and the low-speed measurements were
taken in the outer regions of the boundary layer, where
"outer intermittency" was observed. Intermittent seg-
ments of the data sets exhibit low turbulence intensity,
corresponding to outer Quid being engulfed into the
boundary layer. This contributes to deviations from mul-
tipoint Gaussian statistics and thus serves as an interest-
ing test to see if this causes differences between d& and
df e

VI. RESULTS

In this section, the experimental data sets are analyzed.
For each segment of data, we compute X (E) and the lo-
cal slope d&(s) in the log-log plot. Then, averages are
taken over 100 segments of data, except for the atmos-
pheric case, where only 4 segments were available. With
100 segments of data, statistics are well converged. Error
bars for X (E) and d&(E) are generated by calculating the
variance of X (E) and d&(e) between segments of data.
With the exception of the atmospheric layer data, the
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FICx. 9. Power spectra of (a) the low-speed boundary layer
data in the streamwise direction and (b) the high-speed bound-
ary layer data for the streamwise component for bands 1 and 2.
The slope of the dotted line is —1.6 in both cases.

Flay. 10. Local fractal dimension dI (k)=[5—a(kl]/2 ob-
tained from the local slope a(k) of the spectrum of the stream-
wise velocity component in the atmospheric layer (solid line)
and in the wake of the cylinder (dashed line).
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statistics can be regarded as converged. In the following
subsections, we discuss the results for each flow separate-
ly.

A. Atmospheric turbulence

The ratio between the largest scale within the inertial
range and the cutoA'scale is about 3.5 X 10". Having just
four strings of data, the spectrum (u(k)u*(k)) is very
noisy [see Fig. 8(a)]. The local spectral dimension df*(k)
is shown in Fig. 10 (solid line), using a smoothing window
that includes 1000 modes to compute the local slope.
The plateau corresponds to df =1.68. In Fig. 11 we
show the results of box counting (squares) and the varia-
tional method (triangles). The dashed line has been plot-
ted only for comparison and shows the best linear fit that
can be obtained by fixing the slope to —,'. As expected, for
about one decade at the large scales, df(E) as given by
box counting oscillates around 1.68. We have also ap-
plied the variational method in this case in order to check
whether these oscillations are due to the discrete nature
of box counting. The results show indeed a range where
the df(e)=1.68 (triangles in Fig. 11). Also noticeable is
how the two methods agree at small scales. As a con-

sistency check, we now consider the scaling corrections
using the approach described in Sec. IV. We observe
both the log-linear approach near the cuto6' scale [Fig.
12(a), and 12(b), squares] and the exponential approach
where the Ansatz df = 1.68 is used [Figs. 13(a) and 13(b),
squares].

B. Cylinder wake

The circles in Fig. 11(b) show the results of box count-
ing as applied to the cylinder data. The Aattening of the
local dimension at large scales seems to suggest the value
of 1.75 for the global dimension. Figure 12 (circles)
shows the log-linear behavior of f (c,, b,x ) when df =1.75
is used for the leading scaling. The middle range ex-
ponential approach (Fig. 13, circles) also confirms that
1.75 is a good estimate. The flattening of the spectrum at
large scales (df* = 1.75) (see Fig. 10, dashed line) also sug-
gests that this is a realistic value.
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FIG. 11. Box counting and variational method applied to the
atmospheric surface layer (ATM) and cylinder wake (CYL)
data. (a) Box counting for CYL (circles), box counting (squares)
and the variational method (triangles) for ATM; the dotted lines
mark the expected value for the slope df = 1.66. (b) Local slope
obtained from (a); the symbols are the same as in (a).

FIG. 12. Scaling correction at small scales for ATM and
CYL. (a) f(s, g, ) vs log, ~c/g, : squares correspond to ATM
calculated with a leading exponent df =1.68, while circles cor-
respond to CYL with df = 1.7S. (b) Local slope of (a) vs c/q, .
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C. Boundary layer: low speed

1. Streamauise component

Figure 14 shows the dimension computed from the
slope of the spectrum. In this case we conclude that
d/ =1.7. Figure 15(b) (squares) shows that for this signal
the local fractal dimension remains always below 1.66.
However, a closer look at the scaling corrections [Figs.
16(a), 16(b), and 17(b) and 17(b) squares] shows that dI is
probably closer to 1.7. Indeed, the best log-linear fitting
is achieved for d&=1.7 as seen in Fig. 16 (squares). Us-
ing the same value, the exponential approach in the mid-
dle range is followed for tmo decades remarkably well
[Figs. 17(a) and 17(b), squares].10

10
I ~, ~ I

10' 10

2. Vertical component

Here the local dimension reaches the maximum value
of 1.66 and eventually curves down, although 1.66
remains within the range of the error bars [Fig. 15(b), cir-
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FIG. 13. Scaling correction in the middle scale range for the
ATM and the CYL data: (a) [d/ —d/(e)] vs alt), for ATM
with d&=1.68 (squares) and for CYL with d&=1.75 (circles).
{b) d log[df df{s)]/d logic/t), )+{2—d&) vs e/t)„same sym-

bols as in (a).
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cles]. Figure 16 (circles) shows the small-scale limit of
f (E, b,x), using as leading scaling the value 1.7. The log-
linear behavior is not fully reproduced in this case. The
best exponential approach is achieved when df is set
equal to 1.68 [Figs. 17(a) and 17(b), circles], even though
the range of scales over which the exponential approach
is observed is smaller than for the streamwise component.

The fact that slightly difFerent values of df are ob-
tained depending on the criterion we use is not surpris-
ing, especially considering that the relative dispersion of
these figures is well within the average value of the stan-
dard deviation of the local fractal dimension.
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D. Boundary layer: High speed

As pointed out before, the data analyzed consist of two
bands. Since band 1 lies partly outside of the inertial
range at the outer scale, we expect that the large-scale
behavior of the local dimension will not reAect the actual
value of df.
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FIG. 18. Local fractal dimension df (k)=[5—a(k)]/2 ob-
tained from the local slope o.(k) of spectrum of the streamwise
component in the high-speed boundary layer.
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Stream mise component

Figure 18 shows the dimension as calculated from the
slope of the spectrum. The resulting values for df are
1.65 and 1.7 for bands 2 and 1, respectively. These esti-
mates are apparently contradicted by the analysis of the
local dimension, which seems to tend to 1.75 and 1.5 at
large scales, [Figs. 19(a) and 19(b), squares and triangles].
However, for band 1 the best results are achieved if one
uses 1.66 as the leading scaling for the log-linear behavior
at small scales (Fig. 20, triangles), while the exponential
approach at larger scales is reached if df is set to 1.68
(Fig. 21, triangles). For band 2, the small-scale limit of

f (E, b,x) computed with a leading scaling equal to 1.66
shows a fair log-linear approach (Fig. 20, squares), while
to achieve a good exponential approach in the middle
range the value of 1.68 is preferable.

2. Vertical component

The analysis of the erst band gives results similar to
the one observed for the streamwise component. The di-
mension inferred from the slope of the spectrum is 1.65.
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FIG. 19. Box counting applied to the high-speed boundary
layer data. Squares and triangles corresponds to bands 2 and 1

of the streamwise component, respectively. Stars and crosses
correspond to bands 2 and 1 of the vertical velocity component,
respectively. The dashed line shows df = 3. The standard devi-
ation of the local slope, not reproduced for clarity, is about 5%.
(a) X (c.) vs c/gz (the vertical component is offset for clarity).
(b) Local fractal dimension.

FICz. 20. Small-scale log-linear behavior for the high-speed
boundary layer data. Squares and triangles correspond to bands
2 and 1 of the streamwise component with df = 1.66 and 1.7, re-
spectively. Stars and crosses correspond to bands 2 and 1 of the
vertical component with df =1.66 and 1.7, respectively. (a)
Scaling correction f le, ti, ) vs sic, calculated with leading ex-
ponent df. (b) Slope of (a) vs c, /vy, .
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TABLE II. Summary of measured fractal dimensions of turbulent velocity signals. U denotes the
streamwise component and V the vertical component.

Flow
BLL CYL BLH

Band
Component
dI spectrum
d& small

d& middle

1

U
1.7
1.7
1.7

V
1.65
1.7
1.68

U
1.75
1.75
1.75

U
1.65
1.66
1.68

V
1.7
1.66
1.68

U
1.65
1.66
1.68

V
1.7
1.66
1.68

U
1.68
1.68
1.68

Figure 19 (crosses) shows the results from box counting.
The leading exponent that best achieves the expected
log-linear profile at small scale is 1.66 [Figs. 20(a) and
20(b) crosses], while using for d& the value of 1.68 we
achieve a good exponential approach in the middle range,
as Figs. 21(a) and 21(b) (crosses) show. For the second

band the analysis of the spectrum seems to suggest for d&
the value 1.7. At small scales the log-linear behavior is
achieved setting the leading exponent to 1.66 (Fig.
20(a), (b) stars), whereas the leading scaling for which the
half life is closest to the expected value is 1.68 [Figs. 21(a)
and 21(b)], although it is not very extensive.

Table II summarizes the main results.
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VII. SUMMARY AND CONCLUSIONS

In this paper the fractal nature of velocity signals in
turbulent Aows has been studied. An attempt was made
to test for fractality by taking logarithmic derivatives, but
several calibration experiments with signals of known
fractal dimension proved that finite-size effects had to be
taken into account explicitly. The e6'ort spent in these
calibration experiments was rewarded by the finding that
the corrections have a general form. More important, we
found that these corrections carry information about the
global fractal dimension and this fact can be exploited to
measure this dimension. This result may be quite general
and may find applications to fractal analysis in other con-
texts. When applied to turbulence data, the proposed
data analysis procedure shows that turbulent velocity sig-
nals are indeed prefractals By this we mean to say that
the signals respond to our method of analysis in a way
that is consistent with our predictions. As far as the frac-
tal dimension is concerned, we found that most of the
data and methods give a value around d& =1.7+0.05 and
some data at lower Reynolds number gave d& —1.75.
These results are quite consistent with Orey's theorem for
Gaussian processes, as well as with previous results [14]
in which turbulence data was shown to follow Orey's
theorem. With this more detailed analysis of the scaling
correction, we conclude that the non-Gaussian nature of
turbulence does not significantly modify the relation be-
tween the spectral exponent and the fractal dimension of
the graph of velocity.
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