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Dynamic temperature propagation in a pure Suid near its critical point
observed under microgravity during the German Spacelab Mission D-2
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Diverging thermodynamic and transport properties of a near critical Quid have significant effects on
heat and mass transport; the effects are still under investigation. These effects become visible especially
in experiments carried out under microgravity conditions because in the absence of gravity, buoyancy in-

duced convection is suppressed. According to the "critical slowing down" hypothesis, even longer
thermal relaxation times are predicted for experiments under reduced gravity conditions than for that on
earth. Early experiments under microgravity showed a fast dynamic temperature propagation. More re-

cently, this effect has been called the "piston effect, "or "critical speeding up. " The final thermodynamic
equilibration of temperature and density is still very slow according to a diffusion process of heat and
mass. During the German Spacelab Mission D-2 in 1993, the calorimeter HPT-HYDRA, which was

designed for measurements of the specific heat at constant volume c&, was also used for investigations of
the dynamic temperature propagation. The spherical cell filled with SF6 at critical density was pulsewise
heated, which caused a temperature increase in the fluid of about 10 mK. The temperature propagation
in the fluid was monitored with a resolution of 10pK at three different radial positions in the Quid and at
the wall of the cell. The experiments were carried out at 39 different temperatures in the region of 0.03
K( ~T —Tcj (5.25 K. Approaching the critical temperature Tc, the temperature difference between
the wall and the fiuid decreases to zero in both the one phase and two phase regions. The experimental
results in both the one phase region and two phase regions are in remarkably good agreement with nu-

merical simulations and confirm the fast temperature propagation, which is predicted by the "piston
effect" model quantitatively. In addition the phase separation process during cooling is explained with
this model.

PACS number{s): 66.10.Cb, 65.70.+y, 44.30.+v, 05.70.Fh

I. INTRODUCTION

Usually, experiments in near critical pure fluids suffer
under long thermal relaxation times. This effect is known
as "critical slowing down. " The comparatively fast tem-
perature equilibration observed on earth (lg) was gen-
erally explained with the stirring effect of gravity induced
buoyancy convection. In an experiment performed in
1984 under microgravity with the ballistic rocket TEXUS
[1], where convection was excluded, the temperature
propagation was still very fast. However, the density
change close to the critical point was observed to be very
slow [2]. Onuki and co-workers [3,4] explained the ob-
served fast temperature propagation in the bulk fluid
with an adiabatic, or, more correctly speaking, isentropic
temperature propagation. For the homogeneous super-
critical fluid, they developed a one dimensional analytical
model, that describes the fast temperature response in the
bulk fluid after a temperature step at the wall. With the
assumption that the pressure propagates with the sound
velocity, Boukari et al. presented a numerical solution [5]
and after than an experimental test on Earth [6]. Zappoli
et al. [7] included the pressure propagation in the fiuid
by solving the complete set of hydrodynamic equations
and called the effect the "piston effect. "

In a simple way this effect can be explained as follows.
By heating or cooling the wall of a sample cell filled with
a highly compressible, near critical fluid, the temperature

in a thin boundary layer changes according to thermal
diffusion. Due to its high expansion coe%cient, the fluid
in the boundary layer changes its volume and compresses
(decompresses) the bulk fiuid. This happens adiabatically
without dissipation (and therefore isentropically) and
causes an undelayed temperature change in the bulk.
After that there is only a small temperature gradient at
the wall and no gradient in the bulk. This process is
completely different than that of heat transfer by conduc-
tion. Recent experiments [8,9,17] have confirmed these
considerations qualitatively.

In this paper we present an experiment carried out
during the Second German Spacelab Mission D-2 in 1993
with the HPT-HYDRA calorimeter, which confirms the
fast dynamic temperature propagation quantitatively. A
spherical cell filled with pure SF6 at critical density was
heated pulsewise and the temperature propagation in the
fluid was observed at three radial positions. Numerical
simulations using the experimental boundary conditions
are in very good agreement with the experiments.

II. THEORKTICAI. APPROACH

The Fourier equation generally used for the description
of diffusive heat conduction is valid only for incompressi-
ble substances or for a system kept at constant pressure.
A critical fluid, however, is highly compressible, and
therefore the complete hydrodynamic equations have to
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be considered. Zappoli et al. [7] presented a complete
solution. To describe the fiuid properties he used the van
der %'aals equation, because solving the complete set of
hydrodynamic equations with an equation of state for a
real Quid requires extremely long computation time.

Boukari et al. [5] reduced the momentum equation to
the assumption that the pressure in the system is constant
over the whole sample volume and therefore only time
dependent. This is allowed because the sound velocity is
still high close to the critical point (e.g., 50 ms at
T Tc=—0.01 K). Neglecting the velocities in the fiuid,
the conservation of energy is described by the change of
the local entropy s:

pT =VX, (VT),9s
at

with A, the thermal conductivity, t the time, p the density,
and T the temperature. Assuming local equilibrium, the
change of entropy s is expressed by

with n as the isobaric expansion coeScient and gT as
the isothermal compressibility.

Equations (6) and (8) can only be solved numerically.
Within that limitation, experimental conditions with time
dependent boundary conditions can be approximated nu-
merically. Therefore we have used this approach for the
simulation of our experimental results.

Because of the rotational symmetry of our spherical
sample cell with radius R (Fig. 1), we treated the problem
in one dimension with the spatial coordinate x, which is
counted in the radial direction with x =0 at the sample
wall and x =R in the center of the cell. Considering the
spherical shape of the sample cell, Eq. (6) changes to

+ 1 — BT
c Bp Bt

Bs Bs

Bt AT
(2) and Eq. (8) to

with p the pressure. Using the Maxwell relation

Bs 1 Bp

Bp T p, 8T (3)

PCS R X dX
Bp x =0 Bt

f py (Q —«)2d«
x=0

(10)

the definition of the specific isobaric heat capacity

Bs
dT

and the thermodynamic relation
T

T Bp Bp
aT BTP .p p

Eq. (1) can be transformed into

Equations (9) and (10) are solved iteratively for the two
variables time t and space x. As the time variable bound-
ary condition we used the measured temperature rise of
the cell wall. For completeness, the analytical solution of
Qnuki et al. [3] is presented in a complete and
transformed description. It describes the temperature
response in the Quid caused by a temperature step from
the initial temperature TO to the final temperature T~ at
the wall:

BT 1
V(A, VT)+ 1—

elf pep

cy

Cp

BT Bp

Bp Bt
(6)

Approaching Tc the diverging isobaric heat capacity c~
obviously diminishes the inQuence of the first term on the
right-hand side of Eq. (6), which describes the thermal
diffusion. The inQuence of the second term increases and
causes an isentropic temperature change in the bulk Quid.
For an incompressible quid cz/c =1, the pressure term
equals zero and Eq. (6) corresponds to the Fourier equa-
tion

To determine the pressure change we write

Bp Bp BT Bp Bp
dt dT dt Bp T Bt

Due to mass conservation the integral of the density
change over the sample volume must be equal to zero.
As the pressure is assumed to be only time dependent,
Eq. (7) can be transformed to

fpa~(dT!dt)d V

fpX dV

ing tube

ctrical heater

thermistors

FKx. 1. Sketch of the sample cell, a hollow sphere of 20 mm
diameter with a wall thickness of 0.4 mm, made of copper with
a gold layer inside and outside, one thermistor at the outer sur-
face of the wall, and three thermistors in the Auid at di6'erent
radial positions.
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T~ T—(x, t) =exp
+W ~0

' 1/2
cp A 4—1 QD,„
Cy

th
I. 1/2

X erfc
2+D,„t

Here A is the heating area of the sample, V is the total
volume, T(x, t) is the actual temperature in the fluid, and
Dth is the thermal diffusivity. Here the spatial coordinate
x is perpendicular to the heating area A. The exponen-
tial function describes the temperature change in the
bulk. The erfc in Eq. (11) describes the temperature
profile of the boundary layer at the wall. It is the analytic
solution of the Fourier equation for heat conduction into
a half-infinite body. It is valid as long as the boundary
layer is not extended to the center of the sample cell
(x &R ). For x/(2+D, ht ) &2 the erfc tends to unity,
and Eq. (11) describes the isentropic temperature change
in the bulk fluid. It must be emphasized that Eq. (9) is
only valid for an ideal temperature step that cannot be
realized in experiments and therefore discrepancies occur
when comparing the predictions with experimental re-
sults.

However, from this approach one can estimate the
inhuence of the Quid properties and the geometry of the
sample cell on the equilibration process. With an increas-
ing ratio of the heating area to the total sample volume,
3 /V, the temperature change of the bulk is accelerated.
This fact should be considered in the design of experi-
ments to obtain a measurable temperature response in the
bulk by a small temperature change at the heated wall.
As (c„ /cz)Q D, h- r diverges along the critical iso-
chore for r=~(T T, )/T, ~~—O, the temperature propa-
gation becomes faster as it approaches the critical point.

III. EXPERIMENTAL SETUP

During 40 hours of altogether 220 hours experimental
time of the D-2 Mission we used the HPT-HYDRA
calorimeter setup described in [10] to also perform exper-
iments on temperature propagation. The spherical cell
(see Fig. 1; inner radius R =9.6 mm; wall thickness: 0.4
mm; wall material: copper) filled with pure SF6 (critical
temperature of SF6: Tc=318.733 K) at critical density
was mounted in the center of a three stage thermostat.
To avoid uncontrolled heat loss to the surrounding stage,
vacuum of high quality was maintained and the tempera-
ture difference between the sample cell and the surround-
ing shell until the beginning of the heat pulse was set to
zero.

At 39 difFerent temperatures in the range 0.03 K
&

~
T Tc ~

& 5.25 K the—cell was heated for 10 s with a
power of 3.85 mW and the temperature response was
measured with four thermistors (diameter: 0.35 mm;
time constant: 0.1 s) with a measuring frequency of 1.66
Hz. One thermistor was fixed at the outer surface of the
spherical cell, and three were in the fluid at different dis-
tances from the wall (3.2, 6.0, and 8.4 mm). Each heat
pulse caused a temperature increase of cell and Quid be-
tween 8 and 15 mK, depending on the distance from T&.

This heater was realized by a wound wire, which was

pasted on the outer surface of the cell along a great circle.
The thermal conductivity of the adhesive is given by 1.0
Wm ' K '. The maximum temperature difference in
the cell wall, which occurred at the end of the heat pulse,
was calculated to be less than 1 mK. The thermistor for
measuring the wall temperature was mounted at a dis-
tance of about 5 mm from the heater, where the tempera-
ture equaled the mean temperature of the wall to within
0.1 mK. So the whole wall of the cell can be treated as an
almost isothermal heating area and thus we obtained a
large ratio A /V=3/R.

There was only one amplifier installed for the tempera-
ture measurement of the four thermistors. Since its tran-
sition time constant was 3.9 s, it was not possible to
switch between them during one heat pulse without loss
of information. Therefore we performed four identical
heat pulses at each temperature level and measured only
one thermistor at each pulse.

IV. EXPERIMENTAL RESULTS

A. One phase region above T&

In Figs. 2(a) and 3(a) the temperature response during
and after the 10 s heat pulse is shown at temperatures of
T—T~=4.75 and 0.1 K, respectively. The solid line
represents the temperature T~ at the wall of the cell, and
the symbols the resulting temperature in the Quid at the
various positions as indicated. The dashed line shows the
result of the numerical calculation according to Eqs. (9)
and (10) with Tz, (t) as the boundary condition at x =0.
Note that at T Tc =4.75 K (F—ig. 2) the three tempera-
tures in the fIuid at the positions x =3.2, 6.0, and 8.4 mm
are almost equal, while between the wall and the bulk a
reasonable temperature difference is developed in a thin
boundary layer; see Fig. 2(b). Here the calculated tem-
perature distribution in radial direction after the 10 s
heat pulse is plotted. The thickness of the thermal
boundary layer established by diffusion is less than 0.5
mm. The uniform temperature increase in the bulk is
caused by the isentropic compression as a consequence of
the expanding boundary layer. Because of the thermal
resistance of the adhesive, the measured temperature
response is delayed by about 2 s and at the end of the
pulse the temperature increase continues for the same
amount of time. As we could not measure the thickness
of the adhesive layer between the heater and the cell wall
reliably, we determined the transient behavior between
heater and cell by a reference experiment with an empty
cell. It must be pointed out that this time delay has no
inhuence on our result, because in the numerical calcula-
tion the actual recorded wall temperature itself is used as
a boundary condition. It is demonstrated that the calcu-
lated curve follows exactly the measured values. This
confirms the hypothesis of the isentropic temperature
propagation and the physical correctness of the numeri-
cal modeling.

At T Tc =0. 1 K (Fig.—3) nearly no temperature
difFerence between the wall and the bulk Quid is observed.
The calculated temperature course follows exactly the
measured courses. After 10 s the calculated temperature
difference between wall and bulk is about 0.2 mK and the
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thickness of the boundary layer is 0.2 mm; see Fig. 3(b).
That means that because of the diverging thermal con-
ductivity A, , the thermal resistance between wall and Quid
is nearly zero, although the thermal diffusivity is very
low. At T—Tc=0. 1 K the thermal conductivity A, of
the Quid is 0.4 W m ' K ' and its thermal dif-
fusivity D,h=3. 6X10 ' m s ', compared to A, =0.08
Wm 'K ' and D,„=6.5X10 ' m s ' at T—T~
=4.75 K. Closer to the critical point this temperature
difference becomes so small that within the uncertainty of
the measurement no temperature differences were ob-
served. Therefore no experiments closer to Tz are
presented here.

B. Two phase region below Tc

Below the critical point the phase distribution under
microgravity is not as obvious as under 1g conditions.
From several experiments, we know that the liquid phase
wets the wall and the vapor forms a bubble in the liquid.
Therefore in a spherical cell filled with a Quid at critical
density one will expect a phase distribution where the va-

por bubble, which is not necessarily centered, takes al-
most half of the cell volume and is surrounded by a liquid
layer at the wall. In our cell the phase distribution is dis-
turbed by the thermistors, but we do not know in what
way. However, for the following consideration and for
the numerical simulations we assume a symmetric phase
distribution with the bubble in the center of the cell sur-
rounded by a liquid layer of about 2 mm thickness.

In the two phase region a heat pulse causes difFerent
temperature responses in the liquid (vapor). We can as-
sume that the pressure rise caused by the expansion of
the thermal boundary layer is equal in both phases, but
even close to Tc the thermophysical properties are
difFerent in both phases. In our special case the isentro-
pic temperature pressure coefficient (dT!dp), of the va-

por is larger than that of the liquid. Therefore, for the
same pressure increase, the isentropic temperature in-
crease in the vapor is higher than in the liquid.

The T sphase d-iagram (Fig. 4) explains this effect:
Starting from the saturation state of both phases (l) a
thin liquid boundary layer is heated up, penetrates with
increasing entropy into the metastable region, and ex-
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FIG. 2. (a) Temperature response in the Quid (triangles,
squares, diamonds) and at the sample wall (solid line) during
and after the heat pulse at T—Tc =4.75 K compared to the nu-

merical simulation for the bulk Quid (dashed line). (b) Calculat-
ed temperature distribution (solid line) at the end of the heat
pulse after 10 s. The measured temperatures at this time are
marked with the corresponding symbols.

FIG. 3. (a) Temperature response in the Quid (triangles,
squares, diamonds) and at the sample wall (solid line) during
and after the heat pulse at T—T& =0. 1 K compared to the nu-
merical simulation (dashed line). (b) Calculated temperature
distribution (solid line) at the end of the heat pulse after 10 s.
The measured temperatures at this time are marked with the
corresponding symbols.
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FIG 4 The process of heating below the
critical point, schematically explained in a T-s
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pands to (2). With that the saturated bulk fluid (1)—both
liquid and vapor —is compressed isentropically and heat-
ed up to (3). Due to the asymmetry of the isobars in the
T-s phase diagram the temperature increase of the vapor
is larger than that of the liquid. The vapor is superheated
and the liquid subcooled now; phase transition with mass
transport occurs only at the interface. It must be em-
phasized that by heating up a two phase system both
phases are driven away from equilibrium and therefore
long thermal relaxation times are required, as was ob-
served on earth and in space [1,2].

In the numerical calculation we assume that the tem-
perature at the interface is always at saturation according
to the calculated pressure of the system. This assumption
can be justified, because a small deviation from the equi-
librium yields strong evaporation or condensation in such
a way that the equality of the chemical potential at the
interface follows immediately. The bulk liquid and vapor
follow the equilibration by a slow process of heat and
mass difFusion. This assumption is consistent with exper-
imental observations of Straub [11]. He observed that in
a two phase system the densities at the interface of both
liquid and vapor follow immediately a temperature rise
and equal the corresponding saturation densities. For the
short time of our calculation, however, the mass trans-
port across the interface can be neglected. From the cal-
culation we receive the temperature response separately
in both phases and at the interface; see Fig. 5. A model
and numerical simulations, where the mass transport
across the interface is considered, is presented in [12].

The measured temperature response of the thermistors
at x =3.2 and 8.4 mm follow the predicted course of the
saturation temperature; that of the thermistor at x =6.4
mm is close to the predicted one of the vapor. From this
observation we conclude that the bubble is not centered
in the sphere, but must be dislocated by the thermistors
itself.

This dislocation of the bubble is observed in all experi-
ments for T—Tc( —2 K. At about T—T~= —l K and
closer to Tc the measured temperature courses of all
three thermistors are equal. Within the uncertainty of
the measurement they lie between the predicted tempera-
ture of the liquid and the saturation temperature (Fig. 7).
This leads to the assumption that close to Tc the

thermistors are wetted with liquid caused by the perfect
wetting near the critical point as described in [13].

After the 0-2 mission we performed the experiments
with the same setup under Earth conditions. Here the
phase distribution is obvious and we know which
thermistor is immersed in the liquid (vapor). Figure 6
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saturation (interface)
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vapor
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liquid

saturation temperature
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wall x [mm]
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FIG. 5. (a) Temperature response in the fluid (triangles,
squares, diamonds) and at the sample wall (solid line) during
and after the heat pulse at T—Tc = —2.25 K compared to the
calculated temperature courses of liquid and vapor and at the
interface (dashed lines). (b) Calculated temperature distribution
{solid line) at the end of the heat pulse after 10 s in both phases.
The measured temperatures at this time are marked with the
corresponding symbols.
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FICy. 6. Experimental run under Earth conditions at
T—Tc = —2.25 K. The temperature response in the Quid (tri-
angles, squares, diamonds) and at the sample wall (solid line)
during and after the heat pulse is compared to the calculated
temperature courses of liquid and vapor and at the interface
(dashed lines).

C. Discussion of the experimental results

All results of the experiments at microgravity and 1g
are shown in Fig. 7 for the temperature range of the ex-
periment. For comparison we define a dimensionless
temperatu«difr«ence (T„aii —Tfl„;d ) /( T„gg —T;„;„„)at
the end of the 10 s heat pulse. Above T& the numerical
simulation is in very good agreement with the experimen-
tal results obtained under reduced gravity. Even under
Earth conditions the agreement is good up to
T—Tc=0.5 K. It must be emphasized that in the nu-

shows the measured temperature response at T—Tc
= —2.25 K compared to our numerical simulations.

For both phases the measured temperature response is
faster than that predicted by our simulations. This is ex-
plained by the inhuence of buoyancy convection, which
accelerates the temperature propagation. But it is re-
markable that the temperature difference between the
two phases in the experiment is equal to the calculated
one. This observation was made in all experimental runs
below Tc, see Fig. 7.

merical simulation no convection effects are considered.
For T—Tc &0.5 K we observed on Earth a slightly fas-
ter temperature propagation than predicted. We explain
this with the beginning inhuence of convection. But even
here the isentropic temperature propagation is the dom-
inant transport process.

Below Tc the microgravity results up to T—Tc= —2.0 K are more or less between the calculated tem-
perature responses for vapor and saturation. Mostly, two
of the thermistors are close to the behavior of the satura-
tion temperature. That means that they are located very
close to the interface. One thermistor seems to be more
immersed into the vapor phase. We tentatively suspect
that the thermistors squeeze the vapor bubble into one
side of the spherical cell. Between T—Tc = —1.0 K and
T= Tc there is no significant temperature difference be-
tween the thermistors and they show all the predicted
behavior of the liquid. We explain this with the perfect
wetting near the critical point [13]. So all thermistors are
wetted by liquid and as a consequence they see the tem-
perature of the liquid. In the 1g experiments we know
the position of the thermistors; see Fig. 7. Between
T—Tc = —1 K and T —Tc =0 K the measured tempera-
ture response follows very well the predictions of our
simulation. At lower temperatures the inhuence of con-
vection becomes visible and the temperature propagation
is accelerated in the vapor phase more than in the liquid.
As we observed by heating a transparent sample cell,
separate convection rolls divided by the interface will de-
velop in liquid and vapor and no mass How will cross the
interface. As discussed above, the isentropic piston effect
dominates the temperature propagation for temperatures

~
T Tz ~

(1 K. In —this region convection plays a minor
roll, because the boundary layer created by diffusion is
very thin and does not lead to a significant stirring effect
within the short time of the experiment.

V. COOLING AND PHASE SEPARATION

In the preceding section we have discussed only the re-
sults of heating. In the one phase region, as long as no
density stratification is established and cooling does not
go below Tc, the temperature propagation can be calcu-
lated with Eqs. (7) and (8).

1.0

«8

0.5

FICJ. 7. Dimensionless temperature
difference between wall and Quid after the heat
pulse f'or all microgravity experiments (open
symbols) and 1g experiments (fi11ed symbols).

DO
6
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