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A global analysis of the scaling behavior of a system with a scalar order parameter quenched
to zero temperature is obtained by numerical simulation of the Ginzburg-Landau equation with
conserved and nonconserved order parameters. A rich structure emerges, characterized by early
and asymptotic scaling regimes, separated by a crossover. The interplay among diferent dynamical
behaviors is investigated by varying the parameters of the quench and can be interpreted as being
due to the competition of difFerent dynamical fixed points.
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I. INTRODUCTION

In recent years a great effort has been made to un-
derstand the scaling behavior observed in the late stage
of the phase ordering process following the temperature
quench of a system from an initial disordered state to a
final state inside the coexistence region, below the crit-
ical point. A theoretical framework for the description
of this phenomenon, well suited for both analytical and
numerical approaches, is provided by the time-dependent
Ginzburg-Landau (TDGL) model [1].

In the late stage of phase ordering, the order parame-
ter saturates locally to the equilibrium values, giving rise
to configurations with domains separated. by sharp inter-
faces. In this regime, the only dynamics left in the sys-
tem is therefore interface motion and the subsequent time
evolution is characterized by the coarsening of domains,
while their morphology remains invariant. This leads to
the formulation of the scaling hypothesis [2], whereby
the residual time dependence in the system is due only
to the growth of the size of domains according to the

1
power law L(t) t*, with z = 2 for the nonconserved
order parameter (NCOP) and z = 3 for the conserved or-
der parameter (COP). According to this hypothesis, the
equal time order parameter correlation function obeys an
asymptotic form of the type

G(lx —*'I, t) - I (t)+, (1)
/x —x'/

1,(t)
where o. = 0 due to the formation of compact domains
and E is a scaling function. This in turn implies the form

C(k, t) - L,(t)' -X[kI,(t)]
for the structure factor, which is the space Fourier trans-
form of G(~x —x'~, t). Although a full theory of scaling is
yet to come, the prediction of the scaling hypothesis for
the correlation function is confirmed by experiments [3],
numerical simulations [4], and exactly soluble models for
the NCOP [5]. Less is known about the behavior of
quenched systems in the regime preceding the asymp-

totic dynamics [6]. At early times, domains are quickly
formed, but the order parameter is still away from sat-
uration inside the ordered regions. As a consequence,
much more freedom is left to the system as compared to
the asymptotic regime, since modulations of the field are
also possible.

In this paper we present a global analysis of the scal-
ing behaviors obtained by simulating the TDGL equation
for a two-dimensional system and by varying the param-
eters of the Hamiltonian over the T = 0 manifold of the
equilibrium phase diagram. The time evolution of the
system is followed from the instant of the quench down
to equilibration. In so doing, we uncover a structure
much more rich than usually realized. In the very early
stage, for t smaller than a crossover time t~, the system
relaxes towards equilibrium with a purely diffusive be-
havior. During this early regime the amplitude of the
order parameter shrinks to zero in order to remove spa-
tial inhomogeneities and the correlation function obeys
the scaling form (1) with exponents n = d and z = 2 or 4,
respectively, for the NCOP or the COP. Then, at t ti,
the system enters an intermediate regime characterized
by exponential growth of the order parameter towards its
local equilibrium value. Eventually, after a characteristic
time t2, the late stage scaling is asymptotically obeyed,
with exponents o, = 0 and z = 2 or 3 for the NCOP or the
COP. This whole structure is schematically represented
in Fig. 1 with symbols to be specie. ed in the following
section. We stress that what we call early stage here
precedes the usual early time behavior characterized by
exponential growth. For common choices of the parame-
ters entering the model the crossover time ti is too short
to make the early stage observable. However, this can be
greatly amplified by a proper choice of the parameters
of the TDGL equation. For the COP this amplification
can be obtained by performing asymmetric (ofF-critical)
quenches.

In the present paper this structure is investigated by
the numerical solution of the TDGL equation and is inter-
preted in terms of the interplay between different Axed
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with p, = (r, g, R). The equation of motion then becomes

where il(x, t) is the Gaussian white noise produced by the
thermal bath at the temperature of the quench T, p is
the set of parameters entering the free energy functional
'R[C', p], and p = 0 for the NCOP while p = 2 for the
COP.

In the following we take a free energy functional of the
Ginzburg-Landau form

I I time {log sea I e)
I I

t1 t2
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FIG. 1. Schematic representation of the dynamical re-
sponse of the scalar model for both the NCOP and the COP.
Three regimes are shorvn, separated by the crossover times tj
and 't2 ~

points of competing stability. For short times the dy-
namics is controlled by the trivial Axed point of simple
diffusion, whereas asymptotically the attractive ordering
fixed point dominates. The intermediate regime corre-
sponds to the crossover in the time interval ti ( t ( t2.
This interpretation is supported by the comparison with
the exactly soluble large-% model, where similar proper-
ties are observed analytically [7].

The outline of the paper is as follows. In Sec. II we in-
troduce the TDGL equation and set up the notation. In
Sec. III we present the results of numerical simulations
of the model in the scalar case, which clearly show the
existence of the early scaling regime. Data are presented
for the conserved and the nonconserved order parameter,
critical and oK-critical quenches. The role of the param-
eters entering the TDGL equation and their efFect on the
early stage behavior are elucidated. Section IV is ded-
icated to the comparison with the exact solution of the
large-N model. Finally, in Sec. V a summary of the
results is presented and concluding remarks are made.

III. NUMERICAL RESULTS

As stated in the Introduction, the quantity of interest
is the equal time order parameter correlation function

G(lx —x'I t) = (C'(»t)@(x' t)) —(C'(x t))'.

We consider first the quench to the trivial state with
pi = (r = 0, g = 0). In this case Eq. (7) can be solved
exactly and one Ands

|.-(k t) = A —'" (9)

In the study of deep temperature quenches usually one
sets T = 0 [i.e. , g(x, t) = 0 in Eq. (7)] regarding the
temperature as an irrelevant parameter and r and g are
chosen in the sector r ( 0, g & 0 corresponding to final
equilibrium states inside the ordering region. However,
as it will be clear shortly, the edge of this sector is also of
considerable interest (i.e. , r = 0, g ) 0), even though no
phase ordering occurs there since the equilibrium value of
the order parameter vanishes. Thus the states relevant
to our discussion are those in the T = 0 plane of the
(T, r, g) space with r ( 0 and g ) 0. We will set R = 1
and I' = 1 for simplicity.

II. MODEL

and

(4(x, 0)C(x', 0)) = Ab(x —x'), (4)

We consider a system with a scalar order parameter
C (x, t), initially prepared in a configuration 4(x, 0), sam-
pled from a high temperature uncorrelated state with ex-
pectations

Therefore, defining I (t) = (2t) ~(2+&&, the real space cor-
relation function is in the scaling form (1) with n = d
and z = 2 for the NCOP, z = 4 for the COP, and
I'(x) = exp( —x2+"). Notice that in this case Eq. (9)
is not just an asymptotic behavior, but it is obeyed ex-
actly along the whole time history, from the instant of
the quench onward. In the language of critical phenom-
ena this means that the width of the critical region is
maximally amplified, warranting the identification of pi
with a (trivial) fixed point on the T = 0 manifold. The
next step is the exploration of the domain of attraction
of this Axed point and the search for other fixed points
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and the crossover induced by their competition.
Since for g g 0 the theory is not soluble, we proceed

by numerical simulation. If scaling holds, from Eq. (1)
we have S(t) = G(0, t) L (t) t /'. In the follow-
ing we will use the behaviors of L(t) and S(t) to get the
pair of exponents n and z. The evolution of G(~x —x'~, t)
is obtained by numerical solution of Eq. (7) for a two-
dimensional 100x100 lattice. The equal time correlation
function is obtained by averaging over diferent realiza-
tions of the time histories (the number of such realiza-
tions ranges from 1 to 20, according to the quality of
the data). We have found it convenient to extract the
characteristic length L(t) from the half-height width of
G(I& —&'I t).

We consider first the behavior of Eq. (7) for quenches
on the r = 0 axis. In this case no phase ordering oc-
curs, in the usual sense, since eventually the order pa-
rameter vanishes. Nevertheless, one can still observe the
formation and the subsequent growth of domains that
can be de6ned by locating their boundary on the con-
tour 4(x, t) = 0. L(t) can be thought of as the typical
length associated to these structures.

The results of our simulations are presented in Fig. 2

3.2

for the NCOP, where the behaviors of L(t) and of S(t)
are displayed for difFerent values of g. We do not observe
significant difFerences among the behaviors of L(t) as g
is varied and we conclude that L(t) obeys an asymptotic
growth law with an exponent consistent with z = 2. The
quantity S(t), on the other hand, shows a more complex
behavior in that the asymptotic scaling S(t) t /' sets
in after an initial transient, which widens as g becomes
larger. For g = 10 the value of the exponent n jz = 1.2
is slightly different from the one found for g = 0.1 and

g = 1, where n/z = 1 implying n = 2. This is due the
initial transient, which for g = 10 is not completed over
the time of the simulation.

In conclusion, the data show an asymptotic scaling be-
havior identical to the one found in the quench to the
trivial fixed point with z = 2 and o. = d. The critical
regime where scaling holds shrinks, moving away from
the trivial fixed point along the r = 0 axis.

The analogous results for the COP are presented in
Fig. 3. Again the scaling behavior is obeyed by L(t) and
S(t) with exponents consistent with z = 4 and cr = 2,
but, differently from the NCOP, this feature sets in al-
most immediately after the quench, for every value of g.
For both the NCOP and the COP, quenches to the r = 0
axis are controlled by the trivial axed point. Therefore,
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FIG. 2. Behavior of (a) I (t) and (b) S(t) for a noncon-
served system quenched on the r = 0 amis, with different val-
ues of g (g = 0.1, 1, and 10). The continuous lines represent,

1
respectively, the power laws t 2 and t associated with trivial
scaling. The best fit yields z = 2.01+ 0.05 for every value of
g, n/z = 1.0 + 0.1 for g = 0.1 and g = 1, and n/z = 1.2 + 0.1
for g = 10.
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FIG. 3. Behavior of (a) 1(t) and (b) S(t) for a conserved
system quenched on the r = 0 axis, with difFerent values of g
(g = 0.1, 1, and 10). The continuous lines represent, respec-

1 1
tively, the power laws t 4 and t 2 associated with trivial scal-
ing. The best fit yields z = 3.98 + 0.05 and cr/z = 0.51 + 0.03
for every value of g.
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all quenches with r = 0 fall into the same universality
class and the cubic term in Eq. (7) is asymptotically ir-
relevant.

We turn now to the phase ordering region by setting
r & 0 and g ) 0. When considering quenches inside this
region, as has been well documented in the literature [4],
the asymptotic scaling behavior is diferent from the one
just found on the r = 0 axis. In the phase ordering
region there exists a nontrivial fixed point characterized
by z = 2 and o. = 0 for the NCOP and z = 3 and o. = 0
for the COP, whose domain of attraction is the entire
sector (r ( 0, g ) 0). For quenches sufficiently close
to r = 0 axis, but inside the ordering region, we expect
to observe the crossover from trivial to nontrivial scaling
behaviors.

We have performed simulations with g = 1 and three
different values of r, for both the NCOP (Fig. 4) and the
COP (Fig. 5). For the NCOP, L(t) scales with the same
exponent z = 2 when the dynamics is dominated both
by the fixed point of the ordered region or by the trivial
one. More interesting is the behavior of S(t), which is
characterized by the sequence of three regimes. In the
early regime, whose duration is shorter the farther away
from the r = 0 axis the quench occurs, we find that S(t)
decreases with a behavior similar to the one found in the
case of a quench on the r = 0 axis. During this early
regime the order parameter evolves as if the potential
did not have a double well and relaxes locally toward
zero in order to eliminate spatial inhomogeneities as in
the quenches to the trivial fixed point. This occurs be-
cause, as a consequence of the initial disordered state, the
gradient term dominates in Eq. (6). Then, at some time
tq (see the schematic representation of Fig. 1), the dou-
ble well structure starts to play a role. At this point S(t)
stops decreasing and enters the intermediate time regime
characterized by exponential growth of the order param-
eter toward local equilibrium at the bottom of the wells.
In this regime L(t) is approximately constant, as in the
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linear theories [8]. The intermediate regime terminates
with the formation of domains within which the order
parameter is close to saturation. From this point onward
the late stage is entered with dynamics dominated by
interface motion. Since the system now is close to sat-
uration S(t) S(oo) = ——", implying scaling controlled

by the nontrivial fixed point with o. = 0.
The case of the COP, shown in Fig. 5, is particularly

interesting because this whole crossover structure mani-
fests also in the growth law of the size of domains L(t).
In the first regime, whose duration is again controlled by
the distance from the r = 0 axis, the dynamics is dom-
inated by the trivial fixed point, with scaling exponents
z = 4 and o. = d. As stressed before for quenches on the
r = 0 axis, no initial transient is observed for the COP.
This allows a precise determination of the exponents o.
and z in the early regime obtaining o. = 2 and z = 4.
Then, when the system "feels" the presence of the local
potential, the exponential growth of S(t) is accompanied
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FIG. 4. Behavior of S(t) for a nonconserved system
quenched inside the phase consistence region, with g = 1 and
different values of r (r = —0.005, r = —0.05, and r = —1).
The duration of the early scaling regime increases as ~r~ de-
creases.

FIG. 5. Behavior of (a) I (t) and (b) S(t) for a conserved
system quenched inside the phase consistence region, with
g = 1 and different values of r (r = —0.03, r = —0.3, and
r = —1.3). The continuous lines represent the trivial scaling
behavior with z = 4 and o, = 2. The best fit of the data with
r = —0.03 yields z = 4.1 + 0.1 and o/z = 0.49 + 0.05.
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by an approximately constant behavior of L(t) (or, at
least, by a lower growth rate), which characterizes the
intermediate time regime. Later on, when S(k) saturates
to its asymptotic value, the system enters the late stage,
dominated by the nontrivial fixed point with n = 0 and
z = 3 (this is not shown in Fig. 5 since the z exponent
reaches its asymptotic value for much longer times).

Finally, we consider the effect of performing off-critical
quenches, in the case of a conserved order parameter, by
varying m = (4'(x, t)) through the region m2 ( ——" (see
Fig. 6). The asymptotic scaling behavior inside this re-
gion is still controlled [9j by the same nontrivial fixed
point of the symmetric quenches, with z = 3 and n = 0.
The domain of attraction of this fixed point is therefore
the entire region m & ——" where phase separation oc-

g
curs. At the intersection of the coexistence curve with
the T = 0 manifold (i.e. , at the very edge of this re-
gion, with m = ——"), no phase separation occurs since
the field reaches a uniform configuration. In this case the
amplitude of G(~z —x'~, t), namely, S(t), vanishes asymp-
totically approaching equilibrium, as for a critical quench
on the r = 0 axis. More precisely, at this point of the
phase diagram the long time behavior of the model is no
longer controlled by the same fixed point as for critical
quenches, which on the contrary requires S(t) ~ const,
and we expect to observe a dynamics reminiscent of the
r = 0, m = 0 case, where also S(t) + 0. Therefore it is
of considerable interest to understand the nature of the
quenches close to m = ——" and to study the crossover

g
phenomena induced on the dynamics of the system for
m 2 r

g
In order to address these questions we have simulated

asymmetric quenches by preparing the initial configura-
tions with different values of mz in the range (0,——").
First of all, it must be stressed that, for quenches inside
the metastability region, i.e., for m sufficiently close but
difFerent from —— (see Fig. 6), the inHuence of the order-

ing fixed point with n = 0 and z = 3 is hardly observed
because the system relaxes into a metastable state in-
side a single minimum of the local potential (the one of
the majority phase). This can be avoided by increas-
ing the variance L of the initial condition. When stable
equilibrium is reached in the final state, the behavior

IV. COMPARISON WITH THE LARGE-N
MODEL

In this section we compare the results of our simula-
tions with the solution of the large-N model [7]. When
the order parameter is an N-component vector field

4'(x) = (4i (x), ..., 4'iv(x) ) in the limit of an infinite nuin-
ber of components, Eq. (7) is linearized

0 I
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1 I

I

I 1 I I

I

I i im 0
I m~0. i
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m 0.4
m~0. 5
m 06
m 0.7

of S(t) reveals again the presence of three distinct dy-
namical regimes. In Fig. 7 this quantity is shown for
quenches to r = —1 and g = 1 with different values of
m. In the early regime, whose duration increases indef-
initely approaching the coexistence curve, we again find
the trivial scaling behavior with o. = d and z = 4 as for
r = 0 and m = 0. Later on the system enters the inter-
mediate and eventually the asymptotic regime, with the
same features described in the case of critical quenches.
In the renormalization group language this means that,
by increasing m from 0 toward the coexistence line, the
trajectories start closer to the domain of attraction of the
trivial fixed point r = 0, m = 0. This is analogous to the
amplification of the early regime in the critical quench
by decreasing the value of r. However, asymptotically,
the nontrivial fixed point prevails for m2 ( ——". There-

g
fore, in the space of the parameters (r, g, m), the region
m2 = ——" and the axis r = 0 axis are the domain of

g
attraction of the trivial fixed point.

We conclude this section observing that, as far as the
role of the parameter R in Eq. (7) is concerned, by rescal-
ing one can easily show that the efFect of increasing B
corresponds to a magnification of the space and time
scales. Since R controls the range of the interaction, it
is conceivable that the early stage scaling regime is more
clearly observable in systems with sufficiently long range
interactions.
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FIG. 6. Phase diagram in the (m, T) plane. The phase co-
existence region and the spinodal line, above which metasta-
bility occurs, are shown.

FIG. 7. Behavior of S(t) for a conserved system with
r = —I, g = 1, and m ranging between 0 and 0.7 (from
top to bottom, m = 0, m = 0.1, m = 0.2, m = 0.3, m = 0.4,
m = 0.5, m = 0.6, and m = 0.7). The lower straight line
represents trivial scaling with n/z = 0.5.
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lowing behaviors are found:

where S(t) must be computed self-consistently through

S(t) = (1/K)(C (x, t)). From the exact solution of this
model one finds that the asymptotic scaling properties
depend, as in the scalar case, on the pair of coupling
constants r and g. More specifically, one finds that there
is a universality class, under each heading NCOP or COP,
for each of the following three regions in the (r, g) space:
p, i = (r = 0, g = 0) (trivial critical state), p2 = (r =
0, g ) 0) (nontrivial critical states), and ps = (r ( 0, g )
0) (phase ordering region).

In the renormalization group language this means that
there are three fixed points and the extension of the uni-
versality classes depends on the relative stability of these
fixed points. Actually, for quenches to p2 there is a crit-
ical dimensionality d, which depends on the initial con-
dition, above which the nonlinearity in the problem be-
comes irrelevant. For an initial condition of the type

one finds d, = d~ + 0, where d~ is the lower critical di-
mensionality of the static problem. With 0 = 0 one has
d = d~

——2. Therefore, solving the model for d ) 2, one
finds the following asymptotic behaviors for the NCOP:

C(k, t) F(x) for pi,

C(k, t) I" (x) for p2,

C(k, t) - I (t)F(x) for p,„

C(k, t) E(x) for pi,

C(k, t) -S'(x) for p„

C(k, t) I (t) ~ ~ for ps,

where I (t) —t'~4, I'(x) = e ~ + ~, and n(x)
d[1 —(x2 —1)2j is a generalized x-dependent exponent.
The general discussion of fixed points and their relative
stability goes along the same lines as for the NCOP.

Now we make a qualitative comparison with the results
for the scalar case presented in Sec. III. The first obser-
vation concerns the existence of an early stage scaling
regime that is observed in both models for quenches in
the phase ordering region, with the same exponents o. and
z. This was to be expected since the very nature of this
behavior is due to the trivial fixed point with r = g = 0,
where the two models coincide. We emphasize that the
occurrence of early scaling is particularly interesting for
the conserved scalar order parameter since in this case,
difI'erent from the large-% limit, a crossover from z = 4
to z = 3 exists in the growth law. Second, we comment
on the existence of a critical dimensionality for quenches
to p2. In the large-N model d = d~ ——2. In the scalar
case d~

——1. However, we do not know whether d is still
equal to d~. The results of Sec. III indicate that d = 2
is above the critical dimensionality. For what concerns
the late stage regime, the two models are quite similar
for the NCOP, since scaling is obeyed with the same ex-
ponents. With the COP, on the contrary, there is less of
an analogy since the vector model exhibits multiscaling.

with 1.(t) - t'~2 and I'(x) = e
Let us briefIy comment on these results. First of alt, we

have z = 2 everywhere. For quenches to the trivial state
pi the large-N model and the scalar model coincide since
the local potential is absent. The same expression (9) and
(12) is found for the structure factor. For quenches to p2,
the long time behavior is the same as for the quench to
pi, up to corrections to scaling, as expected since d ) d, .
The scaling behavior is characterized by o. = d and z = 2,
both for quenches to pi and p2.

DifI'erent is the case of quenches inside the region of co-
existing phases, where Eq. (14) is asymptotically obeyed
in any dimension, showing that no upper critical dimen-
sionality exists and therefore that the nonlinearity of the
problem is always relevant. In this case scaling is char-
acterized by o. = 0 and z = 2. Furthermore, computing
the early time behavior for ~r~ sufficiently small, a scal-
ing regime is found that is identical to the one found
for quenches to pi. This behavior is separated from the
asymptotic scaling regime described above by an inter-
mediate regime of exponential growth.

In the large-A model the variety of asymptotic prop-
erties is more complex when quenches with the COP are
considered, due to the existence of multiscaling. The fol-

V. CONCLUSIONS

In this paper we have analyzed the quench to zero
temperature of a system with a scalar order parameter
through the numerical solution of the time-dependent
Ginzburg-Landau equation, both with conserved and
nonconserved order parameters. We have paid particular
attention to the early stage of the quench. According to
the values of the parameters r and g, which characterize
the final equilibrium state, an early stage scaling regime
associated with pure diffusive behavior may be observed
before the usual late stage scaling regime sets in. This is
a crossover pattern of the same type found in the analyt-
ical solution of the large-% model. In that case the pure
dift'usive behavior is associated with the trivial fixed point
(r = 0, g = 0), while the late stage scaling behavior is as-
sociated with the nontrivial fixed point (r ( 0, g ) 0) of
phase ordering. The competition between the two fixed
points determines the crossover pattern. The question of
the observability of this phenomenon is clearly related to
the time span of the early stage. In this paper we have
mentioned long range forces and ofI'-critical quenches to-
ward the coexistence curve as means of amplification of
the early stage.
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