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Velocity autocorrelation function of interacting Brownian particles
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We study the velocity correlation function of a selected particle in a suspension of interacting Browni-
an particles. Experimentally, the velocity correlation function can be observed with diffusing wave spec-
troscopy. The function has also been determined in computer simulation. We assume a wide separation
of time scales between momentum relaxation and diffusive motion. The correlation function is found
from linear hydrodynamics by use of the fluctuation-dissipation theorem. We propose a simple approxi-
mation based on the single particle result that is valid for a dilute suspension. The approximation is fully
determined by the short-time self-diffusion coeKcient and the effective mass of the selected particle. We
discuss the concept of scaling within the framework of the approximation. We find that the amplitude of
the t long-time tail is independent of the concentration of the suspension.

PACS number(s): 05.40.+j, 51.10.+y, 66.10.Cb, 82.70.Dd

I. INTRODUCTION

Recently it has become possible to measure the velocity
correlation function of a Brownian particle on the fast
time scale of momentum relaxation, by the method of
diffusing wave spectroscopy [1—5]. The correlation func-
tion has also been studied in computer simulation, either
via a fluctuating lattice Boltzmann equation [6], or by
molecular dynamics simulation of a mixture [7]. The
time scale under consideration is sufficiently short that
retardation of hydrodynamic interactions due to fluid in-
ertia must be taken into account.

In this paper, we analyze the velocity correlation func-
tion of a selected particle in a suspension of interacting
Brownian particles on the basis of the fluctuation-
dissipation theorem. It is assumed that the time scale of
average momentum relaxation is sufFiciently short, that
difFusive motion may be neglected. As a consequence, it
suffices to find the hydrodynamic admittance matrix at
nonzero frequency for fixed configuration, and average
this over the equilibrium distribution of particle
configurations. The method of cluster expansion allows
one to reduce the average to a sum of cluster integrals,
each involving a hydrodynamic problem for a relatively
small number of particles. For a semidilute suspension it
suffices to solve the hydrodynamic two-sphere problem.
However, even this is fairly complicated, and we do not
attempt its complete solution here.

Rather, we conjecture that the Laplace transform of
the velocity correlation function may be approximated by
a simple expression based on its behavior at low and high
frequency. The expression is characterized by two poles
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in the square root of frequency plane. This generalizes
the exact single particle result to higher density. We
show that the parameters of the two-pole approximation
may be calculated from the short-time self-diffusion
coefficient, and the effective mass of the selected particle.
The latter may be calculated from potential How theory.

It has been proposed that the velocity autocorrelation
function shows scaling behavior, and that the data for
different systems may be collapsed onto a universal curve
by suitable scaling of time [4—7]. Our analysis suggests
that such scaling has only limited validity, at least for
semidilute suspensions.

II. SINGLE PARTICLE BROWNIAN MOTION

In this section, we review well-known results for the
velocity correlation function of a single Brownian parti-
cle. We consider the Brownian motion of a single spheri-
cal particle of radius a, mass m, immersed in an in-
compressible fluid of mass density p, shear viscosity q, at
temperature T. The velocity correlation function of the
Brownian particle is defined by

C(t) =
—,
' (U, (t).U, (0)),

where U, is the translational velocity of the particle, the
time evolution is governed by the Liouville equation of
the whole system, and the angle brackets denote the equi-
librium ensemble average. We attach the label 1, because
later we shall discuss systems with many Brownian parti-
cles. We define the one-sided Fourier transform as

C(co)= J e'"'C(t)dt .
0

According to the fluctuation-dissipation theorem [g —10]
the Fourier transform is given by

C'(co) =k~ TP, (cu),

where P, (co) is the translational admittance of the parti-
cle, defined from the linear response to a periodic applied
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force Ei(t) =ReE,„exp( i—cot),

U,„=P, (co)E, (4)
C(t)= y(t/rM )

m

with a relaxation function y(r) that decays to zero start-
ing from the initial value y(0+) =1, and with a mean re-
laxation time ~~ defined by

1 OD

C(0+ ) 0
C tdt. (12)

Bv
8 =%IV v —Vp, V v=0,

Bt
(5) From Eqs. (3), (8), and (10) we find

The overhead bar is a reminder that we are considering
the macroscopic linear response. On the macroscopic
level the linear response may be calculated from the
linearized Stokes equations for the Auid

where v(r, t) is the flow velocity, and p (r, t) is the pres-
sure, which follows from the condition of incompressibili-
ty. We shall assume stick boundary conditions at the
particle surface. For small oscillations the boundary con-
ditions may be applied at the undisplaced spherical sur-
face. The equation of motion for the sphere is given by

m
M 6mqa

(13)

so that rM=(m*/m )rz. The Laplace transform of the
relaxation function is defined as

I (z)= f e "y(r)dr .
0

dUi
m =K)+E),

dt
(6) It is given by

where K& is the force exerted by the Auid, which may be
calculated from the Auid stress tensor. For periodic oscil-
lations

—icbm U)„=K) +E,„.

I (z) =6mqa'P, (co), z = iso—rM .

From Eqs. (8) and (9) we find the explicit expression

r(z)= 1

1+oyez +z (16)

It was shown by Stokes [11]that the translational admit-
tance is given by

P, (~0)= 1

&co(m —+ —,'mf )+g„(co)
(8)

with mf =(4m/3)pa the fiuid mass displaced by the
sphere, and with friction coefficient

g, (co) =6~ri[1+aa], (9)

where a=& imp/rt, R—ea) 0. The added mass —,'mf is
due to the inertia of the surrounding Auid. The frequency
dependence of the friction coefficient is characterized by
the viscous relaxation time r„=a p/g. The square root
branch cut in the frequency plane is taken along the neg-
ative imaginary axis. The square root singularity causes
a long-time tail proportional to t in the velocity
correlation function [12,13].

It follows from Eqs. (3) and (8) that the initial value of
the correlation function is

with the parameter o. given by
1/2

9mf

2m

p(u) = ——ImI (z = —u +i0) .
1

(18)

The inverse Laplace transform shows that the relaxation
function y(r) is given by a superposition of purely decay-
ing exponentials

y(r)= f p(u)e "'du .
0

The spectral density has been normalized such that

(19)

f p(u)du =1, f du =1 .
0 0 0

(20)

It is evident that the function I (z) has a square root
branch cut along the negative real axis. The discontinui-
ty of the imaginary part determines the spectral density
p(u) according to

k~T
C(0+ )=

m

The function I (z) has the Stieltjes representation
(10)

r(z)= f "P "
du .

0 9+2 (21)
with the efTective mass m *=m + —,'mf. From equiparti-
tion it follows that C(0)=ksT/m~. As explained by
Zwanzig and Bixon [14], the difference is due to a rapid
initial decrease of the correlation function on the time
scale v; =a/s, where s is the velocity of sound. Due to
our assumption of Auid incompressibility the time scale
~, is taken to be infinitesimal. The actual value of ~,
must be compared with the Brownian time scale
~z =mz/6mga. In practical situations ~z and ~, are of
the same order of magnitude, and the time ~, is much
smaller.

We write the correlation function C(t) in the form

From Eqs. (16) and (18) one finds explicitly [15]

1 oVup(u)=—
~ 1+(o —2)u +u

(22)

This tends to a 5 function at u=1 for o.~O. The spec-
trum broadens as the parameter o increases. The relaxa-
tion function is given explicitly by [16—19]

(23)

l3+~( i3+&r) 3~( i—3 &~)],— —-
cr —4
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where w (z) is related to the error function of complex ar-
gument [20]. The values y+ correspond to the roots z+
of the denominator in Eq. (16) as y+ =Qz+, and are
given by

y = ——'o+ —'+o —4 .+ Y —Y

The relaxation function has the long-time behavior

(24)

y(r)= —r as r~~ .—3/2
2i/ir

(25)

The corresponding long-time behavior of the velocity
correlation function is

C(t)= ,', ksTi—/p(irrtt) '" a (26)

It is interesting to note that this is independent of the
mass or size of the Brownian particle. A similar long-
time tail was observed by Alder and Wainwright [21] in
the velocity correlation function of a single molecule in a
hard sphere Quid.

III. INTERACTING BROWNIAN PARTICLES

In nondilute colloidal suspensions one can observe the
effects of interaction between Brownian particles. There
are direct interactions, e.g., of van der Waals type, and
hydrodynamic interactions caused by the Aow of solvent
Quid. In diffusing wave spectroscopy one observes the
Brownian motion of individual particles, as modified by
the interactions. The relevant time scale in such experi-
ments is of the order of the Brownian relaxation time ~z.
Typically the experiments cover the range 0.1~~ —1000~~.
%'e must study the velocity correlation function of a
selected particle, labeled 1, as defined in Eq. (1).

More generally we consider the Brownian motion of
the whole set of N particles enclosed in the volume V.
The configuration at any time, as specified by the posi-
tions of the particle centers, is denoted as
X=(Ri, . . . , Rtc). Besides the translational velocities
U=(U„. . . , Uz), we must also consider the rotational
velocities (Q„.. . , Atc). The dynamics of the system of
Brownian particles is characterized by the 6N X6N corre-
lation matrix

For a typical system of Brownian particles the Browni-
an relaxation time ~z is much smaller than the diffusion
time ra=a /Do, where Do =kii T/6m. rta is the bare
diffusion coefficient of a single sphere. This implies that
the mean square displacement of a sphere after a time ~~
is much smaller than the radius squared of the sphere.
Hence the correlation matrix for the subensemble with
fixed configuration X may be related to the admittance
matrix Y(X,co ) by

C(X,co) =k~ TY(X,co), (29)

in analogy to Eq. (3). The desired correlation matrix
C(co) is given by the average over the equilibrium distri-
bution P, (X) of configurations X,

C(co)=k iTiJY(X,co)P, (X)dX

=ks T(Y(X,co) )» . (30)

Finally, we take the thermodynamic limit N ~ Do, V~ ac

at constant density n =N/V. The velocity correlation
function of the selected particle, labeled 1, is given by

C'(co) = k~ T9',*(co),

with the efFective admittance P;(co) defined by

(31)

(32)

We repeat that the conditions for the validity of Eq. (30)
are the inequalities ~, &&~z=w„&&~o. The Auctuation-
dissipation theorem in the form Eq. (29) has been derived
from Auctuating hydrodynamics by Hauge and Martin-
Lof [22], by Bedeaux and Mazur [23], and by Hinch [19].

IV. EFFECTIVE ADMITTANCE

In this section, we study the effective admittance
P;(co), defined in Eq. (32). The average may be evalu-
ated by the technique of cluster expansion. This allows
one to express the effective admittance in terms of the
solution of a set of hydrodynamic problems, each involv-
ing a relatively small number of particles. The expression
in Eq. (32) is transformed to

C vU(t) C Un(t)
(t)=

CnU(t) Con(t) (27) P, (co)= —g Jd2 ds n(1, . . . , s)
1 1

n, , (s —1).

The one-sided Fourier transform of the correlation ma-
trix, defined as in Eq. (2), will be related to the admit-
tance matrix in analogy to Eq. (3). The admittance ma-
trix of the system Y(X,co ) is defined for each
configuration X from the linear response to periodic ap-
plied forces E =(E, '. . . , Etc ) and torques
N =(N), . . . , N~ ),

U„YUU(X, c0) YUn(X, co) E
Q YciU(X, co) Ynci(X, co) N„ (28)

Again the overhead bar indicates that we are considering
the macroscopic linear response. The admittance matrix
Y(X,co) may in principle be calculated from the linear-
ized Stokes equations Eq. (5).

XM(1;2, . . . , s, co), (33)

M(1)= —,'trYU U (1;co)= i/, (co),

M(1;2)=—,'trY& U (1,2;co)—M(1),

M(1;2, 3)=—,'trYU ~ (1,2, 3;co)—M(1;2)
—M(l'3)+M(1) . (34)

where n (1, . . . , s) is the s-particle equilibrium distribu-
tion function, as calculated in the thermodynamic limit,
and the function M(1;2, . . . , s, co) is related to the s-
particle admittance matrix Y(1, . . . , s;co) by a rooted
cluster expansion [24]. The s-particle admittance matrix
is to be calculated for infinite volume. The first few terms
of the rooted cluster expansion read
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Successive terms in Eq. (33) describe many-body hydro-
dynamic effects of increasing complexity. The term of or-
der s involves at least the power n' ' in density. If we
limit attention to at most the two-body term, we approxi-
mate Eq. (33) by

sphere at volume fraction P=(4nl3)na, as found from
low Reynolds number hydrodynamics. The coefficient
cr(P) is a generalization of the parameter cr in Eq. (16). It
is defined from the exact low-frequency expansion of the
effective admittance

5',*(co)=P, (co)+n fg (R)M(1;R,co)~~ dR, (35) P,*(co)=ps(P)[1—o.(P)&z +O(z)], (38)

where R=R2 R& is the relative distance vector of the
pair (1,2), and g(R) is the radial distribution function.
Particle 1 may be taken to be centered at the origin. To
first order in density the effective admittance is

P «( co) =5', ( co) +n Jexp [ Pu (R—) )M ( 1;R, co ) ~ z d R

+O(n ), (36)

V. TWO-POLK APPROXIMATION

The analytic behavior of the trace of the admittance
tensor tr Y U z (X,co) as a function of frequency, and con-

1 1

sequently that of the effective admittance P,*(co), is
strongly limited by an exact theorem that shows that
both functions may be represented as Stieltjes integrals
with a positive spectral density on the negative imaginary
~ axis. We prove the theorem in the appendix. It follows
from the theorem that the velocity correlation function is
a completely monotone function [29]. A good approxi-
mation may be found on the basis of an approximation to
the spectral density. The effective admittance is studied
conveniently by transformation to the square root of fre-
quency plane [30]. A useful approximation is obtained if
a small, but sufficient number of poles nearest the origin
are taken into account. We conjecture that in the present
problem two poles are sufficient, at least for low density.

The approximate analytic expression for the effective
admittance takes a form analogous to Eqs. (8) and (9) for
a single particle. Explicitly we write

5',*(co)= vs(4»)

I+a(P)&z +z
where ps'(P) is the zero-frequency self-mobility of a single

where u (R ) is the effective direct interaction between two
Brownian particles.

Explicit calculations based on Eq. (35) or (36) would re-
quire a complete solution of the hydrodynamic two-body
problem at frequency co. A first attempt was made by
Clercx and Schram [25]. However, their solution of the
hydrodynamic problem involves only multipoles of low
order. We show in the appendix that their solution leads
to unphysical behavior of the velocity correlation func-
tion in some cases. A complete solution can be obtained
on the basis of the solution of the two-sphere problem at
zero frequency of Cichocki, Felderhof, and Schmitz [26],
in combination with the linear response formulation of
Ref. [27] and the addition theorem quoted by Felderhof
and Jones [28]. However, this solution is technically
demanding, and we shall not embark on it here. Rather,
we shall construct an approximate expression for the ve-
locity correlation function, based on exact results at low
and high frequency.

where the variable z is defined by

z = —~~rM(4» (39)

with the density-dependent mean relaxation time rM(P).
The latter is defined from the exact velocity correlation
function as in Eq. (12). This requires determination of
the effective mass m *(P) from the high-frequency
behavior

P;(co)=
i corn —(P)

as co —+ (x) (40)

The mean relaxation time is given by

&M(0) ™(ctp)ps(A» (41)

in analogy to Eq. (13). Thus determination of the two-
pole approximation Eq. (37) requires calculation of the
three transport coefficients pz(P), o(P), and m '(P). ~e
expect that Eq. (37) provides an accurate approximation
to the exact function, at least for low density.

The mobility ps(P) is known exactly at low density
from the solution of the two-body Stokes problem
[31,32]. For a system of hard spheres it is given to first
order in volume fraction by

ps(P)= [1—1.8315/+0($2)] .
1

6mqa
(42)

1
YU U (X;co)=pi'i(X)—

6~q

—t cop 1+O(co), (43)

where p, &'&(X) is the zero-frequency mobility tensor for
configuration X. The &co term shows that the long-time
tail in the velocity is independent of the presence of the
other spheres. The proof of this simple relation is some-
what elaborate, and is presented elsewhere [36]. As a

In earlier work we have derived an approximate value for
high density [33]. For systems with different direct in-
teractions the corresponding equilibrium distribution
function must be used [34). Alternatively, the mobility
may be found from the experimental value for the short-
time self-diffusion coefficient Ds(P) by use of the Einstein
relation Ds(P)=k~Tps(P). The self diff'usion coefficient
for short times, in the usual sense of Brownian motion
theory based on the Smoluchowski equation [31,32], is
relevant here, since on the time scale ~z we neglect the
change of configuration.

Milner and Liu have attempted to calculate the param-
eter cr(P) to first order in volume fraction [35]. Unfor-
tunately, their analysis is incorrect. Their result is in
conAict with an exact relation. It may be shown that for
any number of spheres the low-frequency expansion of
the translational admittance tensor is given by

1/2
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consequence of Eq. (43) the parameter o(((t) is given ex-
actly by

o(P)= 1

6n m ~(p)

1 /2

[nc "(4)] '". (44)

It remains to determine the effective mass m'(P). This
follows from the response to an applied force on particle
1 at high frequency. In the low density limit it is given by
m mp +

2 m& . At higher density the effective mass is
modified by instantaneous hydrodynamic interactions. If
a 5-function force Ei(t)=S5(t) is applied to a single
sphere in infinite incompressible Quid, then instantane-
ously the potential Qow pattern

1 a —1+3rrv(ro+)= — S, r )a,
& m r

(4&)

m *(p)=I '+ 5m *(p), (46)

where m*=m + —,'m& is the single particle term, and
5m "(P) is the correction due to hydrodynamic interac-
tions.

Here we consider the effective self-mass for a semidi-
lute suspension. Then the correction 5m '(P) may be cal-
culated analytically, apart from a simple quadrature. It
suffices to consider the potential flow problem for a pair
of spheres. To first order in volume fraction we write

5m'(P)=k ti)+O(P'), (47)

is established [37]. Subsequently the fiow pattern changes
and decays due to viscous dissipation. The relation (45)
shows that for many spheres there are instantaneous hy-
drodynamic interactions, which may be calculated from
potential fiow theory [38]. The theory of high-frequency
response of a suspension is closely related to the theory of
the dielectric constant of a system of electrically polariz-
able particles [37]. In the present case we need to calcu-
late the self-mass, rather than the collective effective mass
of the suspension. The latter is relevant for collective
particle motion. The technique for calculating the
effective self-mass m (P) is well known. Numerical re-
sults for a dense suspension of hard spheres will be
presented elsewhere. We write

mI mp

m&+2m

and where we have used the dimensionless variable
x =R/a. The integrand for the coefficient k is more
complicated. In Table I we list the values of the
coefficients k, k, and k, for several ratios mI/m, as
calculated for a system of hard spheres, i.e., with
go(R)=8(R —2a). It is worth noting that multipolar
effects are quite important, and that the coefficient k
can take positive as well as negative values. The numeri-
cal value of the coefficient is quite small.

VI. SCALING

Several authors have observed scaling behavior of the
velocity correlation function [4,5], in the sense that the
data for different concentrations are collapsed onto a sin-
gle master curve by suitable scaling of time. The scaling
has also been studied in computer simulations [6,7]. We
argue here that the scaling concept has only limited va-
lidity.

First, we note that the proper time scale for scaling, if
applicable, is provided by the mean relaxation time
rM(P), as defined in Eq. (12), generalized to volume frac-
tion P. Second, we remark that the exact result Eq. (43),
together with Eq. (31), shows that the long-time behavior
of the velocity correlation function is given by Eq. (26)
for any concentration, provided the conditions for the va-
lidity of Eq. (31) are satisfied. This surprising result
shows that the long-time behavior is independent not
only of mass and size of the spheres, but of concentration
as well. It also implies that the scaling cannot be com-

TABLE I. Values of the coefFicients k, k, and k, defined
in Eqs. (48) and (49}, for difFerent values of the mass ratio
r =m&/m~. The dipole contribution k is calculated from the
explicit expression Eq. (49) with the radial distribution function
for hard spheres go(R) =0(R —2a). The multipole contribution
k is calculated numerically from a truncated system of equa-
tions. The largest multipole order used to achieve the quoted
accuracy is 1,„=12for r ~1.8, 1,„=13for 2~r ~10, and
1,„=14 for r,„=100.

where

Xgo(xa)x dx, (49)

with a coefficient k which depends on the ratio m&/m .
The coefficient may be calculated by the method ex-
plained in Refs. [37] and [39]. It is convenient to write it
as a sum of dipole and higher order multipole contribu-
tions,

k =kD+k~.
m m m

Both contributions are given by an integral over
the low density radial distribution function g&&(R )

=exp[ —PU (R)]. The integrand of the dipolar term may
be evaluated analytically. The coefficient k is given by

+
mg+2mp 2 x —4P x —P

m&/m~

0.1

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2
4
6
8

10
100

0.0077
0.0124
0.0156
0.0133
0.0077
0

—0.0088
—0.0182
—0.0278
—0.0374
—0.0469
—0.1255
—0.1769
—0.2116
—0.2365
—0.3623

kM

0.0068
0.0130
0.0240
0.0335
0.0418
0.0491
0.0566
0.0614
0.0667
0.0714
0.0758
0.1047
0.1202
0.1299
0.1366
0.1681

0.0145
0.0254
0.0397
0.0469
0.0495
0.0491
0.0468
0.0433
0.0389
0.0340
0.0289

—0.0209
—0.0567
—0.0817
—0.0999
—0.1942
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piete, since it does not apply to the long-time tail. It is
quite possible that the range of time over which the
long-time tail provides a good approximation to the actu-
al correlation function varies with concentration.

The discussion in preceding sections shows that the ini-
tial value of the velocity correlation function must be
scaled with the effective mass according to

k, rC(0+ ) =
m "(P)

(51)

The numerical values presented in Table I show that the
dependence on volume fraction is weak, at least for small

VII. CONCI USIONS

We have discussed the velocity correlation function of
a selected particle in a suspension of interacting Browni-
an particles. On the assumption that the time scale of
average momentum relaxation is much shorter than the
time scale of diffusive motion, we have derived an expres-
sion for the velocity correlation function on the basis of
the fluctuation-dissipation theorem. The expression is
valid at any density.

The result Eq. (43) for the low-frequency behavior sug-
gests that scaling of the correlation function with just the
mean relaxation time has limited validity. The shape pa-
rameter o (P), which determines the width of the relaxa-

If the two-pole approximation discussed in Sec. V is
valid, then the relaxation function takes the form Eq. (23)
with the value o(P) given in Eq. (44), and with the mean
relaxation time ~M(P) given by Eq. (41). Thus we predict
that the relaxation function scales approximately with
the time scale rM(P), but with a shape parameter cr(P)
that depends on volume fraction, predominantly via the
mobility p&(P). Accordingly, we expect broadening of
the relaxation spectrum p(u) with increasing volume
fraction.

It would be of interest to analyze experimental data, as
well as computer simulation data, on the basis of the
two-pole approximation. We have shown elsewhere [40]
that N-point Fade approximants provide a convenient
tool. More generally the Laplace transform of the relaxa-
tion function is approximated by a ratio of two polynorni-
als in &z. The zeros of the denominator determine the
poles, and their relative importance is determined by the
residues. The exact single particle result Eq. (16) suggests
that at least at low volume fraction the two-pole approxi-
mation should be adequate. At higher volume fraction a
third pole may be necessary to describe the data. The ex-
act solution of the hydrodynamic two-sphere problem at
finite frequency co would allow one to check the validity
of the two-pole approximation for semidilute suspensions.

At very long times the time-dependence of the mean
square displacement, as found by computer simulation of
a system of diffusing hard spheres, is well described by a
two-pole approximation [41]. This shows that the
description of the exact velocity correlation function re-
quires at least a four-pole approximation. This becomes
relevant when the Brownian time scale ~z and the
diffusion time scale ~0 are not well separated.

tion spectrum and hence the shape of the correlation
function, depends on volume fraction and particle mass.
It would be of interest to investigate the variation of
shape in experiment or computer simulation.

A generalization of the single particle expression for
the Laplace transform of the velocity autocorrelation
function leads to a two-pole approximation. The parame-
ters of the approximation may be found from the short-
tirne diffusion coefficient and the effective mass of the
Brownian particle. We expect the two-pole approxima-
tion to be valid at least for low density. It may be that at
higher density the higher order terms in Eq. (43) will be-
come important. That would imply that an approxirna-
tion involving at least three poles would be required.

APPENDIX

In this appendix we prove that the trace of the admit-
tance tensor trYU U (X,co) has a Stieltjes representation

1 1

as a function of frequency, with positive spectral density
on the negative imaginary co axis. We consider the linear-
ized Navier-Stokes equations for the Quid, as given by Eq.
(5), together with the equations of motion for the parti-
cles

dU.
mPJ KJ +EJdt

dQ
IPJ =T +N j =1

dt

(Al)

JN, . = —%'.V+ E,
Bt

(A2)

where the generalized vector V= [v(r), [U~ j, j QJ j ]
comprises the solenoidal flow field v(r) and the particle
translational and rotational velocities, and the general-
ized force is given by E=[0,[E j, (NJ j ]. The
mass operator AL is diagonal with elements
[p5(r —r'), [ m~j j, [I~& j ], and the force operator
represents the rnornentum transfer, as given by the Stokes
equation and integrals of the Quid stress tensor. The
equations (A2), together with the boundary conditions,
determine the time evolution of the system. The
configuration X=(R„.. . , R~) appears parametrically,
and may be regarded as fixed. The trace of the transla-
tional admittance tensor for partic1e 1 may be expressed
as

where K. and T. are the force and torque exerted by the
Quid on particle j. Furthermore, E and N are the exter-
nally applied force and torque, m is the mass of particle
j, and I~J is its moment of inertia.

We consider a small perturbation from the situation in
which particles and Quid are at rest. If the applied forces
and torques are small, then the force K and the torque
T may be calculated from the Quid stress tensor at the
undisplaced particle surface. In this limit the whole
problem is linear and may be summarized as [19]
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1
trYU U (X,to)= g eU eU

a
(A3)

in obvious notation.
We introduce the scalar product between two general-

ized vectors V and V' as

positive definite. Hence the formal structure of Eq. (A2)
is that encountered in the theory of small oscillations in
classical mechanics [42], with the difference that the time
differentiation is of first, rather than second, order. By
expansion in terms of eigenfunctions one shows that the
trace in Eq. (A3) has the Stieltjes representation

(V~V')= fv(r).v'(r)dr+ g [U U'. +Q. .Q'] . (A4) trYU U (X co)= f '
dA,

~ to(X, A, )

1 1 0 1, le (A6)

BU BU
(V~%V') =q f g dr .

p Bxp Bxp
(A5)

It follows that the operator A is also real, symmetric, and

The mass operator Ai is clearly real, symmetric, and posi-
tive definite in this scalar product. It is easily shown that
for stick boundary conditions the matrix element of the
force operator A for the vectors V and V' is given by

with positive weight function w(X, A, ). After averaging
over configurations X we find the same type of represen-
tation for the effective admittance P,"(co).

From the Stieltjes representation of the effective admit-
tance it follows that the velocity correlation function is a
completely monotone decreasing function of time [29].
The time-dependent diffusion coe%cient shown in Fig. 3
of Ref. [25] clearly is in conllict with this property. The
violation of the general rule must be due to approxima-
tions made by the authors.
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