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We study the quantum behavior of the standard map in the so-called accelerator state, which,
within the theoretical framework of classical physics, would result in anomalous diffusion. In agree-
ment with the behavior of the systems, which classically exhibit full chaos and are consequently
characterized by positive Lyapunov coeKcients A, quantum uncertainty increases very quickly
and leads to the breakdown of the overwhelming majority of the classical trajectories in a time
tz ——(1/A) In(1/h). In the case of normal diff'usion, the diffusion process is unaffected by this rapid
transition from classical to quantum physics. However, in the case of anomalous diffusion, we find
the existence of a new breakdown process, corresponding to a statistical departure of quantum from
classical dynamics. We argue that this new kind of breakdown, which does not have anything to do
with the well known phenomenon of localization, takes place on a time scale te = (1/Af) In(1/h)
larger than t„andwith Lyapunov coeKcient Ay determined essentially by the stochastic trajectories
moving on the border between the stochastic sea and the accelerator islands. If our arguments are
confirmed, they would lead to the possibility of observing the breakdown of the correspondence
principle in the statistical sense in times compatible with experimental observation.

PACS number(s): 05.45.+b, 03.65.Bz

I. INTRODUCTION

One of the most striking aspects of the dynamics of
quantum systems that would be classically chaotic is the
discovery of possible new channels for the macroscopic
manifestation of quantum mechanics. The majority of
authors [I—4], with but a few exceptions [5], agree on
this issue with different arguments leading, however, to
equivalent conclusions. We think that probably the most
intuitive way to reach this conclusion is given by the
picture recently used by Zurek and Paz [4]. Following
them [4], let us consider a quantum system in the phys-
ical condition where, according to a traditional wisdom,
quantum dynamics is supposed to be virtually coincident
with classical mechanics. Let us consider, for instance, a
driven one-dimensional system, namely, a particle mov-
ing in a time-dependent potential V(q, t). Even though
we provide a direct numerical integration of the quantum
dynamics in the text, in this section, for pedagogical rea-
sons, we discuss the qualitative nature of the quantum
system using a phase-space equation of evolution. We
adopt the Wigner formalism [6] leading to the equation
of motion for the quasiprobability pgr(q, p; t),

8
BtP (q p't) = [L -+ Lct]P (q p't)

where L ~ „coincides with the classical Poisson bracket
and Ig is the quantum contribution reading

(2)

Let us consider the case where the Planck constant 5 is

pl, (q, p;t) = exp(L. ) „t)pL,(q, p;0) .

The quantum evolution of the system is given in terms
of the Wigner density

p~(q, p; t) = exp[(L, ~ „+Lg)t]pl, (q, p; 0) . (4)

The validity of the classical picture is broken when
p~(q, p; t) significantly departs &om pL, (q, p; t). In the
case of ordinary classical motion the time required for
this breakdown to take place is inversely proportional to
the Planck constant to a power of the order of unity and
consequently a time so astronomically large as to result
in a complete fulfillment of the expectations of the cor-
respondence principle [I].

In the case where the classical motion is fully chaotic a
completely different situation occurs. The Liouville den-
sity undergoes a rapid process of fragmentation and the
originally smooth distribution quickly develops whorls
and tendrils and becomes more and more finely frag-
mented with increasing time. This process of increasing
fragmentation has the efFect of enhancing the role of the
operator Lg due to the sharp gradients in the fragmented
distribution. This operator would rigorously vanish in
the case of linear systems, thereby making unlimited the
time of validity of the correspondence principle. Even

extremely small compared to the typical macroscopic ac-
tion LI, namely, the volume of the phase space available
to the system within the classical representation. Under
this condition, where the classical picture is expected to
hold, we adopt an initial distribution given by a smooth
Liouville density pL, (q, p; 0). The classical evolution of
the system is given in terms of the Liouville density
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(gl&ld)t. = f dqdpdw(q, p) pw(q, p;&), (6)

where Aiv(q, p) is the classical variable corresponding to
the quantum observable within the Weyl picture. It is
thus clear that the adoption of a Gibbs ensemble is nec-
essary even if only one wave function (and not a statis-
tical mixture) is considered. Within this interpretation
scheme the classical behavior of our system (and conse-
quently the correspondence principle) holds true, if in (6)
p~(q, p; t) can be safely replaced by the Liouville density
pL, (q, p;t). This statistical definition of the correspon-
dence principle [definition (ii)] is the one adopted in this
paper.

One might be tempted to believe that definitions (i)
and (ii) are equivalent. Actually it is not so. We remark
that in the fully chaotic case the departure of p~(q, p; t)
from the Liouville density pr. (q, p;t) takes place first on

in the nonlinear case this correction can be neglected if
the Liouville density (and consequently the Wigner den-
sity) remained smooth. However, when the Wigner den-
sity, originally identical to the Liouville density, becomes
extremely fragmented, the diEerential operator Lg, ap-
plied to the quasidistribution, yields terms comparable
in magnitude to those of the classical evolution, thereby
resulting in a departure of the Liouville density Rom the
Wigner quasidistribution. Zurek and Paz [4] argue that
this departure of the classical &om the quantum descrip-
tion takes place at a time t~ given approximately by

t'11
t~ = —ln (5)

) h)
where A is the largest Lyapunov exponent. The time
required for the quantum-classical correspondence break-
down to take place is proportional to the logarithm of the
inverse of the Planck constant. This is a relatively short
time, which would allow, also for macroscopic systems,
quantum e8'ects to show up in experimentally observable
times. This would raise the question of the validity of the
correspondence principle in classically chaotic quantum
systems.

The above argument is widely accepted and suggests
that there is a time after which one cannot d.erive clas-
sical dynamics &om quantum dynamics. It is therefore
of interest to determine why the existence of such a time
does not appear to concern most physicists. In part the
explanation lies with the multiple definitions of the cor-
respondence principle. The naive definition corresponds
to the existence of single classical trajectories, which are
thought of as the average motion of narrow quantum
wave packets [definition (i)].

The postulate of the theory of measurement implies
that the quantum expectation value is experimentally re-
prod. uced by making an average over a set of independent
measurements or, equivalently, over a Gibbs ensemble. A
proper formal definition of the correspondence principle,
in line with this perspective, can be given by using the
Wigner formalism [6]. According to the Wigner formal-
ism, the mean value of a quantum-mechanical observable
A can be expressed by

a scale of the phase space that is of the order of 5 [1].
Thus, if on the same scale the observable A(q, p) is a
"smooth" function of the phase-space coordinates, the
quantum and classical averages can be essentially equiv-
alent. As a corisequence, definition (ii) can lead to a
virtual equivalence between quantum and classical me-
chanics well beyond the crossover time t~. The quantum
standard map [7] is an especially illuminating example of
this property since the conBict with the correspondence
principle defined in the statistical sense above takes place
only when localization occurs and this is known to occur
at times 1/5'", where p is of the order of unity [7], and
consequently at astronomically large times if the system
under study is macroscopic.

Similar investigations have been recently carried out
by Heller and co-workers [8]. These authors focused
their attention on the time over which the semiclassi-
cal approximation to the quantum propagator is valid.
According to a well known argument by Berry [1], for
a classical chaotic system, the semiclassical approxima-
tion should break down after a time proportional to the
logarithm of the inverse of the Planck constant. Note
that this estimate is substantially equivalent to the above
heuristic calculation by Zurek. Contrary to this expecta-
tion, Heller and co-workers showed that the semiclassical
treatment of the quantum propagator leads to a surpris-
ing agreement with the exact quantum-mechanical pre-
diction well beyond the time predicted by Berry. How-
ever, we want to point out that the successful applica-
tion of the semiclassical method, which is essentially a
genuinely quantum-mechanical theory, taking quantum
interference into account, does not necessarily imply that
a similar range of validity holds also for the correspon-
dence principle as given by definition (ii).

The search for a statistical manifestation of the break-
down of the correspondence principle occurring at loga-
rithmic times is the current subject of the research work
of Berman and co-workers [9]. These authors prove that
a real physical system of N paramagnetic atoms in a res-
onant cavity interacting with a constant magnetic field
and with a resonant external magnetic field can be pre-
pared in a chaotic semiclassical condition, leading to a
crossover time t„logarithmically dependent on the num-
ber of atoms involved and consequently to a breakdown
process compatible with experimental observation. Prom
their current results, however, it is not yet clear why the
breakdown of single trajectories and the rapid birth of
strong quantum correlation should have such an eKect
on the quantum-mechanical mean values as to make them
distinctly diferent from the corresponding classical aver-
ages. In the case of the standard map in the fully chaotic
state, for instance, it is known [10] that the quantum
correlation function of the momentum departs from the
corresponding classical correlation function at logarith-
mic times; on the other hand. , on the same time scale no
eKect is observed on the evolution of the energy, which
keeps increasing linearly in time well after the crossover
time tz.

%'e believe that the breakdown of the correspon-
dence principle according to definition (ii) can only occur
when observing statistical phenomena, whose existence is
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strongly determined by the existence of single trajecto-
ries. To check the validity of this conjecture, we focus
our attention here on anoxnalous rather than normal dif-
fusion. The dynamical approach to anomalous dift'usion

in classical physics is the current object of an intensive
search by some groups [11—14]. To the best of our knowl-

edge, this is the first paper where the same problem is
examined in a quantum-mechanical context.

The plan of the paper is as follows. Section II is de-
voted to reviewing the key theoretical arguments for de-
riving anomalous difFusion from classical deterministic
dynamics. Section III illustrates the numerical results
concerning the corresponding quantum dynamics. Sec-
tion IV is devoted to a theoretical estimate of the time
at which the mean quantum-mechanical value departs
from the corresponding classical prediction. In Sec. V
we summarize our conclusions: the quantum dynamics of
systems that, within the theoretical framework of classi-
cal physics would lead to anomalous diftusion, yield the
breakdown of the correspondence principle at logarithmic
times even if the orthodox definition (ii) is adopted.

II. ANOMALOUS DIFFUSION
IN CLASSICAL PHYSICS

We apply our investigation to a prototype of classical
chaos [15]. This is the standard map, which reads

p„+g——p„+K sin 0„,
0„+,= e„+p„+,, mod(2vr) .

This is an area-preserving map that describes the discrete
evolution of a classical rotator kicked at regular intervals
of time by a momentum proportional to Ksino. The
standard map has been widely studied as a prototype for
deterministic difFusion [16]. Focusing our attention on
the difFusive regime, we study the case of very large n
and we adopt a continuous time picture. For the sake of
notational simplicity we identify the momentum p„with
the continuous variable z (to be compared with a difFus-

ing spacelike variable) and the quantity K sin 0 with the
corresponding "velocity, " denoted by (. We thus obtain

Under the stationarity assumption the solution to (8)
leads to the second moment

t t'

( '(t)) = 2(&') «' «"C' (t") + (*'(o)) (9)
0 0

correlation time 7., defined by

«c&(t) .
0

There are, however, special parameter values for the un-

derlying dynamical process resulting in a decay of 4t(t)
with no time scale. For certain values of K determin-
istic islands appear in the phase space of the standard
map [ll], called accelerator islands. These are islands
created around stable periodic orbits 0(t) of period Q
that satisfy

p„+g—p„=2m', (12)

Q

K) sino„+,——2vrE,

with [11]

2(p&3. (14)

When the waiting time distribution is of the form (13)
the trajectory spends most of its time in the neighbor-
hood of the accelerator islands. In this case we can safely
neglect the time spent in the fully chaotic region and the
trajectory appears to switch at random &om the bor-
der of one accelerator island to the border of the other,
corresponding to the opposite value of E. In this approx-
imation the expression for the correlation function 4g(t)
holds true [17]

where E is a nonzero integer. These islands appear in
symmetrical pairs distributed around 0 = 0, depending
on the sign of E. If the particle is located inside an ac-
celerator island, at any step the particle changes its mo-
mentum by a quantity 27rE/Q, jumping inside the corre-
sponding island located in the next or the preceding cell
of the phase space, according to whether E is positive'or
negative. If the particle is located on the border between
the chaotic sea and the small accelerator island, at any
step the particle makes jumps into the next or the pre-
ceding cell, in a position still on the border between the
chaotic sea and the corresponding island. In other words,
for an extended period of time the trajectory remains in
the neighborhood of the accelerator islands. Due to the
fractal nature of this boundary region, the resulting dis-
tribution of sojourn times @(t) in the long-time limit has
the inverse power-law form [12]

1
(t) =-

t~ '

where

8 (o)((t)).
Ã') ~

(10)

is the stationary correlation function of the velocity (
and the subscript eq on the brackets an average in the
equilibrum state. Ordinary difFusion is obtained when
the correlation function of the velocity undergoes so rapid
a relaxation process as to result in a finite value for the

(x (t)) = const x t (16)

Therefore when the inverse power-law index is in the in-

where (t) is the mean sojourn time in the acceler-
ated condition. Thus, when the distribution of sojourn
times (13) is applicable the correlation function (15) in-
serted into (9) yields, by making time tend to infinity,
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terval (14) difFusion ranges from normal (p, = 3) to bal-
listic (p = 2). The case 2 ( p ( 3 is referred to as
anomalous diffusion.

For the property (16) to hold true, with a distinct dif-
ference from the normal case, it is necessary for a single
trajectory to sojourn in the region at the border between
accelerator islands and the chaotic sea for an arbitrarily
long time. Any process resulting in a random perturba-
tion of the single trajectory would provoke the particle
to escape from the trapping region, thereby producing a
truncation of the inverse power law of (13). In this case
we should replace (13) with

(17)

where the function E(t, e) depends on the strength of
perturbation e. Typically, for a small perturbation the
efFect of F(t, e) is important for times longer than 1/e,
while in the short-time period the value of F(t, e) will
be close to unity. For instance, in the case of thermal
fluctuations it was shown [14] that a plausible form for
P(t, e) is given by

E(t, ~) = exp( —et) .

At times longer than 1/c anomalous diff'usion is lost and
normal diffusion with an anomalously large diffusion co-
eKcient appears, which tends to diverge with decreasing
the intensity of the environmental ffuctuations [14]. Thus
we see that the effect of a weak Huctuation on anomalous
diffusion is much more drastic than it is in the case of nor-
mal diffusion, where the effect of a Huctuation is easily
proved to yield only a slight change in the difFusion co-
efficient [18]. If we make the reasonable assumption that
quantum Huctuations produce effects similar to those of
classical environmental Huctuations, then we have an in-
tuitive explanation of why quantum Huctuation cannot
make the standard difFusion process depart from the clas-
sical prediction (before the occurrence of the localization
process, which, at small 6, would take place at extremely
long times [10]). We also have an intuitive explanation of
why, on the contrary, in the case of anomalous diffusion,
quantum Huctuations might provoke a significant depar-
ture of the difFusion process from the classical prediction.
Although we do not expect quantum Huctuations to be
equivalent to classical Huctuations, due to the fact that
they imply long-range space and time correlations, we do
believe that anomalous diffusion is as sensitive to quan-
tum as it is to classical Huctuations. For this reason we
think that the crossover time beyond which the classi-
cal trajectories are lost might correspond to statistical
efFects making quantum predictions depart significantly
from the classical one.

In summary, while standard difFusion is not affected
by the smearing of the trajectory, anomalous difFusion
seems to be strongly dependent on the existence of single
trajectories and the smearing of them is proven to result
in a strong departure from the anomalous behavior that
the system would exhibit in the absence of Huctuations,
either quantum or thermal.

III. NUMERICAL RESULTS

The theoretical expectation of the previous sections,
on the sensitivity of anomalous diffusion to quantum-
mechanical Huctuations, is confirmed in this section
through numerical calculations. The analysis of quantum
dynamics implies the evaluation of the time evolution of
the wave function. This is given by applying the Floquet
operator P corresponding to the inap (7) to the wave
function

~qn+1} @~an} p ——'„p ——„*A;cos q (19)

It is convenient to express the operator E in the basis
of the momentum eigenstates ~m), defined by p~m}
5m~m), thereby resulting in the mapping for the expan-
sion coefficients c—:(m~@ ),

ml
(20)

where J denotes a Bessel function of order m. This
means that at each temporal step n we have to define
a new vector. This vector in principle should be infi-
nite dimensional, with m, ' ranging from —oo to +oo. For
practical purposes we are obliged to truncate these vec-
tors. This truncation must be made with caution because
the dimension of the vectors must be suKciently large as
to not conHict with the nature of anomalous diffusion,
which implies a rapid energy increase and consequently
a larger basis set of eigenstates of the momentum than
in the standard diffusion case. The requirement of very
large dimensions is determined by the fact that the cor-
respondence principle refers to the case of very small 5,
as well as by the nature of the difFusion under study. In
fact, to consider small 6 we are forced to adopt extremely
large dimensions for two difFerent reasons. The first is
that the breakdown of anomalous diffusion takes place
at longer and longer times upon decreasing the value of
h. This means that the mean value of the square of the
classical momentum becomes exceptionally large. The
second compelling reason is given by the analytical form
of (20). The truncation of the expansion basis set can
be safely made when the index m in (20) is two or three
times larger than the argument itself of the Bessel func-
tion. This argument becomes larger upon decrease of
the Planck constant 5, thereby increasing the dimension
necessary for a fair numerical treatment of the problem
under discussion.

If % is the size of the vectors used, the iterating map
(20) implies a computational time proportional to N .
This computational time can be drastically reduced by
using a numerical procedure based on the fast Fourier
transform algorithm [19]. When we apply the operator
e ~" o'~, using the Fourier transform, we switch from
the momentum representation to the coordinate repre-
sentation, thereby making the operator diagonal. Then

i 2
before applying the second operator e ~&", by an inverse
Fourier transform we return to the momentum represen-
tation, thereby also keeping this operator diagonal. It
is straightforward to show that the adoption of this cal-
culation strategy reduces the computational time from a
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quantity proportional to N to a value proportional to
NlnN. When we use extremely large values of N (for
the smallest value of h we choose N = 2 ), this implies
a significant reduction of computer time.

We devote special attention to the adoption of initial
conditions that do not make the quantum distribution
overlap with the accelerator islands. These important
initial conditions are determined by setting the system
on an eigenstate of the momentum with an eigenvalue
distinctly different from the values of p at which, within
the classical approximation, the accelerator islands ap-
pear, i.e. , we choose (@ ~pj@ ) = 0.5. In the classical
treatment of the same problem, we adopt an equivalent
condition, namely, a distribution of phase space points
with p = 0.5, randomly distributed over 0. This means
that these points are located within the chaotic sea: the
birth of anomalous diffusion depends on the fact that,
sooner or later, due to the difFusion process, these phase
space points stick to the border between the chaotic sea
and an accelerator island.

For each numerical treatment of the quantum case we
also carry out the much easier numerical treatment of
the classical case, namely, the numerical evaluation of
the map (7) and then we compare the two results. Fig-
ures 1 and 2 provide a qualitative but quite transparent
illustration of the fact that anomalous diffusion implies
a special sensitivity to quantum fiuctuations. These two
figures refer to two slightly different values of K: K = 7.1
in the case of Fig. 1 and K = 6.9115 in the case of Fig.
2. Although these two values of K are close to one an-
other, the latter corresponds to a value that is known to
result in anomalous diffusion [11],whereas the former re-
sults in a standard diffusive process. We see that in the
latter case the classical prediction, denoted by the full
line, leads to a dependence of the second moment of p on
time that is distinctly larger than the linear dependence
of standard diffusion [11,12]. Upon increasing the value
of 5 the quantum calculation leads to a rapid departure
of the quantum from the classical prediction, which turns
out to be much more rapid for anomalous than for stan-
dard diffusion (note that the time scale of Fig. 2 is much
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FIG. 2. Time evolution of (p ) (twice the mean energy) in
the anomalous diffusion case. The solid line denotes the clas-
sical calculation while the dashed lines denote the quantum
results. The values of the parameters are K = 6.91155= 0.1
(———), 0.01 (- — -), and 0.005 ( ).

shorter than that of Fig. 1). We see from Fig. 1 that
the classical prediction, denoted again by a full line, is
a straight line, implying as it must a linear dependence
of (p ) on time. To point out the strong difference be-
tween the two cases, let us consider the smallest value of
h used, h = 0.005. We see that, while in the anomalous
case the quantum result significantly departs from the
classical prediction after relatively short times (Fig. 2),
in the standard case we could not find any appreciable
difference between the two in the time range considered
(Fig. 1).

To set these results on a more quantitative basis, we
evaluated the mean value of energy increase per kickB—:(E +q) —(E ). It is evident that standard diffusion
in the classical case implies that R remains constant,
whereas anomalous difFusion implies that R steadily in-
creases with n. This is confirmed by the results of Fig. 3,
which show that after a very sharp increase in R at
very short times it fluctuates around a fixed mean value.
It is interesting to notice that the quantum result de-
parts almost immediately from the classical prediction.
However, since both the quantum and the classical pre-
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FIG. 1. Time evolution of (p ) (twice the mean energy) in

the standard diffusion case. The solid line denotes the clas-
sical calculation while the dashed lines denote the quantum
results. The values of the parameters are K = 7.1, 5 = 0.1
(———), 0.01 (- — -), and 0.005 ( .).

FIG. 3. Mean energy increase per kick R in the standard
diffusion case. The solid line is the classical result and the
dashed line is the quantum result. The value of the parame-
ters are K = 7.1 and h, = 0.005.
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FIG. 4. Mean energy increase per kick R in the anoma-
lous diffusion case. The solid line is the classical result and
the dashed line is the quantum result. The value of the pa-
rameters are K = 6.9115 and 5 = 0.005.

diction of B„fluctuate around the same constant value,
they will result in the same time evolution for the mean
energy (E„).

We believe that this behavior of B is the result of the
insensitivity of the statistical predictions to whether the
distribution is classical or quantum, mentioned in Sec. I.
This is why, if we adopt the definition (ii) of the corre-
spondence principle, we can safely conclude that the cor-
respondence principle is confirmed by the field of quan-
tum chaos. The reasons for the insensitivity of standard
diffusion to whether the distribution is classical or quan-
tum are in turn those stressed in Sec. II: standard dif-
fusion is not affected by weak fluctuation producing a
broadening of its trajectories.

We see from Fig. 4 that similar but distinct prop-
erties are exhibited in the case of anomalous diffusion.
Even in this case the departure of the classical &om the
quantum evolution of R is extremely rapid. However,
in this case the quantum and the classical curve Huctuate
around two steadily increasing curves, very close to one
another. Then, the quantum prediction departs from the
classical one. In conclusion, we see that there are two
significant time scales here. The first coincides with the
time tz given by the heuristic formula (5) and it has to
do with the departure of the Liouville density from the
Wigner quasiprobability. According to the arguments of
Sec. I as well as several others proposed by various au-
thors [1—4], this breakdown time depends logarithmically
on the inverse of the Planck constant. In addition to this
we also find a second breakdown time, which has a much
greater inHuence on B and is related to the statistical
departure of the quantum from the classical prediction
in the sense of definition (ii). We call this second break-
down time t~. In the case of standard diffusion shown
in Fig. 3, this second breakdown time is not exhibited
in the time region depicted in the figure. It is expected
to take place on a much longer time scale and must be
related to the well known phenomenon of quantum lo-
calization [10,20]. Quantum localization implies that R
will regress to a vanishing value, thereby implying that
even in the case of standard diffusion there is an eventual
statistical departure of quantum from classical dynam-
ics. There is wide agreement in the literature on the fact

FIG. 5. Dependence of the two breakdown times on 1/h.
The small circles denote the logarithmic time t„while the
dashed line is the theoretical prediction of Eq. (5). The small
squares denote the second breakdown time t& and the solid
line is a logarithmic fit t~ =

&
ln

&
+ c with the additive

Ay

constant c = 56 and Ay
——0.4. A power-law fitting of the same

data ts = r(h) "would result in r = 58.7 andy = 0.03 and in
the scale of this figure in a curve almost indistinguishable from
the logarithmic one. The values of the nonlinear parameter is
K = 6.9115, corresponding to the anomalous diffusion case.

that the localization process takes place on a time scale
proportional to 1/h~ with p of the order of the unity.
Therefore, in the case of anomalous diffusion we might
also expect t~ to have the same power dependence on
the Planck constant. Our numerical results prove that it
is not so and that t~ has a quite different dependence on
1/h.

We are now in a position to set a more quantitative ba-
sis for our prediction on the special sensitivity of anoma-
lous diffusion to quantum Huctuation. This is illustrated
by Fig. 5, where we plot both breakdown times as a
function of the inverse of h. The small circles illustrate
the dependence of tz on 1/5 and the comparison with
the predicted logarithmic dependence (dashed line) con-
firms the accuracy of the heuristic prediction. Note that
the dashed line is derived from (5) using as the Lya-
punov coefBcient the value A = 1n(K/2) [21] equal to
A = ln(6. 9115/2) = 1.24 in the case considered here.
Note also that Eq. (5) in the original form of Zurek and
Paz [4] is supplemented by an additive constant that is
here adopted as a fitting parameter.

We think that the numerical results depicted in Fig. 5
clearly show that the time tJ3 depends logarithmically on
1/h. Let us discuss this key point in some detail. The
first two data points, corresponding to the largest values
of 6 considered in our calculations, seem to correspond
to a condition where quantum uncertainty is so large as
to make the system lose any dependence on the structure
of the classical phase space. We found a similar property
in a recent work on the influence of chaos on quantum
tunneling [22]. Since we are interested in the behavior of
t~ for small h, in the following analysis we shall disregard
these first two points.

We fit the numerical result on t~ with both an inverse
power-law expression t~ = r.(h) " and a logarithmic de-
pendence on 1/h. We find that the numerical results are
accounted for by adopting an extremely small value for
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the fitting parameter g, namely, g 3 x 10 . It must
be stressed that there are technical difficulties in mak-
ing h very small. During the course of our calculations,
as a result of technical improvements we have been able
to make calculations with smaller and smaller values of
h. We noticed that decreasing the value of 6 turned out
to result in a general tendency towards smaller values of
g without any convergent behavior. We have therefore
concluded that a further decrease of 6 would result in a
further decrease of the fitting parameter g. Furthermore,
we must say that we are not aware of any theoretical ap-
proach resulting in so weak a value for the power g. For
'.hese reasons we are confident that the logarithmic de-
pendence of t~ on 1jh has much firmer theoretical ground
than the power-law dependence, as we are now going to
discuss.

IV. THEORETICAL ESTIMATE OF tgy

Anomalous difFusion within a quantum-mechanical pic-
ture, such as standard diffusion, is characterized by two
critical times. However, while the former is the same for
both processes, standard and anomalous, the latter has a
physical origin in the anomalous case quite distinct from
that of the normal case. The former time is t~ (see [5])
and refers to quantum-mechanical fluctuations enhanced
by the conventional mechanism of full chaos. This critical
time still shows up in the case of anomalous diffusion, for
the following reasons. In spite of the fact that anomalous
difFusion, as shown in Sec. II, originates from the motion
within the fractal region at the border between the accel-
erator islands and the chaotic sea, the motion within the
chaotic sea cannot be ignored since it drives the motion
from the one to the other island. The classical particle
quickly diffuses in the chaotic sea and eventually sticks
to the fractal border, where it spends an extremely long
period of time. We think that the early rapid difFusion
process is reflected by the breakdown time t~, which is es-
sentially determined by the Lyapunov coefficients of the
chaotic sea. This time is where the quantum energy ab-
sorbed per kick R„departs from the classical B without
resulting yet in a statistical departure of quantum from
classical physics. So far the quantum behavior of anoma-
lous diffusion is equivalent to that of normal difFusion.

In both cases the time t~ refers to the statistical de-
parture of quantum from classical physics. In the case
of normal difFusion t~ coincides with the well known lo-
calization time and we refer the reader to the literature
on the subject [10]. In this paper we discover that in
the case of anomalous diffusion the time t~ refers to a
quite distinct process, which does not have anything to
do with localization. After the rapid early diffusion, the
motion is essentially dominated by the classical trajecto-
ries entering the fractal region. This is characterized by
Lyapunov coefficients that are significantly smaller than
those responsible for the former breakdown; the particle
is in fact approaching a stable periodic trajectory. Conse-
quently, even if in the fully chaotic region the concept of
a classical trajectory is already lost, in the fractal region
we can still imagine the quantum phase-space distribu-

tion as generated by classical trajectories. We think that
when the classical-like description of the motion within
the fractal region breaks down, the "quantum particle"
will be forced to leave the accelerator island region so
that the resulting quantum dynamics will start deviating
in the sense of definition (ii) from the corresponding clas-
sical motion. As will be shown in the following heuristic
calculation, such a mechanism leads to a breaking time
t~ that is proportional to the logarithm of 1/h.

It seems that there is no doubt about the fact that
quantum mechanics sets an upper time limit to the in-
verse power-law distribution of waiting times of a par-
ticle at a site. There are already calculations of the
value of t~ made by Lai et al. [23], who estimate it to
be inversely proportional to h, to some power of the or-
der of the unity. Here we review their arguments, while
including a dynamical property of quantum chaos that
leads to an estimate of t~ consistent with the results in
Fig. 5. The model adopted by Lai et al. [23] is a Markov
chain of infinite coupled states. This model has been suc-
cessfully used to describe the evolution of a generic two-
dimensional chaotic system in the neighborhood of a bor-
der Kol'mogorov-Arnol'd-Moser (KAM) torus, namely,
the outermost invariant curve that separates the regular
motion of the inner island from the chaotic dynamics of
the stochastic sea [24,25]. As we already pointed out,
the global behavior of the motion is dominated by those
trajectories that, trapped in the neighborhood of the ac-
celerator island, travel in the momentum direction. In
general, the physical quantities of interest, such as the
sojourn time or the injection and escape time, are very
complicated functions of the initial conditions of the tra-
jectory and to a large extent can be considered. as random
variables. In other words, to describe the dynamics of the
quantum system it is more convenient to adopt a prob-
abilistic picture than to attempt to solve the problem
directly from the map equations (7).

In the probabilistic description we divide the phase
space around the island into an infinite chain of coupled
Markov states. The zeroth-order state ~0) represents the
particle still embedded in the open chaotic sea while the
inner states ~l), ~2), ~3), . . . , ~oo) correspond to trajec-
tories trapped at the border of the island. The division
of the trapped state into an infinite number of discrete
substates roughly accounts for the dynamical properties
of the phase space around a border KAM torus, namely,
each state represents the portion of phase space encir-
cled by two successive cantori. These are the remnants
of the destroyed invariant tori, which have the property
of being minimum flux surfaces. In other words, con-
trary to invariant surfaces, the cantori can be crossed
by the trajectories, but with a passage rate that is a
local minimum. The physical picture of the evolution
of the Markov model is therefore as follows: from the
chaotic sea the particle crosses the outermost cantorus of
the accelerator island and gets into the first inner state.
Here the motion is chaotic and the particle has a given
probability to cross back to the chaotic sea or to cross
the successive cantorus to go deeper into the trapped
state structure. Actually this scheme is highly simpli-
fied. First, the phase-space structure suggests that a
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P, ;+g
P,

i,i+ 1
' P,.+g,.

b&1, (21)

where b is the scaling exponent and P is the ratio between
the transition probability to go from the state i to the
next state in the chain (P;;+i) and the backward transi-
tion (P;+i,). The equation for the occupation probabil-
ities P, (t) reads

Pp(t) = abP, (t) —cPp(t),

P, (t) = cb' 'P, , (t) —O' 'P, (t) + ab'+'P, +,(t),

tree model would be more appropriate than the chain
model to describe the structure of all the higher-order
resonances [25]. Second, the particle flux is a contin-
uous function of the phase-space position, thereby the
division of the phase space into discrete states is rather
a matter of mathematical convenience than a real dy-
namical property. Nevertheless, it has been shown that
this simple model can account for all the most important
qualitative properties of these systems [24]. We have now
to provide the details of the probabilistic Markov model.
It has been conjectured that the fractal structure of the
phase space around a border island should give rise to a
scaling law for the transition probability. The numerical
investigations have con6rmed that this ansatz is a good
approximation. Following the work of previous investi-
gators, we consider the simplest scaling relation for the
transition probabilities of the chain model, i.e. ,

tion to (24) comes from those trajectories that penetrate
deeply the fractal structure thereby dwelling in the in-
ner state for an arbitrarily long time. However, to make
predictions on the quantum case there Inust be a state
of a given order, let us say of order N, beyond which the
quantum-mechanical particle cannot proceed. In other
words, a heuristic quantum Markov model should contain
a finite number of states N, where N is related in some
way to the quantum parameter h. This is a consequence
of a general feature of quantum chaotic systems, namely,
the property of classical cantori of preventing quantum
motion from exploring regions of the phase space that, in
the long-time limit, are allowed to its classical analog [26].

Initially the two models have the same dynamical be-
havior (for instance, the waiting time distribution is

equal), but after a time t~ the finite state model will

start deviating from the prediction of the infinite Markov
model. To evaluate the breakdown time t~ we divide all
the trajectories that contribute to distribution (24) into
two sets. In the erst we consider the trajectories that
reach state ~0) without going in the state ]N + 1). The
second set is the set complementary to the former one,
namely, it contains those trajectories that before reaching

~0) were at least one time in the state ~N + 1). We shall
denote P(1 ~ 0, N+1; t) and P(l ~ N+1, N+1 + 0; t),
respectively, the probability of occurrence of the former
and the latter set. It is straightforward to derive

P(1 m 0; t) = P(1 m 0, N + 1;t)

with a = b/[1+ Ph] and c = P/[1+ Ph]. Finally, still ex-
ploiting the fractal nature of the phase-space, we assume
that the phase-space dimension of the state of the chain
scales with some given exponent A (A ( 1): namely, for n
jumps towards a region of steadily decreasing dimension
the resulting size decrease is given by A . However, it
must be noticed that, since a classical trajectory can pen-
etrate regions of arbitrarily small dimension, this param-
eter will play a role only in the quantum considerations.
In the classical case this model has been used to obtain
the long-time behavior of the waiting time distribution
denoted as P(1 -+ 0; t), which coincides with Q(t) of Eq.
(13). This is obtained froin Eq. (22) by calculating the
probability that a particle, initially located in the state
~1), first reaches the open state ~0) at time t. Using the
scaling relation (21), a relatively easy calculation gives
the following nonlinear equation for the Laplace trans-
form of the waiting time distribution denoted as Pi(z)

+P(l ~ N+ 1,N+1+ 0;t) . (25)

Following Lai et al. [23], we define t~ as the time at
which the contribution from the forbidden set P(l ~ N+
1, N + 1 + 0; t) is comparable to the entire probability
P(1~ o;t)

P(l ~ N+1, N+1-+ 0;t)
P(1-+ o;t)

(26)

P (1 -+ N + 1,N + 1 -+ 0; t)

where y is an arbitrary number smaller than unity. Let
us now calculate the long-time behavior of P(l ~ N +
1, N + 1 ~ 0; t). First we note that this can be written
as

Pi(z) [z+ 1 —bcPi (z/b)] = 1, (23) d~P(1 -+ N + 1,0; ~)P(N + 1 -+ 0; t —~), (27)
0

which in the long-time limit leads to an inverse power-law
decay [24]

P(1 ~ 0;t) —,p = 1+ [in(b)] lnt~' 1+ Ql —4c

The inverse power-law behavior of distribution (24) is
a direct consequence of the &actal nature of the phase
space: namely, in the long-time limit the main contribu-

where P(l + N + 1,0; t) is the probability that a trajec-
tory initially in the state ~1) first reaches state ~N+ 1) in
time t, without having been in state ~0), and P(N+ 1 ~
0; t) is the probability that a trajectory initially in the
state ]N + 1) first reaches state ~0) in time t. The use-
fulness of (27) stems from the fact that in the long-time
limit the distribution P(N + 1 -+ 0; t) satisfies a scaling
relation similar to that of P(l -+ 0; t). In fact, it is easy
to show that the Laplace transform of P(N + 1 —+ 0; t)
is written as
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P1V+ 1 (z) d~e P(1V + 1 m 0;~), (28)

kg 1
lim P(1 m 0; t) = + ~ ~ ~

t +oo I'(1 —p) t&

lim P(l -+ K + 1, K + 1 m 0; t)t—+oo

kg 1 k2 1+ (29)I'(1 —p) t& I'(2 —2p) t2&—'

where

Ck 1
ko ——u

~-(~+~) - '
2 1 —0!

—2(%+1)-

1 —0!

(30)

Condition (26), together with (29) and (30), is a very
complicated function of the time and the quantum pa-
rameter ¹ However, if we consider the semiclassical
limit, i.e. , 6 &( 1 and consequently N )& 1, it is possible
to derive the result

P(l -+ N + 1, % + 1 m 0; t)hm
t—+oo P(1 m 0;t)

N 1= 1- k(m)
-"—+t~

lim k(2V) = k(oo)
N —+oo

(3n + 1) I'(1 + 2p) sin 2per
1 31

2(n + 1)(1 —n) I'(1 + p) sin pm.

We have now to relate the quantum parameter X,
namely, the smallest state attainable by the quantum
particle, to h. It must be pointed out that the quantum
particle becomes more and more embedded in the frac-
tal region moving within a chaotic region and that the
motion within the chaotic region in turn has the efFect of
making the size of the wave packet mimicking the classi-
cal particle increase exponentially in time [3]. Thus we
find that an assumption close to reality is

A = hexp(Apt), (32)

where Ay is the effective Lyapunov coeKcient of the
chaotic area within the fractal region. Equation (32)
yields the breakdown time

/11
t~ ——ln

/

—
/ (33)

On the other hand, this logarithmic breakdown has an
immediate statistical effect on the anomalous diffusion,

P~ i(z) = Pi(z)P, (zb ') P, (z8 ')
xP, (za-') "P, (ze-") .

To study the long-time limit of P(1 ~ %+1,%+1 ~ 0; t)
we evaluate P~+i(z) in the limit of z that goes to zero.
Using the asymptotic expansion for Pi(z) and Eqs. (27)
and (28) we obtain

which would lead to the inverse power-law expression

t& --k(oo)'~"h (35)

The exponent in this equation corresponds to the fitting
parameter g defined in Sec. III, and to get an estimate
of it we follow Ref. [2S] and consider the border torus
of the accelerator island as a noble torus, i.e. , a torus
with a golden mean winding number. In this case it is
possible to derive b and A to obtain a value for g of the
order of unity. Note that this estimate is at least one
order of magnitude greater than the value provided by
the numerical results of Sec. III. We think therefore that
the choice (32), although made within the context of the
same heuristic treatment as that of Lai et al. [23], reflects
more satisfactorily the physical properties of the system
under study.

V. CONCLUDING REMARKS

The current literature on quantum chaos afFords two
possible reasons for the departure of quantum from clas-
sical physics [10,27]. The first reason is related to the
finite width of the Floquet states in the momentum rep-
resentation. This is ruled out by the fact that it results
in a power-law dependence on 1/5 with a power that is
markedly larger than that stemming from our computer
results, if we insist on interpreting them as compatible
with a power-law prediction. The second reason is based
on the scaling properties of the phase space [23,27] and
is ruled out essentially for the same reason, namely, by
the fact that it would provide a power index much larger
than that compatible with our computational result.

Only one interpretation is not ruled out by our nu-
merical results and this is precisely the statement that
the discrepancy between quantum and classical mechan-
ics is a manifestation of the breakdown of the classical
trajectories in logarithmic time, as given by (33). Un-
fortunately, we are not yet in a position to explain all
the aspects of our numerical results. From Fig. 5 we see
that the breakdown time, as a function of the increas-
ing value 1/h, fluctuates about a logarithmic slope. A
possible reason for these fluctuations is that since the
effective Lyapunov coefFicient depends on the space re-
gions explored by the trajectories, the resulting breaking
time (33) can vary in a nonmonotonic way. This might
be a plausible explanation because, upon increase of 1/5,
the trajectories enter regions of smaller and smaller scale
and the broadening of the classical trajectories, or, equiv-
alently, the departure of the quantum distribution &om
the classical Liouville density, would be modulated by

since anomalous diffusion depends on the inverse power-
law distribution of waiting times, and the breakdown of
this distribution has the immediate efFect of destroying
the anomalous character of diffusion.

It must be pointed out that the demonstration that led
us to (33) is not a rigorous proof but is essentially based
on plausible heuristic arguments. We have also to recall
that Lai et al. [23] made a different choice with

(34)
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the irregular dependence of the Lyapunov coefflcients on
the depth of the &actal region explored.

As pointed out by the analysis in Sec. II, the process
of anomalous diffusion strongly rests on the existence of
single trajectories entering &actal regions of the phase
space of smaller and smaller size. This picture has to be
properly modified if either we add thermal fluctuations
or we quantize the system, that is, if we add a "quantum
fluctuation" to the map (7). In the case of normal dif-
fusion, this does not have any statistical consequence in
observable times due to the insensitivity of this process
to weak fluctuations of a thermal or quantum nature.
On the other hand, we found that the anomalous case
results in a breakdown of the correspondence principle
[see definition (ii) in Sec. I] in a logarithmic time and
that this behavior can be explained by the fact that, in
the quantum case, the single trajectories are prevented
&om penetrating deeply into the fractal region, thereby
invalidating the origin of anomalous diffusion.

As mentioned in the Introduction, our conclusions do
not conflict with those of Ref. [8]. We must remark, first
of all, that the method. of the semiclassical Green func-
tion can lead to a probability distribution coincident with
the quantum one and strongly departing from the clas-
sical prediction. This can be easily proved by using the
prototypical case of the two-slit experiment [28] and by
noticing that the semiclassical Green function incorpo-
rates the essential interference efFects of quantum me-
chanics. Thus, in principle, there might exist physical
situations where the semiclassical method leads to exact
quantum-mechanical results, and to a strong disagree-
ment with classical mechanics, and consequently with the
correspondence principle even if definition (ii) is adopted.
On the basis of the results of this paper we expect that
the departure between the predictions of the semiclas-
sical treatment and those of ordinary classical mechan-
ics takes place at the time tI3, with no conflict with the
agreement between the semiclassical method and the ex-
act quantum-mechanical treatment. Our results do not
exclude that there might be no upper time limit of valid-
ity to the agreement between the results of the semiclas-
sical Green function and the exact quantum-mechanical
treatment. In conclusion, we believe that the adoption of
the semiclassical method, rather than conflicting with our
conclusions, might help us to supplement the theoretical
interpretations of our numerical results with arguments
based on the interference effects among the two distinct
zones of the phase space, and thus provide an alternative
to those arguments of Sec. IV.

Consequently, we are convinced that the correspon-
dence principle is violated by the quantum behavior of

systems that would classically undergo anomalous diffu-
sion. Is this an assessment on the state of deep incon-
sistencies for quantum mechanics as a unifying theory
from which classical mechanics, in the proper limit, nat-
urally stems' According to Ref. [4], we should also take
the interaction with the environment into account. This
would make the process of thermal fluctuations affect
the dynamics of the single trajectories at times earlier
than those corresponding to the quantum breakdown of
the single trajectories, thereby ensuring the validity of
the correspondence principle, if the orthodox interpreta-
tion is adopted. In the case of anomalous diffusion, the
study of the transition from anomalous to ordinary dif-
fusion is the subject of the current investigation of our
group [14]. It is in principle possible to evaluate the time
for the crossover &om anomalous to standard diffusion,
as a function of the noise intensity.

In conclusion, a satisfactory answer to whether or not
the supposed generality of quantum mechanics is inval-
idated by the processes of anomalous difFusion, requires
the settlement of the following problems.

(a) The heuristic prediction (33) should be put on a
firmer basis. Probably, still more important than this,
one should account for the fluctuations of the numerical
results around this prediction.

(b) Using classical physics and a plausible model of
the interaction between the system of interest and its
environment, one should d.etermine the time of crossover
&om anomalous to normal diffusion determined by the
environmental fluctuations. This crossover time is made
longer and longer by decreasing the temperature of the
environment. The availability of temperature so low as to
make this time much longer than t~ should be discussed
in the light of the current experimental techniques.

Therefore we are inclined to believe that the quan-
tum behavior of systems that classically would undergo
anomalous diffusion leads to the breakdown of the corre-
spondence principle, even if the orthodox definition (ii)
is adopted. However, this is not yet a claim on a pos-
sible deep inconsistency between quantum and classical
mechanics. This requires further research work concern-
ing environmental influences. Nevertheless, this paper,
which is, to the best of our knowledge, the first the-
oretical quantum-mechanical treatment of a process of
anomalous diffusion, has certainly the merit of pointing
out the importance of anomalous diffusion for the dis-
cussion of this fundamental problem. Furthermore, this
paper establishes that anomalous diffusion results in a
departure of quantum from classical statistical behav-
ior over times much shorter than those corresponding to
quantum localization, if any occurs.
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