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Ballistic-annihilation kinetics for a multivelocity one-dimensional ideal gas is studied in the
framework of an exact analytic approach. For an initial symmetric three-velocity distribution, the
problem can be solved exactly and it is shown that di8'erent regimes exist, depending on the initial
fraction of particles at rest. Extension to the case of an n-velocity distribution is discussed.
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I. INTRODUCTION

Ballistically controlled reactions provide simple exam-
ples of nonequilibrium systems with complex kinetics. In
the one-dimensional case, one considers point particles
which move freely, with a given velocity. When two par-
ticles collide they instantaneously annihilate each other
and disappear from the system. The system with only
two possible velocities +c or —c has been studied in a pi-
oneering work by Elskens and Frisch [1]. Using combina-
torial analysis, they showed that the density of particles
was decreasing according to a power law (t I ) in the
case of a symmetric initial velocity distribution. Later,
Krug and Spohn [2] obtained independently similar re-
sults. Recently, Redner and co-workers [3,4] have studied
(essentially numerically) the problem with more general
velocity distributions. However, to our knowledge, no rig-
orous analytical approach has been elaborated until one
of us (J.P.) developed a formalism in which the annihila-
tion dynamics reduced exactly to a single closed equation
for the two-particle conditional probability [5]. The pur-
pose of this work is to present a method which permits
one to solve this evolution equation for discrete veloc-
ity distributions. Mere precisely, we shall consider the
three-velocity case where the initial velocity distribution
P(v; t = 0) is given by

P(v; 0) = p+b(v —c) + pot(v) + p h(v + c),

with p+ ——p (symmetric case), and p+ + po + p
For the ballistic motion, the collision frequency be-

tween two particles is proportional to their relative ve-
locity. Then, collisions involving particles at rest occur
less often than the ones involving moving particles. In-
deed, the collisions between one particle of velocity +c
and one of velocity —c (relative velocity 2c) occur twice
as often as those between a particle at rest and a moving
one (relative velocity c). As a consequence, one can ex-
pect that in one half of the total number of' collisions two

moving particles participate, and the other half involves
one particle at rest. Thus, in mean, only one quarter of
the particles annihilated in collisions are at rest and the
remaining three quarters are formed by moving particles.
This simple heuristic argument suggests that the values

po = 4, p+ ——p* =
8 must play a special role: if po is

less than po, the system will asymptotically behave as in
the two-velocity case (the stationary particles will disap-
pear before the annihilation of the moving ones). On the
contrary, if po is greater than po, the moving particles
will disappear first, and asymptotically only particles at
rest will be left. In the limiting case po ——po the moving
particles and the ones at rest disappear at the same rate.
It will turn out that this intuitive argument is exact. We
shall show it using the approach presented in [5], which
permits us to solve this three-velocity model exactly.

This paper is organized as follows. In Sec. II, we intro-
duce the model and recall the main steps of the rigorous
method [5]. An important quantity is S(v; t), the survival
probability until the time t of a particle moving with ve-
locity v. In Sec. III, we study the behavior of S(v; t)
and compute the density and the time dependent veloc-
ity distribution in the asymptotic regime t ~ oo. The
value po ——

4 appears to be a critical point, separating
different kinetic behaviors. In addition, it is shown that
the dynamics is incompatible with a Boltzmann-like ap-
proximation due to the appearance of strong velocity cor-
relations between particles which are nearest neighbors.
The case of a general discrete multivelocity distribution
is examined in Sec. IV. Finally, concluding remarks are
given in Sec. V.

II. THE THREE-VELOCITY MODEL

We assume that initially the particles are uniformly
distributed in space, according to the Poisson law, with-
out any correlations between their velocities. Note that
other distributions than Poisson could be considered as
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long as one is dealing with a renewal process. The pro-
cess is thus translationally invariant and each particle
has initially the same probability density P(v;0) [given
by Eq. (1)] to move with velocity v.

The important characteristic of the annihilation dy-
namics is that only those particles which suÃered no col-
lisions are present in the system. They are thus found
on their Bee trajectories. Accordingly, the key quantity
of the theory is the survival probability S(v; t) which has
the product structure

S(v;t) = S (v;t) S (—v;t),
where S (v;t) is the probability for the absence of colli-
sion with the right neighbor. As S (—c; t) = 1, for t & 0,
we find

rather than on their relative distance only). As we are
dealing here with symmetric initial velocity distribution,
the following relation holds for p, :

P(v;0) S(v;t) p(x, uiO, v;t)

= P(—u; 0) S(—u; t) p(x, —vi 0, —u; t) . (6)

The initial condition is given by

p( x, u~ 0, v; t = 0) = 0(x) cr e * P(u; 0),
where 8(x) is the usual Heaviside unit step function.

We also define the density p at contact by

p(0+ ulO v't) = lim p(x ulo, v;t) .
m —+0
~~0

S(+c;t) = S(—c;t) = S (+c;t),
S(0;t) = S"(0;t)

(3)

(4)

This quantity plays a particular role, because it deter-
mines the density of precollisional configurations.

The time evolution of S (v; t) is given by
Initially, S (+c;0) = S (0;0) = l.

The density of particles with velocity v at time t is
given by

(r(v; t) = cr S(v; t) P(v; 0),
where o is the initial density.

Another important quantity in the approach [5] is the
distribution of nearest neighbors. Suppose that at time t
there is a particle moving with velocity v. We denote by
p(x, u~O, v; t) the conditional probability density for find-
ing its nearest neighbor to the right at a distance x ) 0,
with velocity u (for nonhomogeneous systems the prob-
ability may depend upon the positions of both particles,

t
8 (y t) =cexp( — ttv[ctv(0+, 0[0, -tc; v)

+2c p(0+, —c]0, +c; ~)]

t
9 (0;t) = exp {— ttvcp(0+, —c[0,0;v)),

0
(10)

and the two-particle conditional probability density
obeys the following closed equation [5]:

(
(9 S~(v„ t) S~(v2,. t)+ z v» + ~

'
~

'
p(zt "21vi, t) —v2i p, (0+, v210t vi, t)Ot, S~ V~, t S~ V2, t

GV3 QV4 jLL Z~ V3 Vgj t P Z) U2 V4j t U34 8 V34 |M 0+) V4 0) V3) t ) 11

where the dot stands for the time derivative, v2q ——v2-
vq, and we use the definition

where JV and C are two 3 x 3 matrices:

~('t) = (N', (;t)), ,-=„.,
with

(14)

P(z, uiv;t) = dxe '
p( , ixO, uv;t) .

0+

It should be stressed that this remarkable property of
getting a rigorous closed equation for the distribution p
comes &om the main characteristic of the annihilation
process: only those particles which have not interacted
could survive until time t. For more details see Ref. [5].
We can now start to solve Eq. (11) for our symmetric
three-velocity case. Equation (ll) can. be rewritten in a
matrix form:

A'(z;t) +C(z;t) =A'(z;t) C(z;t) JV(z;t),

Nii(z; t)
Ni2(z; t)
Nis(z; t)
Ngi(z; t)
N»(z; t)
N2s(z; t)
Nsi(z; t)
Ns2(z; t)
N»(z; t)

)M(z, +c~ + c; t),
P(z, 0( + c; t) e ' S (+ c; t)/S+(0; t),
p, (z, —c]+c;t) e '"S (+c;t),
p, {z,+c]0;t) e "S {0;t)/S (+c; t),
p(z, 0]0; t),
p(z, —c~O; t) e '"S (0; t),
P,(z, +c] —c; t) e '"/S (+c; t),
P(z, 0] —c; t) e'"/S" (0; t),
p, (z, —cf —c; t),

(15)
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with

( 0 Cq2(z; t) C]3(z; t) )
C(z;t) =, O 0 C„(z;t)

(0 o o

where

D(z; t) = z + o. —2poo. dr C2s(z; r)

C,g(z;t) = cp(0+, 0~0, +c;t) e '"S (+c;t)/S (0;t),
Cqs(z;t) = 2cp(0+, —c~o, +c;t) e "S (+c;t), (17)
C2s(z; t) = c p(0+, —c~o, 0; t) e '"S+(0; t) .

The initial values of A and C are

t
d~ Cps(z;~) . (21)

(18)

p+ cJ
N, g(z; t) =

poo
N, 2(z; t) =

r 1—

(, p.
2p+

pO

2p+

- 2

d~ C2s(z; ~),po

(p+ po p+ l
JV(z;0) = p+ po p+'+ (p+ p. p+)

( 0 co'pp 2ccTp+
C(z; 0) = 0 0 cop+ (19)

(0 0 0 )
In spite of the fact that Eq. (13) looks very simple, it
should be noticed that it is a matrix differential equation
for which the general solution is not known. However, the
particular structure of C makes it solvable. The method
of solution is described in Appendix A. We And f +'G(3O

p(0+, u~o, v; t) = . P(z, u~v; t)~-'- 2'
(u ( v).

(22)

Up to this point, the genralization to a nonsymmetric
three-velocity distribution is straightforward.

The Laplace transformed conditional probabilities p
are obtained from Eqs. (15). Thus we found the exact so-
lution to the kinetic equation (11). However, this is as yet
an implicit solution, that is to say, the values of p, are ex-
pressed in terms of the density at contact p(0+, u~o, v; t)
(u ( v). To obtain some information about physical
quantities, we have to solve the consistency equations
which express the three nonvanishing densities at con-
tact in terms of function p, :

Nis(z; t) = 1—p, t - 2
p0

2p+ 0
d7- C2s(z; ~)

t

2

III. LONG TIME BEHAVIOR OP THE SYSTEM

dr Cqs(z; v),

p+0
N2g(z;t) = ),

poa
N22(z;t) =

p+0Nsi(z;t) =

poo
D(z; t)

'N„(z;t) =

p. &, p.N„(z;t) =

t
d7 C2s(z; ~),

- 2

(20)

S (0; t) = —cp(0, —c~o, 0; t) S (0; t), (23)

S (+c; t) = [
—p(c0, 0~0, +c; t) —2cp(0, —

ciao, +c; t)]

xS (+c;t), (24)

Instead of writing the consistency equations for the
density at contact, we shall write them for the survival
probabilities. Remembering that only two densities at
contact are independent [see Eq. (6)] and that [from
Eqs. (9) and (10)]

N»(z;t) = p ~ (
D z;t

po

p+

- 2

we obtain, using Eq. (22), the following two equations:

S (0;t) = —cp+o.
P+'L OO

ZCt

2l
'

- 2
1 —2"„' j d7. C2s (z; 7.)

D(z; t)
(25)
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~

1 —
2
'

I() d 7 C23 (Z; 7)

S (+c;t) = S (0;t)S (0;t) —2cp+o e '"
D(z; t)

Solving these two equations seems to be extremely difficult, principally because of the time dependence in D(z; t) and
in the integrals over w. However, it can be shown (see Appendix B) that the only relevant time dependence occurs
in the exponential factor. By this we mean that Eqs. (25) and (26) can be exactly replaced by the following two
relations:

~+'~ dz 1 —2"„' jo d7. C2s(z;~)
S (0; t) = cp+—cr e'" "+

2iST D(z; oo)
-2 2

p+'~ d 1 —,' f d~C2s(z;7. )
S (z+ tc) = 'S (0;t)S (0;t) —2cpzc e'*"

(27)

(28)

This remarkable fact allows us to use again the Laplace
transform to suppress the inverse Laplace integral and
arrive at much simpler relations:

T(z) = dt e-'"S"(0; t)
0

1 —"' T2( )= —p+0 (29
z + o +. 2poo T(z) + p+ cr U(z)

'

COO

U(z) = dte '" S (+c t) — S (0 t)S (0 t)
0 P+

1 —"' T'(z)2p+

z + o + 2pooT(z) + p+ O''U(z)

where Eqs. (17) and (21) have been used. From this sys-
tein of equations it follows that T(z) satisfies the quartic
equation

pc T (z) (2pc + 1) T (z) —2 (
—+ 1) T(z) + pc —1

and that S+(0, oo) E [0, 1]. This condition allows us to
identify the physically acceptable solution of the above
quartic equation (31). We have to distinguish between
two different situations.

(i) po ( 4. The only acceptable solution is T(0)
—1, corresponding to an asymptotically empty stationary
state S~(+c;oo) = SR(0; oo) = 0.

(ii) po ) 4. We have two possible solutions: T(0) = —1
and T(0) = 1 —~. However, S (0; t) is a continuous

decreasing function of time with initial value 1. Thus the
stationary value 2 — will be reached first. Accord-

~po
ingly, T(0) = 1 — is the relevant value.

We can now study the behavior of T(z) near zero, by
introducing the quantity e(z) = T(z) —T(0) in the quartic
equation (31). Five cases have to be distinguished.

(i) pp = 0. This is the bimodal velocity distribution
already investigated [5,1]. The quartic equation (31) sim-
plifies to the following quadratic equation for U(z):

U'(z) + 2 —+ 1 U(z) + 1 = 0 .

U(z) being given by

U(z) = T(z) — T (z) .
2p+

=0, (31)
By solving aud Laplace inverting it, one recovers the
Elskens and Frisch results [1].

(ii) 0 ( po ( 4. Now e(z) = T(z) + 1 obeys the quartic
equation:

It is hopeless to try to Laplace invert the solution of
Eq. (31) to find S+(0;t). However, the asymptotic regime
of the survival probability can be determined by consid-
ering T(z) for z in the neighborhood of 0. For z = 0, one
knows that T(0) is given by

T(0) = dt S"(0;t) = S"(0,~) —1
0

pG& (z) 4po& (z) + (4pp —l)e (z) —2 —[e(z) —1] = 0

(35)

As we are interested in the limit z ~ 0, and as
lim, ~o e(z) = 0, we can neglect the terms of order e
and e with respect to e, and e with respect to 1. By
Laplace inverting and integrating, we obtain the follow-
ing asymptotic behavior (t -+ oo):

S (0;t) = 2 (1+0 ([1—4p ] [cot] ))(1 —4po) Srco t (36)
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9 (+c;t) = 1+0 1 —4pp ~ cot (37)

For t ~ oo, the densities are then given by

~(0; t) = P' (1+O ([1 —4p, ]-'[c~t]-')),2pp

ro]+o;t) =
]

——tro
] (4+0 {]4—4tro] t ]orot] 't'))(4 ) cert

The corrections to scaling have been obtained by a careful study of the solution of the quartic equation (31).
The prefactor (4po —1) in the e term in Eq. (35) indicates that for po near 4 we should expect an important

crossover effect. This is confirmed by the amplitude of the correction to scaling for cr(0;t) which contains a term
proportional to (1 —4po) . As a consequence, it may be very difficult to extract the true asymptotic behavior from
experimental or numerical data. However, we see that for very long times the system is driven towards the bimodal
case.

(iii) po = 4. Here again, e(z) = T(z) + 1. The coefficient of the c term vanishes and the term of order e cannot
be neglected. We are thus left with the cubic equation:

c (z) —2 —=0 whenz-+03
(40)

whose physically relevant solution leads to the asymptotic behavior (for t m oo):

8 (0;t) =
] (4+0{]oot] 'to))

2'/' l 2 /' 1 )S (+ t) = ot
] ]

+
] ] (4+0 {]oot] 't')). (42)

For the density one gets (t ~ oo)

2/s
~]tt;t]=. . . , ]

'
] (4+0{]o~t]-'&')),

( 21/s ) 1 /' 1 ) /

( + {]--"))
(43)

(44)

In addition,

cr (0; t) 1 3 I'2 (2/3)
lim 1.15 .

cr(+c t) 2 2 2 / I'(1/3) (45)

(iv) 4 ( po ( 1. Now e(z) = T(z) —1 + . The terms of order e and c can be neglected with respect to the
term e and variable z with respect to 1. Hence

c(z) = 2~po —1

p. (5 —2~p. )

2(1 —~p, ) (2~po —1)'
po (2 ~po —1)(5 —2~po) 2 (1 —~po) (5 —2 ~po)

(46)

which leads to an exponential asymptotic behavior for
8 (0;t)—2+ and also for 8 (+c; t). Thus, for t ~ oo

2p. (1 —~p.)(5 —2~p. )
vr (2~po —1) (2~po —1)—ecru, t

cr(0; t) cr (2~po —1) + 20 A
cert '/' '

e —caruso

cr(+c; t) crA
CO"t

where

(47)

(48)

(2~po —1)s

2p. (1 —~p. )(5 —2'.)

In addition,
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o-(0; t) —(r(0; oo)
llm = 2

o (+c; t)
(49)

indicating that in the long time regime the collisions be-
tween pairs of moving particles disappear, and only col-
lisions involving a particle at rest and a moving one can
be observed.

(v) p() ——l. In this trivial limiting case, in which there
are no collisions, the physical solution is T(z) = 0, and
the density remains constant.

As anticipated on heuristic arguments, we have shown
that pp

——
4 is playing a special role separating the dif-

ferent kinetic regimes.
Another important quantity that can be computed ex-

actly concerns the correlations between the velocities of
the collid. ing particles. Although at time t = O these ve-
locities are uncorrelated, annihilation dynamics creates
strong correlations between them during the time evolu-
tion. This has the important consequence of excluding
a Holtzmann-like approximation. It is clearly seen in
v)(v; t), the mean velocity of the right nearest neighbor
of a particle moving with velocity v:

with

n

) p~ =1.
k=1

S (v; t) = exp dr ) (v —vg) 0(v —vk)
k=i

xp(0+, veitt, v;z)I .

If we define (i,j = 1, . . . , n)

tttt(z t) = tt(z, v, ~v;;t) expI zv, ,t +—t 3

dr ) [B;),(r)

As f'or the three-velocity case, we assume initially ran-
dom spatial distribution and no correlations between the
velocities. We can generalize some of our formulas in a
straightforward way: the probability for the absence of
collisions with the right neighbor is given by

v)(v;t) = cp, ( 0+catv;t) —cp(0, —civ;t) .

Using Eqs. (20) we obtain, for example,

co(—c; t) = p~S (+c; t) —p+D 0;t

drC,.(0;~)
i

p() (
2 ( p

(50) —ttte(z)l I
t";t(z;t) = ttv(t) expI zv;, t +-

—ttte (z))
I

where

d7. ) [B;),(7)-

C

v)(v;oo) = ( ~ 1 —4poc (v'2 —1)
2pp

ifv=+c
ifv=o,

for pp 4

QJ V)OO = V,

and for pp &—

with D(0; t) given by Eq. (21) and C2s(0; t) by Eq. (17).
Our results show that pairs of nearest neighbors have
the tendency to align their velocities and propagate in
the same direction. Indeed, in the limit t —+ oo, one finds
fol pp (

B,~ (t) = v, ~. 8(v;z. ) p, (0, vi i0, v;; t),
the evolution equation for the Laplace transformed. con-
ditional probability p, [Eq. (11)] can be put in the same
form as Eq. (13), but with an n x n matrix, we find

A(z) = Aq(z;0) and 8(z;t) = f(z;t). Once again, the
particular structure of the matrix C will help us in solv-
ing this equation: assuining that A'(z; t) —I is invertible
(this can be explicitly checked for t = 0 and verified a
posteriori for later times), where X is the n x n unit ma-
trix, we define

'P (z; t) = (JV(z; t) —I')

v)(v; oo) = v(po'i —1) .
Then, Eq. (13) reads

&(z t) = —&(z t)~(z t) —(-(z t)&(z t) . (59)

IV. CENEB.AL DISCB.ETE VELOCITY
DISTKIBUTIQN

One way to solve this equation is to remember that
C,i (z; t) = 0 for i ) j (i,j = 1, . . . , n). Hence, Eq. (59)
has the following structure:

In this section, we want to consider the case of a general
discrete velocity distribution. Suppose that the initial
velocity distribution is given by

P,, (z;t) = ) P;),—CA, , + ) C;) P),
k=i+i

(60)

P(v; 0) = ) pk b(v —vi, ),
k=1

(54)
and thus when i = n, j = 1 it takes the form

P„ i(z;t) ='0 .
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In addition, the (n —1, 1) and (n, 2) equations are ACKNOWLEDGMENTS

—P„ i i(z; t) = C„ i „(z;t)P„ i(z; t),
P„—2(z; t) = Ci 2(z; t)P„ i(z; t),

and can be solved once P i(z;t) is known. One can
easily see that the equations for (n —2, 1), (n —1, 2),
and (n, 3) are expressed in terms of P„ i, P„ i i, and
P 2, allowing us to complete the solution. The process
is iterated until solving equation (1,n) and determining
entirely the matrix 'P(z; t). The n2 Laplace transformed
conditional probabilities are obtained straightforwardly
by inverting the formula (58). Again we have an implicit
solution and we have to solve the n(n —1)j2 consistency
equations [see Eq. (22)] to obtain physical information on
the system. Although detailed calculations can be very
tedious, there should not be any conceptual difhculties.

V. CONCLUDING REMARKS

We have shown in this paper that exact predictions
on ballistic-annihilation kinetics can be obtained in the
framework of the approach described in [5]. It is re-
markable that, for discrete velocity distributions, the
nonlinear int egro di fFere nt ial equation governing the two-
particle conditional probability can be solved exactly.

For po & 4, not only are the leading power laws ob-
tained in the asymptotic regime, t —+ oo, but also the
amplitudes and the corrections to scaling. In particular,
we have shown that important corrections to scaling oc-
cur when po is in the neighborhood of 4 . For po
exponential behavior is obtained for long times. The re-
sults of our numerical simulations and those of Redner
and co-workers [3,4] are well explained by our exact the-
ory. In addition, it is clearly shown that Boltzmann-like
approximations fail, because the annihilation dynamics
favors configurations in which the nearest neighbors have
the same velocity.

Several extensions of this work are possible. In par-
ticular, the case of continuous velocity distributions for
which qualitatively difFerent behavior may be expected is
under investigation.
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APPENDIX A: ON THE MATRIX EQUATION

The solution of the matrix equation (13) is presented
here. To solve it, we can write A as

( )
f A'i(z;t) A'2(z;t) &~

~A (z;t) A4(z;t) )i ' (Al)

where Ai is a 1 x 2 matrix, A2 a 1 x 1, As a 2 x 2, and
A4 a 2 x 1. In this decomposition, C is given by

C( )
f Ei(z; t) E'2(z; t) )

0 Fs(z;t) ) ' (A2)

where

if 0 E(z t)
(A3)

where 8 is a 2 x 2 matrix

( ) if Ci 2(z; t) C, s(z; t) )i
0 C, ,(.;t) )

With this decomposition, the matrix equation (13) be-
comes

fi(z; t) = ( 0 Ci2(z; t) )
Z, (z; t) = ( C»(z; t) )

~ ( )
f C2s(z;t) 'l

0 )
However, to perform the matrix product A C A, we have
to write C in a difFerent way, namely,

f Ai(z; t) A2(z; t) ) f Fi(z; t) t2(z; t) l f Ai(z;t)E(z;t)A3(z; t) A'i(z;t)F(z; t)A' (z4;t) )
( As(z; t) A4(z;t) ) q 0 Z3(z; t) ) g As(z; t)f (z; t)A&(z; t) A'&'(z; t)f (z; t)A4(z; t) )

A;(z; t) = A;(z; t)t (z; t)A, (z; t) (A5)

Although As is not invertible, we can find a solution for
the equation

I

and 8(z; t) = E(z; t). Once we have obtained As, we can
readily solve the three other matrix equations and thus
find A.

using the follow ing ansatz:

A;(z; t) = A(z) [2 —8(z; t)A(z)] (A6)

APPENDIX 8: ON THE CONSISTENCY
EQUATIONS

where 2 is the unit 2 x 2 matrix, we find A(z) = JV3(z; 0)
In this appendix we show how to justify Eqs. (27) and

(28) starting from Eqs. (25) and (26).
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p(z, +c]+c;t) = p+crAi(z;t) .

From the kinetic equation (11), we have

(B1)

p(z, +c] + c;t) = ) ) P(z, v;] + c; t) jc(z, +c]vi; t)
i=1 j=1

xv,~8(v;~) p(0+, v~. ]0, v;; t) .

A way of demonstration could be to simply subtract
Eqs. (27) and (25) and to verify by explicit integration
in the complex plane that the result is zero. instead of
going through all this tedious algebra, we prefer to give
a simple physical argument.

We define Ai(z;t) by

Ai(z;t) =

- 2
1 —2"' j dr C2s(z;7)

D(z; t)

hence Eq. (25) reads

P+XOO

8 (0;t) = —cp+cr . e'"Ai(z;t) .
~-i- 2' (B5)

In the term on the right hand side of Eq. (B5), the in-
verse Laplace transformation yields the value of function
Ai(x;t) at the point x = ct. So we can replace Ai(z;t)
in Eq. (B5) by Ai(z; oo), without changing the value of
the integral. Hence we obtain Eq. (27).

Equation (26) can be handled in the same manner: we

first define

Now, the right hand side of Eq. (B2) represents the vari-
ation of p due to the mutual annihilation of particles
originally separating the pair (+c, +c) [see Ref. [5] for
the interpretation of different terms in Eq. (11)]. It fol-
lows that the inverse Laplace transform

A, (x; t) =
f +tOC3

e*'A, (z; t)
2im

represents the probability that the particles present ini-
tially in an interval of length 2;, separating two particles
with velocity +c, disappear through ballistic annihilation
before time t [the prefactor p~o in Eq. (Bl) is the ini-
tial density of the right neighbors moving with velocity
+c]. As the colliding pairs move at least with a rela-
tive velocity e, all sequences of encounters contributing
to Ai(x; t) are accomplished at the moment t* = x/c.
Therefore Ai(x; t) does not depend on time (for fixed x)
in the region t ) t*.

Now we remember that

p+crA2(z;t) = p(z, —c] + c;t) e '"SR(+c;t)
t

+ dt Cia(z; t) .
0

(B6)

A, (z;t) =
i

1 —2"' I d Cr2( sz7)2p+ 0

D(' t)
(B7)

leads to the expected conclusion.

Then, by inspecting the evolution equation for P(z, —c]+
c; t) we remark that A2(x; t), the inverse Laplace trans-
form of A2(z; t), represents the probability that all parti-
cles present initially in an interval of length x, separating
one particle of velocity +c on the left and one of velocity
—c on the right, disappear through ballistic annihilation
before time t. It follows that A2(x;t) does not depend
on the time (for fixed x) in the region t ) t*/2 (as the
relative velocity between the colliding pairs must be 2c).
Finally, the expression
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