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Ballistic annihilation in a one-dimensional Huid
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A kinetic equation for the two-particle conditional distribution of nearest neighbors is derived as a
rigorous consequence of the dynamics of ballistic annihilation. The equation describes completely the
evolution of the system when at the initial moment higher order conditional distributions factorize
into products of two-particle ones. The derived equation provides a rigorous analytic method to
study the process of ballistic annihilation. To illustrate the method the two-velocity case is solved
explicitly. It is shown that the annihilation dynamics in one dimension creates strong correlations
between the velocities of colliding particles, which rules out the Boltzmann approximation.

PACS number(s): 05.40.+j, 05.20.Dd

I. INTRODUCTION

We consider here a one-dimensional fluid composed of
point particles. The motion between collisions is &ee.
When two particles collide they instantaneously annihi-
late each other and disappear from the system. This
kind of dynamics, called ballistic annihilation, has been
the object of recent studies [1,2], motivated mainly by its
potential relevance to the kinetics of chemical reactions.
However, no rigorous analytic approach has been elabo-
rated up to now. In order to determine the law of decay
of the initial density, and the evolution of the velocity
distribution of the reacting fluid, approximate schemes
have been tried based on scaling arguments and on the
kinetic equation of the Boltzmann type. An exception is
the paper by Elskens and Frisch [3]. Supposing that the
particles can move with two possible velocities +c or —c
only, the authors developed a combinatorial analysis and
found a number of rigorous results. In particular, in the
case of a symmetric initial velocity distribution the den-
sity of the Quid was shown to decay as t ~ . However,
the combinatorial approach could not be generalized to
other initial states, and was not further developed.

It is the aim of the present paper to provide an analytic
approach which permits one in principle to study rigor-
ously the ballistic annihilation in a one-dimensional Quid
for an arbitrary uncorrelated initial velocity distribution.
The fundamental role in our analysis will be played by
the distribution of nearest neighbors (the scaling anal-
ysis of the spatial interparticle distribution function in
difFusion-limited reactions has been performed in [4]).

Suppose that at time t there is a particle at point xi
in the Quid, moving with velocity vi. We denote by

p(xg, v2 [xi, vi ', t)

the conditional probability density for finding its right
nearest neighbor at distance x2i ——z2 —xi ) 0, with
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velocity v2. The density (1) satisfies the normalization
condition

d2 p(2]l;t) = 1, (2)

where a convenient shorthand notation

j—:(xs, v, ), dj = dxsdvs, j = 1, 2, . . .

has been used.
When the state of the fluid is translationally invariant

p(2~1; t) depends in the position space on the distance
x2p only

p(x2, v2 ~xi, vi, t) = p, (x2i, v2 ~0, vi., t).

A particular role will be played by the value of density p
at contact

p(0+, v2]0, vi, t) = lim y(x, v2~0, vr, t).
0~~-+0

The notation 0+ stresses the fact that the distance be-
tween the particles approaches zero through positive val-
ues. The special role of the contact value p(0+, v2]0, vr, t)
comes &om the fact that it determines the density of pre-
collisional con6gurations.

In Sec. II we discuss survival probabilities of the initial
&ee trajectories and express them in terms of function
(3). The most important development is presented in
Sec. III. We demonstrate therein that a closed nonlinear
evolution equation for the distribution p(2~1;t) follows
rigorously &om the assumed annihilation dynamics. This
remarkable fact together with the derivation of the form
of the evolution equation is the main result of the present
work. The evolution equation is solved in Sec. IV in
the two-velocity case. This permits one in particular to
recover the results of the combinatorial analysis [3] of
Elskens and Frisch. However, the derived equation is
general, valid for arbitrary initial velocity distributions,
both discrete and continuous. It opens thus a way to
study the subtle dependence of the ballistic-annihilation
process on the initial condition of the Quid. The paper
ends with concluding remarks (Sec. V).
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II. SURVIVAL OF FREE TRAJECTORIES
t+di

(x +v. dt, v ) (x+v dt, v )
1 1

The important characteristic of the annihilation dy-
namics is that only those particles which sufFered no col-
lisions are present in the system. They are thus found on
their free trajectories. In this sense the terms survival of
a particle and survival of a free trajectory are equivalent.
Let us begin by considering a simple case where at the
initial moment the particles are uniformly distributed in
space according to the Poisson law, with no correlations
between their velocities. The initial state of the fluid is
thus translationally invariant, and each particle has at
t = 0 the same probability density P(v; t = 0) to start
the motion with velocity v.

We denote by S(v; t) the probability that a free tra-
jectory corresponding to velocity v remains unperturbed
during the time interval [0, t]. This event can occur only
if the particle following the trajectory suKered no colli-
sion either from the left or from the right. The assumed
absence of correlations between the velocities in the ini-
tial state implies the product structure

S(v;t) = S~(v;t)S (v;t),

where S (v; t) and SR(v; t) are the probabilities for the
absence of collisions with the left and right neighbors,
respectively. The translational invariance makes them
independent of the position variable.

Let us study the evolution of the probability S (v; t).
Its value changes in the course of time due to collisions
with particles arriving from the right hand side. Their
distri'oution around particle 1 = (xt, vt) at time t is de-
scribed by the conditional probability density p, (2[1;t).
Introducing the Heaviside unit step function

0( )
1, ifx)0
0, ifx(0

we thus find that the expression

1=(x, ,v, ) 2=(x,v )

FIG. 1. Annihilating collision between particle 1 and its
right nearest neighbor 2 within the time interval [t, t + dt].

p(2[1; t) at contact. Introducing the binary collision op-
erator

(x (112) —v12~(v12)~(x21 0+)1

where b is the Dirac distribution, we Bnd that the solution
of Eq. (8) satisfying the initial condition S (vt., 0) = 1

has the exponential form

holds.

S (v, ;1) =vxp( — dv fd21. (1,2)tt(2~~1;v)) (10)
0

The operator C(1, 2) applied to the distribution p(2[1; t)
determines the collision frequency between particle 1 and
its right neighbors 2. In the ballistic case this frequency
is proportional to the relative velocity of the colliding
pair.

One can analyze the evolution of the survival proba-
bility S (vt, t) along the same lines. In the case of a
symmetric initial velocity distribution P(v; 0) = P(—v; 0)
(the case considered in this paper) the relation

S~(v, ;t) = S"(—v, ;t)

0(x2, )0(xt2 + vt2dt) p(2~1; t)

represents for dt + 0+ the probability weight for the
occurrence of a collision within the time interval [t, t+ dt]
with a particle whose state at time t is 2 = (x2, v2) (see
Fig. 1). We can thus write

8' (v1,'t+dt) = S (v t)v(1 —f d2 ( )8V22

III. EVOLUTION OF THE DISTRIBUTION
OF NEAREST NEIGHBORS

Equation (10) is an example of a relation which ex-
presses a dynamical property of the fluid in terms of the
distribution of nearest neighbors p(2[1; t) The relatio. n
is important as the density of particles moving with ve-
locity v at time t is given by

x8(v12+ v12dt)tv(2~1; t)),

which implies the equation

o.(v; t) = o S (v; t) S (v; t)P(v; 0),
(7)

whereas the total density equals

v(t) = f dvv(v;t), v(0) = V. (12)

—8 (V it) —v8 (V1', t) f dv2 V128(V12)R . R
Ot

x p(0+, v2[0, vt, t).

The monotonously decreasing survival probability
S (vt, t) can be thus expressed in terms of the density

In fact, as will be shown in this section, the evolution
of p(2[1; t) provides complete information about the pro-
cess of ballistic annihilation for a large class of initial
conditions.

Our object here is to derive the evolution equation de-
termining the distribution p(2[1;t) for all t & 0. To this
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end we introduce an infinite set of higher order condi-
tional distributions p, (2, 3, . . . , sil; t), s = 2, 3, . . ., with
p2(2ilit) = p(2il;t). The distribution p, , (2, 3, . . . , sil;t)
represents the probability density for finding at time t
the (s —1) consecutive right nearest neighbors of parti-
cle 1 moving with velocities v2, v3, . . . , v„respectively, at
distances

0(&21 ++31( ''++ 1

The distribution of right neighbors 2, 3, . . . , s of particle 1
changes in the course of time as the result of free motion
and collisions. The rate of change

0—p, (2, 3, . . . , sil; t)
Ot

is the sum of contributions yielded by the mechanisms
enumerated below. Here is their complete list together
with the corresponding analytic expressions.

(i) Free motion:

d(s+ 1) C(s, s+ 1)p,+i(2, 3, . . . , s, s+ lil; t). (15)

(iv) Annihilation of a pair (s + 1, s + 2) separating
particles (j —1) and j:

d(s+ 1) d(s+ 2)C(s+ l, s+ 2)

x) p,,+2(2, . . . ,j —l, s+ l, s+2, j, . . . , sil;t).
j=2

(v) Destruction of particle 1 by its right neighbors:

p,.(2, 3, . . . , sil;t) d(s+ 1) C(1,s+ 1)p(s+ lil;t).

The term (17) guarantees the conservation of normaliza-
tion

—
g ) v, ~ p(23, . . . , sil t).

0
Bx'

g=1 2
(13) d2 . . ds p, (2, 3, . . . , sil; t) = l.

(ii) Binary collisions within the ordered sequence
(1,2, . . . , s):

Indeed, integrating the sum of terms {i)—(iv) over vari-
ables 2, 3, . . . , s one finds that they induce the decay of
the norm of p, at the rate

8

—( ) C(j —l, j) ~ p. (2, 3, . . . , ski;t)
, j=2

(14)

[see Eq. (9) and the following commentsj.
(iii) Destruction of particle s by its right neighbors:

d s+ 1 C 1)s+ 1 p2 s+ 1 1)t

which is exactly compensated by the contribution (17).
The dynamics of the ballistic annihilation is thus de-

scribed by an infinite hierarchy of equations

0 ~ 0—+ ) v + ) C(j —l,j) & p, (2, 3, . . . , sil;t)
j=i ~ j=2

d s+1 p, 2, 3, . . . , s1;t C 1,s+1 p s+11;t —C' s, s+1 p, +q 2, 3, . . . , s, s+1].;t

+ d s+1 d s+2 C s+1,s+2 ps+2 2) ~,j —1,s+1,s+2, j, . . . , s1;t
j=2

(18)

coupling the conditional distributions p„s = 2, 3, . . . .
A remarkable property of the hierarchy (18) is its compatibility with the factorization of distributions p, , for s ) 2

into products of the basic densities p(ji j —1;t)

p. (2, 3, . . . , sil;t) =
4 4 ~

j=2
p(gj —1;t), s=3, 4, . . . . (19)

In order to prove it we insert relations (19) into the hierarchy (18). The first equation (s = 2) takes then the form

E
+vv + vt + 1 (12) —/d3 ((121) 3(tt~ 3tt) —1 (23)tt(3~2 t)]) tt(2~1 t)

0 8 0
Bt BXi OX2

d3 d4C 3, 4 P 31)t P 43)t P 24;t =Op, 2P 21;t =0) 20



5538 JAROSKAW PIASECKI

whereas equations corresponding to s ) 2 can be written
[with the use of the nonlinear operator O~. i ~ defined in
Eq. (20)] as

s 2

C2,:2

p(bib —1;t) = 0. (21)

It follows that the factorized distributions (19) provide a
class of solutions of the infinite hierarchy (18) reducing
it to the single equation Oi 2p(2l 1; t) = 0, provided the
relations (19) hold at t = 0

The class of the initial states (22) corresponds to the
so-called renewal processes: the distributions of the right
and left neighbors of a particle are statistically indepen-
dent. The fact that the annihilation dynamics propagates
this property is not surprising. Indeed, the presence of a
particle in the fluid excludes any interaction between its
right and left neighbors. Notice that condition (22) can
be satisfied both by homogeneous and inhomogeneous
states. Correlations between the velocities of the nearest
neighbors are also allowed.

Let us consider again the initial condition adopted in
Sec. II (no correlations between velocities, random dis-
tribution in space). The relations (22) then hold with

(23)
~ 4 I

j=2

In this way we arrive at the fundamental result of our
analysis: the evolution of the fluid from the initial state
(22), induced by the ballistic annihilation, preserves the
factorized structure of the conditional distributions p„
and is entirely described by the kinetic equation (20).

The exponential factor exp( —ox2i) is the Poisson prob-
ability for ending an empty interval of length x2q ) 0
when the number density of the fluid is 0.

Using the explicit form (9) of the binary collision oper-
ator C(1, 2) and the translational invariance of the fluid
we rewrite Eq. (20) in the region x = x2i ) 0 as

8—+ v2i p(x~ v210~ vi t)
Bt Bx

= p(x, »lO, v» t) dv3 [vi$0(vi3) p'(0+) vsl0, vij t) v230(v23)p(0+) vsl01v2j t)]

dvs dv4 dye(y, vsl0, vi, t)p(x —y, v2lO, v4, t) vs40(vs4) p(0+, v4l0, vs, t).

The solution of Eq. (24) determines the distribution p(x, v2lO, vi, t) for distances x ) 0. The product 0(x)p(x, v2l0, vi)
yields then the solution of Eq. (20) in which the possibility of x = 0+ is taken into account [term C(1, 2)p(2ll; t)].

The convolution structure of the last term in Eq. (24) suggests the application of the Laplace transformation.
Putting

p, (z, v2lvi, t) = dx exp( —
x)yz, ( , xlvo, vt) (25)

p(z, v2lvi. , t) —v2ip(0+, v2l0, vi, t)S~ v, ;t

dvQ dv4 p(z vslvi j t)p(z v2lv4 t)v348(vs4)p(0+, v4l0, vs, t). (26)

In writing Eq. (26) we used the relation (8) and the short-
hand notation

S (v;t) = —S (v;t).a a
Bt

Equation (26) is a convenient starting point for the anal-
ysis of the process of ballistic annihilation in translation-
ally invariant, states.

IV. THE TWO-VELOCITY CASE

In this section we solve the basic kinetic equation (26)
in the case where the particles can propagate with only
two possible velocities +c or —c, and the initial veloc-
ity distribution is symmetric. Using the Kronecker delta
function b ' rather then the Dirac distribution we thus
put
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P(u; 0) = —[b„;+ b„',].Kr (27)

The symmetry relation (ll) is satisfied, which permits us
to introduce a simplified notation

S(t) = S (+c;t) = S (—c;t).

Clearly, S (—c; t) = S (+c; t) = 1, as no particle moving
with velocity —c (+c) can be attained by its right (left)
neighbors. So S(t) is the complete survival probability
of a free trajectory [compare with formula (4)].

Consider first the equation satisfied by p, (z, +cl —c; t).
From Eq. (26) we find

0S(t) —+ 2cz —S(t)) tt(z, +c~ —c; t)

tially in an interval of length x disappear through ballistic
annihilation before time t [the prefactor 0/2 in Eq. (32)
is the initial density of the right neighbors moving with
velocity +c].

We know that the colliding pairs move with a relative
velocity 2c. So, all sequences of encounters contributing
to A(x; t) are accomplished at the moment t* = x/2c.
Therefore A(x; t) does not depend on time (for fixed x)
in the region t ) t*. This important conclusion applies
also to p, (x, +c]0,+c; t) [see Eq. (32)].

For symmetry reasons p(z, +cl+ c; t) = p(z, —cl —c; t).
It remains thus to determine the function p, (z, —cl + c; t)
which contains all the information about the collision rate
in the fiuid. From the basic Eq. (26) one gets

S(t) ——2cz + S(t) P, (z, —cl + c; t)
&t

)(i(z, +cl —c; t) = —S(t) exp( —2ctz)A(z; t), (29)

where

A(z;t) = z+o+—
2 0

d7 exp( —2cv z) S(w) . (30)

In writing the solution (29) the iiutial condition [see
Eq. (23)]

P, (z, +cl —c; 0) = (r/2 (z + (T)

has been used.
One can get a clear physical interpretation of the in-

verse Laplace transform A(x; t) of function (30) by con-
sidering the equation satisfied by p, (z, +cl+ c; t) Indeed, .
from Eq. (26) we get

8
S(t)—P(z +cl+ c. t)

Ot

= —S(t)p(z, +cl —c; t))(i(z, +cl + c; t). (31)

Inserting here the solution (29) one finds a simple formula

p, (z, +cl + c; t) = —A(z; t)
2

(32)

Now, the kinetic equation (26) shows that the distribu-
tion p, (z, +cl + c; t) changes in the course of time through
one and only one mechanism: mutual annihilation of par-
ticles originally separating the pair (+c, +c) [only the
term on the right hand side of (26) contributes]. It fol-
lows that the inverse Laplace transform

= -S(t)[p(z +cl — t)]' (28)

Equation (28) implies a linear equation for [P(z, +cl-
c; t)], and can be thus readily solved. One finds

In order to find the time dependence of the survival
probability S(t) we use the inverse Laplace transform at
x=0+

p(0+, —cl0, +c; t) = lim0(~—+0

GZ
exp(xz)P (z, —cl + c; t).

27ri

(36)

In view of Eq. (8), which takes here the form

S(t) = —2cS(t)p, (0+, —clO, +c; t),

Eq. (36) leads to a closed consistency equation for S(t)

0Z 0
S(t) = —2c exp(2ctz) —A(z; t)

27ri 2

t
+ dc exp(2cz(t —e)]$'(e)).

In the first term in the right hand side of Eq. (37) the in-
verse Laplace transformation yields the value of function
A(x; t) at the point x = 2ct. From our previous analysis
following Eq. (33) we know that by replacing A(z; t) in
Eq. (37) by A(z; oo) we do not change the value of the
integral. From formula (30) we get

= +S(t)[p(z, +cl + c; t)] . (34)

Inserting here the solution (32) after a straightforward
calculation we find

p(z, —
c~~ + c; t) =

I
—exp(2ctz) A(:; t)

+ ~c ex& (2cz(t —x)l@e)j f~(t)I-'.
0

A(x;t) = dZ
exp(xz) A(z; t)

27ri
(33)

0 - —1
A(z; oo) = z + o + —[2czS(2cz) —1]

2

represents the probability that all particles present ini- where S(z) is the Laplace transform of S(t). As the con-
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tribution from the last term in the right hand side of
Eq. (37) vanishes we eventually arrive at the simple re-
lation

than in the opposite one. This intuitively clear predic-
tion reBects the building up of correlations between the
velocities in the process of ballistic annihilation.

z - —1
zS(z) —1 = — —+ zS(z) + 1

Co

The physically relevant solution of Eq. (38) reads

(38)
V. CONCLUDINC REMARKS

zs(z) = — + ( + 1) —1.

Inverting the Laplace transformation one recovers the
Elskens and Frisch result [3]

S(t) = exp( —2cto) [Ip(2cto') + Ii(2cto')],

where Io and Iq are the modified Bessel functions. The
long time decay of the number density cr(t) [see Eq. (12)]
is governed by the power law

o-(t) = oS(t) = tM oo.
wrcst

Equations (29), (30), (32), and (37), combined with the
formula (39), deterinine entirely the distribution of the
right nearest neighbors in the Quid at any time t ) 0.
As the higher order distributions remain factorized, the
complete dynamical description of the system is in this
way achieved [the distribution p(2]1; t) is discussed. in [3]
only for t = oo].

As an example of an interesting question concerning
the annihilation dynamics let us evaluate the mean ve-
locity of the right nearest neighbor of a particle moving
with velocity +c. At t = 0 this conditional mean velocity
equals zero. For t ) 0, from Eqs. (32) and (35) we obtain

The analytic approach developed here culminated
in the derivation of the kinetic equation (24) for the
two-particle distribution of the right nearest neighbors
p, (2]1;t) The. annihilation dynamics turns out to be in-
compatible with the Boltzmann molecular chaos assump-
tion as the correlations between the velocities of colliding
pairs are of primary importance. This can be clearly seen
in the example of the two-velocity case solved in Sec. IV.
Although the one-particle velocity distribution does not
change in the course of time (by symmetry velocities +c
and —c have always equal probabilities), the conditional
distribution P, (0, v2~vi, t) does change, favoring configu-
rations in which the nearest neighbors move in the same
direction: v2 ——vi [see the discussion following Eq. (40)].
It is thus even more remarkable that for a large class of
initial conditions satisfying relations (22) the infinite dy-
namical hierarchy (18) propagates the factorization (19)
of higher order distributions and reduces to a single ki-
netic equation (24) for p(2~1; t).

We have shown in Sec. IV how to recover the results
of the combinatorial approach in the two-velocity case
by solving the kinetic equation. However, the derived
equation (24) can be applied to any initial velocity dis-
tribution P(v; 0), and presents thus a promising basis for
the analysis of ballistic annihilation in the case of more
realistic velocity spectra.

1 —S(t)
cp, (0, +c] + c; t) —cP, (0, —

c~ + c; t) = c
1 +

(40)

where the relation o A(0; t) = 2[S(t) + 1] has been used
[see Eq. (30)]. The above formula shows that in the long
time limit it is much more likely to find the right nearest
neighbor moving in the same direction (with velocity +c)
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