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Long-tixne behavior of correlation functions in the finite ideal gas
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We consider time-dependent correlation functions in the classical problem of a single point
particle confined to a one-dimensional box with hard walls. We find that the asymptotic behavior of
these correlation functions at large times depends upon the degree of difFerentiability of the initial
ensemble and of the observable, both of which are represented as functions over the phase space.
Functions that have a discontinuity in the nth derivative lead to correlations that decay as t +

at long times t. We conjecture that this sensitive dependence of the long-time behavior on the
smoothness of ensembles is connected to the presence of trajectory instability.

PACS number(s): 05.45.+b, 95.10.Fh, 47.70.Nd, 05.20.—y

I. INTB.ODU CTION

The analysis of physical systems in terms of ensembles
that evolve with time is central to nonequilibrium statis-
tical mechanics. However, this mode of description is not
without its problems. There is no universal agreement on
the physical meaning of an ensemble. Three authors who
have energetically put forth their very diferent views on
this subject are Jaynes [1], Lebowitz [2], and Prigogine
[31.

Another problem arises when we aim to derive physi-
cally meaningful conclusions &om the long-time behavior
of ensembles. Results on the long-time behavior of en-
sembles often depend on the precise mathematical de6-
nition of the space of ensembles in which calculations are
performed. This is surprising for many physicists, who
would expect such a choice of definition to be a mere
mathematical convenience.

For example, when we work in a Hilbert space of en-
sembles, as in the pioneering work of Koopman [4], the
time-evolution operator is unitary, so all its eigenvalues
lie on the unit circle and there is no possibility of deriving
an exponential decay towards equilibrium. More exotic
mathematical structures, such as "rigged" Hilbert spaces,
have been used to overcome this problem [5]. The oper-
ator U is extended to act on a space 4 of test functions,
which is diferent IIrom the Hilbert space. Eigenfunctions
of U that have eigenvalues not on the unit circle may be
found in the test space 4.

In quantum mechanics, where the use of Hilbert spaces
is so widespread as to be taken for granted, a similar dif-
ficulty arises when the decay of unstable states is studied.
The use of rigged Hilbert spaces was erst suggested by
Bohm [6] in this contempt.

The long-time behavior of correlation functions in
chaotic systems has been the subject of much recent re-
search. A time-dependent correlation function Gfg(t) is
de6ned as the expectation value of a phase-space func-
tion f(x) at time t, after a dynamical system has been
prepared in the ensemble g(x) at time zero:

G„(t) = d*y(T, ~)g(x),
r

where I' is the phase space and Tq is the mapping that
defines the dynamics of the system; if x is the state of
the system at time w, then Tqx is the state at time t + w.

Ruelle [7] and others have shown that for a certain class
of models, known as "axiom A" systems, these correla-
tion functions decay exponentially at long times. How-
ever, this conclusion is restricted to the case where the
phase-space functions J' and g are difFerentiable. Recent
work [8] by the present author and others has shown how,
in a model system based on the baker transformation, the
behavior of correlation functions at long times depends
on a smoothness condition that defines the function space
in which ensembles lie.

It is therefore established that in chaotic systems, the
smoothness of phase-space functions f and g controls the
long-time behavior of correlation functions. The purpose
of the present paper is to illustrate how this is also true
even for a very simple system that has no ergodic or
chaotic properties apart IIIom trajectory instability.

II. FINITE IDEAL CAS

The model system that is the subject of this paper
is simply a single point particle moving classically in a
one-dimensional box with perfectly reHecting walls. The
particle has mass m and the length of the box is I. We
denote the position of the particle, in the range 0 & x &
I, by x and the momentum by a real number p.

One might expect that the dynamics of ensembles in
such a simple model would be trivial, but this is not the
case. This system has been the subject of many research
papers [9—13] since 1955, when Born [9] used it to illus-
trate some of his concerns about the nature of reality and
quantum theory.

Born noted that the trajectory of a particle in the
model is unstable, in the following sense. A small un-
certainty bp in the value of the momentum p in an initial
condition produces an uncertainty in the position x at
time t, which grows as thp/m, . This uncertainty quickly
becomes large compared to the system size L. He ar-
gued that for this system and others showing trajectory
instability, the description of classical dynamics in terms
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f(*,p) = f( *,——s) (2)

of trajectories could not be justified and that ensembles
should be regarded as having true physical meaning. This
anticipates more recent authors [14] who have put forth
the same conclusion in the light of the study of chaos.

Born also realized that the analysis of the system could
be simplified by extending the range of possible values of
x to +oo and imposing the conditions

We extend both f and g to the entire (x, p) plane, using
Eqs. (2) and (3). The symmetry (2) implies that Eq. (6)
can be rewritten as

( pt
Gt (t) =

2
dp dxf

l

x ——,p l g(xs) (7)m' )
We iiow take advantage of the periodicity (3) by writ-

ing f and g as Fourier series

and

f(x+2L, p) = f(x, p)
f(* p) = ) . fa(p)e'"

A:=—oo

= p'H= 2m' (4)

on ensembles f(x, p). This step incorporates the effects
of the reflecting walls into the definition of an ensemble,
so that whenever a particle reaches the wall at x = L
with momentum p, another with momentum —p arrives
at the same point. We then have the simple Hamiltonian

where

L

f)(p) = dxf(x, p)e '" *~

and gg(p) is defined similarly. Replacing both f and g
by Fourier series in Eq. (7) and evaluating a sum and an
integral yields

and the evolution of an ensemble with time t is equally
simple:

pt
f~(x p) =fo

I
*——p lm'

Born examined the evolution of an ensemble that was
described by a Gaussian in position and momentum and
found that the decay of certain correlation functions with
time was exponential. Since then, other authors [11—13]
have considered the evolution of ensembles that are
Gaussian in momentum and have different types of
nonuniformity in position, again finding exponential de-
cay. Lee [12] derived a difFusionlike equation that is
obeyed by the reduced x distribution when the initial
ensemble is described by a function that is the prod-
uct of a Maxwellian momentum distribution and some
function of position. Hobson [10] found that with an
ensemble described by a step function in both position
and momentum, the decay of correlations with time was
nonexponential, going as 1/t at large times.

In this paper we will show that, in general, the asymp-
totic rate of decay of correlation functions such as Eq. (1)
at long times depends upon the degree of differentiabil-
ity with respect to p of the phase-space functions f and
g. Functions that have a discontinuity in the nth deriva-
tive with respect to p lead to correlations that decay at
long times as t ~ + ~ or more slowly. We derive an ex-
pression for the asymptotic form of such correlation func-
tions, valid when the function f or g has a discontinuity
in the nth derivative with respect to p.

III. CORRELATION FUNCTION

We define a time-dependent correlation function
Gfg (t) for the finite ideal gas, using Eqs. (1) and (5),
by

( ptG„(t) = dp dxf
l

x ——,p l g(x, p).
0 ( m )

Gie(') =i ). f ggfe(g)g e(g)e ""-' ' '(»)
k=—oo

Using the reverse transform (9) then gives

OO I
Gfg(t) = ) dxi dx2Ie(xi, x2, t)

—L

ikvr
x exp — (xi —x2)

where

I ( e, ee, e)e=if dg f(ee, g)g(ee, p)e '""e i . (12)

These equations are more complicated than the orig-
inal definition of the correlation furction (6), but they
have the advantage of incorporating the periodicity con-
dition (3) and hence the walls of the coiitainer. They will
therefore be used in the next two sections as the starting
point of an analysis of the asymptotic behavior of Gy~(t)
for large t.

IV. ASYMPTOTIC BEHAVIOR
OF FOURIER TRANSFORMS

To find an expression for the long-time behavior of the
correlation function Gys(t), we must first find the limit-
ing form of the integral Ii,(xi, x2, t) in Eq. (12). Since
the integral is a Fourier transform in the variable p, the
following well-known theorem will be useful

Theorem 1. Suppose that a function h(p) is n times
difFerentiable and that the nth derivative h~ &(p) is con-
tinuous, except at a finite number of points. Suppose
also that for every integer k such that 0 & k & n, the
function satisfies

(13)
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and

where h~"~ denotes the kth derivative.
Then for s g 0,

M
h(s)

where h is the Fourier transform

(14)

that is valid for large t. We assume that in the range
—oo & p & oo, L—& x & L, f and g are (n+ 1) times
difI'erentiable with respect to p, except for a discontinuity
in the (n —1)th derivative of f, which is along the curve
p = q(x). We may then write

f'-'(*,.) = ~(*,p) + B(*,.)o-(.—q(*)),

where S(x,p) and B(x,p) are (n+ 1) times differentiable
with respect to p and partial derivatives with respect to
p are written

h(s) = dp h(p)e (16) f'"'( p):=
I ~ I f( p)

c)p )
(24)

and M is a constant defined by We also assume that for 0 & j & n+ 1, the functions f
and g satisfy

lim f ~ (x, p) = lim gl~ (x, p) = 0.
p~+oo p~ Woo

This theorem can be proved by repeated integration
by parts. See, for example, Ref. [15].

With the help of this theorem, we now describe a sim-
ple case where an asymptotic form for a Fourier integral
can be found. Suppose that h(p) is twice difFerentiable
except at a single point p = q, where it is discontinuous.
Then

h(p) = ~(p) + ~(p)o-(p —q) (is)
where cr(p) and p(p) are twice difFerentiable and e(p) is
the Heaviside step function

These assumptions are not as restrictive as they may
seem. Since the correlation function Gys(t) is a bilinear
functional of the functions f and g, once we have dealt
with functions of the class described above, we can just
as easily work with linear combinations of such functions.
This allows us to handle any function that is smooth
apart &om discontinuities that lie along smooth curves
in the (x, y) plane. We can also switch the roles of f and
g by using the symmetry

o(,)=(', *,,'
G, (t) = G, (-t). (26)

h(t) = dp p(p)e '"'+ 0 I—(11
(~ ) (20)

Integrating by parts twice then yields

h(t) = —p(q) eit
(11'

+
I

—.
I W (q)e + "p'Y (p)e(it)

(il+0I —
It2 ) (21)

Thus we have

Using theorem 1, the Fourier transform of h can be writ-
ten as

Once the functions f and g are defined in the range
—oo ( p ( oo, —L & x ( L, the periodicity require-
rnent (3) extends the definition to the whole (x, p) plane.

When f and g satisfy the above conditions and n = 1,
f(x, p) is discontinuous along the line p = q(x). For any
choice of xi and xq the product f(xi, p)g(x2, p) can be
written in a form similar to Eq. (18):

f(xi, p)g(x2, p) = ~(», p)g(x2, p)
+B(» p)g(x2, p)o (p —q(»-)) (»)

where both the first term on the right-hand side and the
prefactor of 0 are twice difI'erentiable with respect to p.
We can therefore use the result of Sec. IV [Eq. (22)] to
find an asymptotic form of Ii, (xi, x2, t), valid for large t:

(1)
h(t) = —. p(q)e "~ + 0

I

—
I
.it (t') (22)

V. ASYMPTOTIC FORM
OF CORRELATION FUNCTIONS

This is an asymptotic expression for the Fourier integral
(16), valid in the limit t -+ oo.

mI,
Ig(xi, x2, t) = . B(xi,q(xi))g(x2, q(xi))

ikvrt

—ikmq(xg)t/rnL + 0
I

q
t2 (2s)

Using the result of the preceding section, we will now
derive a limiting form for the correlation function Gts(t)

Using this result and Eq. (11) and treating the k = 0
term separately, we find the asymptotic form for the cor-
relation function
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Gyo(O) - L f &n fo(n)Oo(n)

L I
+)™dx, dx2 P(zi)g(z2, q(zi))

%go
-L -L- 4~kit

than f However, by using Eq. (26), we can interchange
f and g. This implies that discontinuities in g and its
derivatives have a similar effect on the long-time behavior
of Gys(t) to those of f

X exp
—ikm

[xi —x, + q(xi)t/m] (29) VI. SPECIAL CASES
OF CORRELATION FUNCTIONS

X exp
—ikvr

[xi —x2 + q(xi)t/m]
W

(30)

where now P(z) gives the discontinuity in f~" ~ (z, p) at
(* q(*)).

By taking into account the symmetry of f and g, we
can modify Eq. (30) so that the integrals over xi and x2
do not include values outside the range 0 & x & L, which
defines the box. The symmetry requirement of Eq. (2)
implies that

f'" "(*p) =(-~)" 'f'" '(-*, p)-
and hence that

P(*) = (-~)"P(-*) (32)

Similarly, g(x, p) = g( —x, —p) and q(x) = —q( —x). Us-
ing these symmetries, we can rewrite Eq. (30) as

. (ml, l"
Gy (t) ~ dp fo(p)go(p) + 21 )—OO 21. - (vrkitJ

—ikm. [mz, + q(z, )t]x zi zi exp
0 mI

xy~(q(zi)) (33)

where

/'kvrz, )
y) (p) = dx2 (g(x2, p) + g(x2, —p)) cos

~

0 &L)
(34)

where P(z) = B(z, q(x)) is a function that gives the
size of the discontinuity in f(x, p) at the point (x, p) =
(* q(*)).

In the Appendix we derive an equation that is a more
general form of (29), valid for any integer n ) 0. This
equation is

GI (o) -If 4 fo(n)oo(n)

1 (mL')"
4L, „-&~»t)

X CLX2 Xy g Q2) g Xj

where
L

po = f Ck p(e)e

and yi, (p) is given by Eq. (34).
The second case where the asymptotic form of the cor-

relation function can be simpli6ed is when the function
q(z) has a stationary point zi ——X such that q'(X) = 0.
In this case, we can find a limiting form for the integral
over zi in Eq. (33) using a stationary-phase approxima-
tion. The integral is

Jr, (z2, t) = dxi P(zi)yg(q(zi))
0

—ikz [mzi + q(zi)t]
X exp

As t becomes large, the phase of the integrand varies
rapidly with zi, except where q(zi) has a stationary
point. Contributions to the integral &om points not near
the stationary point xz ——X will therefore be small in
the limj. t t m oo.

The stationary-phase approximation consists of replac-
ing the integrand in Eq. (37) by an approximate form
that is valid close to the stationary point. The form is

&(X)y~(q(X))
—ikn. ( 1

x exp
~

mX+ q(X)t+ —t(z, —X) q" (X)
~

.
ml 2

(38)

We also ignore the effect of the end points of the inte-
gral by extending the range of integration to Woo. The
integral can then be evaluated, yielding

In this section we will look at two special cases where
the expression (33) for the long-time limit of the correla-
tion function simplifies. The first case is where q(x), the
locus of the discontinuity, is independent of x. We then
obtain

Gy, (o)-~f &o f (o)o (o)

) ~
~

m
~

—
( )p ikooqt/—oooL

21 „(,ikvrt )

Equation (33) is the central result of this paper. From
it we can see that the asymptotic rate of decay of the
correlation function Gy~(t) depends on the parameter n,
which gives the degree of differentiability of the phase
space function f This result ha. s been derived under
the assumption that g is differentiable to a higher order

P(X)y)*(q(X))
2mr.'"(*'t)-~

k(iktq" X )
—ik~[mX+ q(X)t]

X exp (39)
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Ggg(t) I'f dP fo(P)go(P)

+ 21 ) q"(X))
( L ) n+i/2).I, ,k~t)

@+0

ik—~[mX+ q(X)t]
mLxgI, (q(X))P(X) exp

The resulting form for the correlation function is To evaluate the time-independent term in Eq. (35), we
need fo(p) and go(p). The integrals are easy to evaluate,
and remembering the symmetry (2) that applies to both
f and g, we find

OO 1
dP fo(P)go(P) =

2
(48)

We can now write down the limiting form of the cor-
relation function Gyg(t) for large t:

VII. AN EXAMPLE
OF A CORRELATION FUNCTION

(40)
l. / mi'/

Gyg(t) - —+—
2 t gk~T j (49)

We now give a simple example of a correlation function
whose long-time limit can be calculated using the results
we have derived. Let g(x, p) be defined in the range 0 (
x(Lby

g(~ p) = I, I
exp

I I &(*) (41)
),mI, 2vr k~T ) (2mkgT

where

1, z & I/2
0', .) 1,(2. (42)

f(* p) = o(p). (43)

Since f(x, p) has a discontinuity along the line p = 0,
we can use Eq. (35) to find the long-time limit of the cor-
relation function Gfg(t). We need the coefficients gi, (0),
which for k g 0 are

X/2
( ] )(~ ~)/2 oddg„(0) = x~ ~~I.~T

0, even k,
(44)

and the coefficients defined by equation (36),
odd A:iIcn. '

0, even k.

The sum in Eq. (35) is therefore

(45)

This is the equilibrium ensemble for a gas at temperature
T, confined in the left half of the box by a partition at
x = I/2. If at time t = 0 we remove the partition, then
the ensemble will evolve according to the equations that
we have given. We wish to estimate the &action of the
gas molecules that will be moving to the right in the box
at time t. We therefore use the function

The first term tells us that at large times, approximately
half the molecules in the ensemble are traveling to the
left. The second term shows that the relaxation to equi-
librium of this variable is nonexponential& going as t

VIII. CONCLUSION

We have seen that even in this simple model, the long-
time behavior of correlation functions is not trivial and
has some of the features that we expect to find in more
complex, chaotic systems. The decay rate at long times
depends on the smoothness of the phase-space functions
f and g involved in the correlation function.

An important feature that the one-dimensional ideal
gas shares with chaotic dynamical systems is the trajec-
tory instability described in Sec. II. The ideal gas is
not chaotic because the separation between two adjacent
trajectories increases linearly with time, while in truly
chaotic systems, the separation increases exponentially
with time. However, in both cases, the trajectory insta-
bility causes a dynamical system to act on ensembles as a
microscope, taking features of an ensemble that are on a
very small scale and "magnifying" them with the passage
of time. This is the reason why "microscopic" properties
of an ensemble function, such as its smoothness, have an
in8uence on the long-time behavior.

This reasoning and the examples provided by the cur-
rent paper and by results for chaotic dynamical systems
[5,8] lead us to a conjecture. In general, we expect
that a dynamical system that shows trajectory instabil-
ity, whether or not it is truly chaotic, should also have
the property that the long-time behavior of its correla-
tion functions G~g(t) depends upon the smoothness of
the phase-space functions f and g.
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where C is a numerical constant, which can be evaluated
with the help of tables [16]

( 2 )1/2 ) (2~+1) '(—1)"

= 0.050.

APPENDIX. : THE CASE
WHERE f (z, p) HAS A DISCONTINUITY

IN THE (n —1)th DERIVATIVE

In this appendix we generalize the treatment of the
long-time behavior of Gfg(t) given in Sec. V to include
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(n —1)

E ikz.t)
(n —1)

[f(» p)g(» p)l.
0~P)

By Leibnitz's theorem,

( ~ (n-1)
[f(*i p)g( ., p)]

E&P

(A1)

n —1

) ( )/ f( )( p)g( )( p) (A2)

where

the case where f (x, p) has a discontinuity in the (n 1)—th
derivative. Suppose that f and g satisfy the conditions
given in Sec. (V). Integrating Eq. (12) by parts (n —1)
times, we And

dp f(" ) (xi, p) g'(x2, p) e ' "

OO

dp f'" "(*ip)g'(», p)e ""
X7

2

+
l

—.
l

dp —f'" "(» J)g"(» p) e ""
(A6)

Since f( 1) satisfies Eq. (23), the long-time liinit of the
first integral on the right-hand side of Eq. (A6) can be
found in the same way that the integral It, (xi, x2, t) was
evaluated in Sec. V, giving a result bounded by t . This
means the Fourier transforms of all terms but the last in
(A5) are bounded by r

In the same way, we can find a limiting expression for
the Fourier transform of the last term in (A5):

dp f'" '(* p)g( p)

f'"'(» p):=
l

—
l f(» p)

(~)"
(,»)

and t „ is the binomial coefficient

n!
r!(n —r)!

(A3)

(A4)

=1 t' I lB(xi, q(xi) )g(x2, q(xi) )e ' q( ') + 0
]

—
[ .

X7

(A7)
We therefore have

(mL )"
1~(»» t) =

l
.

l
B(» q(xi))g(» q(»))qik~ty

Since f is (n —1) times differentiable with respect to p
and g is (n + 1) times difFerentiable, the right-hand side
of Eq. (A2) can be rewritten as

(iknq(xt)t—/ntL ~ O
](tn+1 )

Placing this result in Eq. (11) gives the result that we
quoted in Sec. V, as Eq. (30):

(*1*2»)+( — )f'" '(» P)g'(» P)

+f'" "(* ) (* ) (A5)

where S(xi, x2, p) is twice differentiable with respect to
p, so that its Fourier transform S(xi, x2, q ) [see Eq. (16)]
is bounded by ~ . To find a bound on the Fourier trans-
form of the second term in (A5), we integrate by parts
twice:

x exp
—ik~

L (xi —x2 ~ q(xi)t/m)

of (~) - &f ~u fo(u)ao(n)

. (mL, I"
41, g vrkit pA:+0

L
x dx2 B(xi,q(xi))g(x2, q(xi))

—L

(A9)
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