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We consider the (smoothed) average correlation between the density of energy levels of a disordered

system, in which the Hamiltonian is equal to the sum of a deterministic H(l, and of a random potential

y. Remarkably, this correlation function may be explicitly determined in the limit of large matrices,
for any unperturbed Hp and for a class of probability distribution P(y) of the random potential.
We Gnd a compact representation of the correlation function. From this representation one readily
obtains the short distance behavior, which has been conjectured in various contexts to be universal.
Indeed we find that it is totally independent of both Hp and P(p)
PACS number(s): 05.40.+j

I. INTR, GD U CTIDN

We consider a Hamiltonian H = Hp + y with a de-
terministic Hp and a random y, in a finite-dimensional
space in which Hp and y are Hermitian N x N matri-
ces; we are interested in the large-N limit. The average
number of eigenvalues in an interval is known to depend
sensitively upon the spectrum of Hp and upon the prob-
ability distribution P(y) of the disordered potential [1].
The one-point Green's function and the two-point con-
nected Green's function are given by

fl 1 (1 1o,.(z, m)=
I

—T
I

—T )(N z —H (% iv —H
1 1 1 1—Tr —Tr
N z —H N m —H (1.2)

We obtain the correlation function between two eigenval-
ues from G2 (z, io)

1
[G2, (A + te, p, + ze)

4vr2

+G2c(A —ze, p —ze)
—G2c(A + ze, p —ze) —G2~(A —te, p + ze)].

(1.3)

pg, (A, p) =—

In the simpler case in which Hp is zero, it was proved in
earlier papers [2, 3] that the resulting expression for the
connected two-point Green's function is independent, up
to a scale, of the probability distribution of the random
potential y for arbitrary values of A and p. One word
of clarification is needed at this stage. While in Ref. [2]
we computed p2 (A, p) directly, in Ref. [3] we computed
G2 (zi, z2) by letting % go to infinity first, with complex

zi and z2. To obtain the correlation function we then let
the imaginary parts of zi and z2 go to zero. By this pro-
cedure we obtain a correlation function p2 (A, p) in which
a smoothening of the eigenvalues in a range much larger
than 1jN, but small compared to the average point spac-
ing, has been performed. This smoothening eliminates all
the nonuniversal oscillations that are present in p2, (A, p)
if we had let the imaginary parts go to zero first [2] before
letting N go to infinity.

For a given nonzero Hp, we could first question whether
or not p2, depends upon the probability distribution of
y and next how the result depends upon the spectrum
of Hp. We shall answer these questions in several steps:
first, we return for definiteness to the pure random case
in which Hp ——0, which was studied earlier [2]. Then we
consider Hp nonzero and a Gaussian P(p), on the basis of
earlier work on the subject [4]. We consider next the non-
Gaussian case with arbitrary Hp and derive first a closed
expression for the one-point Green's function. We then
apply this closed expression for two specific examples in
which the eigenvalues of Hp are restricted to +1 and in
which Hp has uniformly spaced levels between —1 and
+1. Further we derive the two-point connected Green's
function G2 (z, io). We find that the short distance be-
havior is universal.

The universality of the short distance correlation is
perhaps expected &om the following heuristic argu-
ment. Imagine switching on adiabatically the potential
p. Starting from some initial eigenstate of Hp, the poten-
tial will ind. uce a succession of transitions between those
eigenstates. For finite time it is expected that this pro-
cess depends sensitively on the nature of the spectrum
of Hp. However, for long times the system will explore
all the eigenstates of Hp and one might wonder, or may
even be suspect, whether the limit is insensitive to Hp.
Therefore it is natural to consider the limit in which the
eigenvalues A and p, are near each other and. we prove
that in this limit p2 is universal.
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II. THE SIMPLE WIGNER CASE

We return to the simplest case in which Ho is zero and
P(&p) is a Gaussian distribution characterized by

It is instructive to compare it with the exact expression
[2], i.e. , without smoothening. In the limit A —p goes to
zero with

(vv} =o x = 27r K(A —p) p( 2 (A + p) ) (2.10)

v2
(P' PI t) = —~ e4.

fixed. In this limit the exact correlation function becomes
(2.1) [6]

W G2, (zq, z2) = — in[1 —G(zq) G(z2) ].
Zg Z2

It is convenient for later generalization to define

(2.2)

u(z) = z —G(z),

given explicitly in this simple case by

1
u(z) = —[z+ gz2 —4].

2
(2.4)

Since G(z) = 1/[z —G(z)), (2.2) is expressed also by

(, , )

'
l ( ~) — ( 2)

Ozy Oz2 z] —zg
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Much is known about this Gaussian case of course [5,
6]. We have found that the correlation function in the
large-K limit [2] may be written in the compact form

1 sin x2¹(A —p)2
(2.11)

The smoothening has thus replaced sin x by 1/2, thereby
producing a double pole.

III. GENERAL PROBABILITY DISTRIBUTION
WITHOUT Hp

We now go to an arbitrary probability distribution for
the disorder. The density of eigenvalues is no longer semi-
circular; we limit ourselves here to spectra that extend
over a single segment of length 4a on the real axis. We
choose the origin at the center of this segment. This
is automatic when the probability distribution P(p) is
even; otherwise one would have to shift the eigenvalues.
Then we know from earlier work [2, 7, 8] that, rather re-
markably, (2.5) is still valid with

IIp(zg, z2) = G(zg)G(z2). (2.6)

It is useful to introduce also the polarization function 1
u(z) = —[z + Qz' —4a']

2

and hence

(3.1)

N G2, (zg, z2)
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from which, using (1.3), we obtain [2, 7)

p2. (»v) =— 1 1 4 —Ap
2~2~2 (P p)2 [(4 P2)(4 p2)]1/2

'

(2.8)

For A close to p, it has a singular behavior

1

2~2¹(A—p) 2 (2.9)

We are working here in units in which v, the width of the
Gaussian distribution, is one; it is easy by dimensional
analysis to set it back to any desired value.

There are several ways of deriving (2.2). In Ref. [2]
it was obtained through a study of the asymptotic form
of the relevant orthogonal polynomials of high order. In
Ref. [4] it was shown that it can be recovered simply by
summing the diagrams obtained by expanding in powers
of v: they consist of planar connected. diagrams mad. e of
ladders and crossed ladders, rainbowlike vertex correc-
tions, and full planar propagators.

The form that we give here is not the one that appears
in Ref. [2], but it is easy to carry out the differentiations
and verify that it is same. By differentiating (2.2), we
have

1 1
2¹vr2 (A —p)2

4a2 —Ap
X

[(4a2 —A2) (4a —p, )] ~

p2. (& u) =—

(3.2)

1
P(p) = —exp[ —NTrV((p)]z (3.3)

in which V(p) was an arbitrary polynomial of Ip. In
these cases we could diagonalize y, integrate out the
unitary group, and handle the eigenvalues of p by or-
thogonal polynomial techniques [6, 10] (or Dyson's two-
dimensional electrostatic approach [9, 11]). It was then
extended to nonunitary invariant measures or equiva-
lently to a measure in which TrV(y) was replaced by
a sum of arbitrary products of traces of powers of p [3].

If we were to try again to calculate G2 by expanding
the non-Gaussian terms of the measure and summing the
planar diagrams, we would have to deal with expectation

The non-Gaussian terms of P(&p) have stretched the sup-
port of the spectral density from [

—2, 2] to [
—2a, 2a) and

also deformed the density of eigenvalues from Wigner's
semicircle to a polynomial multiplying a squareroot [1].
However, the only e8'ect of these non-Gaussian terms on
G2, (zq, z2) and p2, (A, p) is a simple rescaling zq 2 —+

4 ~ —,p ~ —,followed by multiplying G~ and p2, by
(1/a)'.

To derive these results we had to proceed in two steps.
First [2], we considered a probability distribution
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values of the type (Try Try ) expanded in powers of the
non-Gaussian terms. An equivalent way of stating the
results above is the following. Call o. the Gaussian
connected expectation value

1 ) 1

N z —e; —G(z)
(4.5)

= (T V
"T p )., p (3.4)

G2c(zip z2) —) cxn mzi z2
A jm

(3 5)

given by (2.5), in inverse powers of the z's.
We now consider the same expectation value

(Tr&p Try™),for the non-Gaussian case. The result of
(3.2) is equivalent to the statement

(Try Try™),= a + n (3.6)

in which 2a is again the end point of the support of the
spectral density.

A direct derivation of these identities is nontrivial. For
specific values of m and n they may be extracted from
what is known about G(z). See Appendix A.

For arbitrary n and m it is rather cumbersome to deter-
mine these numbers. They are of order one in the large-N
limit, whereas the disconnected part is of order N . If
needed explicitly, we could obtain them by expanding
their generating function

Z(z) = G(z). (4.6)

For the non-Gaussian case, the self-energy part Z(z), de-
fined by

1 - 1'(') = N).-.-„-Z(.) (4.7)

is of course no longer simply equal to G(z).
Here we will restrict ourselves to the non-Gaussian

probability distribution for

In the simplest case, in which Hp ——0, Eq. (4.5) be-
comes a simple quadratic equation for G, from which
one recovers immediately Wigner's semicircle law for the
imaginary part of G, which is proportional to the density
of eigenvalues. It is easy to give a diagrammatic proof [4]
of (4.5). In the large-N limit, the planar diagrams are
the rainbow diagrams whose sum leads directly to (4.5).

The self-energy part Z(z) of the one-point Green's
function G(z) is simply given for a Gaussian distribution
P(p) by

P(&p) = —exp[ —N(2iTrrp +gTrp )]. (4.8)

IV. ONE-POINT GREEN'S FUNCTION
WITH NONZERO Hp

We now have a given unperturbed Hamiltonian Ho,
with eigenvalues t';, i = 1, ..., N, with N large as al-
ways. The one-point Green's function, or the average
resolvent, was first found by Pastur [12] for the Gaussian
distribution P(p). Define the deterministic unperturbed
one-point Green's function

To treat the non-Gaussian term gTrp, it is convenient
to consider an "equation of motion" obtained by shifting
the random matrix by an arbitrary matrix y to y + e
in the integral, which gives ([1/(z —Hp —p)];~). The
invariance of this integral under this shift tells us that to
first order in e, the coefEcient of e must vanish:

( 1 l ( 1

(Z Hp IPj, (Z Hp PPj . )

N . z —e,.
(4.1) [V-+ 4g(V')-]iz —Hp —p),

Then the full one-point Green's function
(4 9)

is obtained by solving the implicit equation

G( ) = Go( —G( )).

(4.2)

(4.3)

Setting n = i and m = j and summing over these indices,
we obtain the following equation with H = Ho + p:

H(V +4gV')

ldu f d
G(z) =

~

u —ln[u —Gp(z —u)]2~i ( du
(4 4)

The contour circles around the solution of the equation,
which behaves as 1/z at infinity. In other words, the
one-point Green's function is determined by

If one insists on writing an explicit formula for G(z) in
terms of Gp(z), one can write down the integral repre-
sentation

(4.10)

By the definition of two-point connected Green's func-
tion, we write the above equation as

NG (z) + NG2, (z, z) = Tr
~

(p
~

('

(, z —H

+4g Tr y, 4.11
(z —H
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1 1= —1+—Tr (z —IIz) )N z —Ho —(p

1 &i= —1+ —)N, - z —s, —Z(z)
= Z(z)G(z) (4.i2)

with the self-energy Z(z) defined above. Repeating the
same procedure, we write the second term on the right-
hand side of (4.6)

= —(Try')
1

(z —IIz) y(z —IIz) ) . (4.13)
z —Ho —p

We have omitted the term (Try(z —Hp)) since it is zero
by being odd in p.

%'e will now consider the relevant Feynman diagrams.
As in Ref. [4], we find it convenient to use the language of
large-N @CD to describe the diagrams. Let us introduce
the gluon-quark-quark vertex function I'(z) defined ta
include gluon self-energy corrections. In other hands, it
is one-particle irreducible in the quark lines, but not in
the gluon line. Then we can write the second term in Eq.
(4.18) as

).).( — ')( —.)
I' 1

o —&),

where Gq, (z, z) is order of 1/N . The first term on the
right-hand side of this equation may be rearranged by
writing y = (p + Hp —z) + (z —Hp):

1 ( 1
v IiV qz-Hp-& y

where we denote (Try ) by x. This quantity x does not
depend on Hp and is simply related to the end point a(g)
of the spectrum for the Ho ——0 case by

2a 22;= —(4 —a )3 )

where a(g) satisfies the equation [].]

12ga +a = 1.

(4.i7)

(4.18)
Thus we have accomplished our goal of finding Eq.

(4.16), which determines the one-point Green's function
G(z) in general. Note that the self-energy Z that ap-
pears in (4.16) is itself related to G(z) as described in
(4.7). We could replace G(z) in (4.16) by Gp(z —Z)
and solve explicitly {4.16) for Z by a contour integral,
but it is not clear that this would be the easiest way
to numerically handle these equations. In any case, one
does not expect any interesting behavior of the density
of state for generic probability distributions. It depends
very sensitively upon Hp and P(p), except near the edge,
at which one obtains in general a square root behavior
as for Wigner's semicircle law. This will be illustrated
numerically in two examples.

We now consider two simple cases as examples, spec-
ified by the eigenvalues e; of Hp.. (i) e; = e for i
1, ..., N/2 and e, = —e for i = (K/2) + 1, ..., N, with K
even, and (ii) the e, are uniformly spaced over an interval
from —o, to o..

For the first case (i), we have, from {4.7),

1 ( 1 + !1

2 (z —~ —Z z+e —Z)
(4.»)

In the case g = 0, (4.16) tells us simply Z = G and thus
we obtain the cubic equation

Gaussian probability distribution for y, is determined by

G (z) = Z(z) G(z) —4g T + 4g [1 + Z (z)G(z)],Z(z) 2

2 2

z —e, z —~~ (z —G) G + {1—s )G —z = 0. (4.20)

1
X r(

[z —s' —Z(z)] [z —"—Z(z)]
= Nr( )[1+Z( )G( )] (4.i4)

As shown in Fig. 1, in the planar limit the vertex func-
tion I'(z), the (quark) self-energy Z{z) and the Green's
function or quark propagator G(z) are related by

z(.) = r(.)G(.). (4.i5)

Using this fact and putting everything together, we find
that G(z), for arbitrary nonzero Hp and far a nan-

The imaginary part of G{z) is represented in Fig. 2 by
a solid line for the particular case e = 1. The end points
of the spectrum occur at z = 6~27/2. The point z = 0
becomes the end point also for g = 0. For g g 0, we
consider the following representative values for e = 1:
(a) g = 1/2, z = 11/27 and (b) g = —1/48, x = 4/3,
and solve numerically. We represent the imaginary parts
of G(z) in Fig. 2 by a dotted line and by a dashed line,
respectively. We have a fifth-order polynomial equation
far Z by substituting (4.19) inta (4.16). At the critical
value g = —1/48, we find the imaginary parts of Z and
G, which vanish at z, = 3.225 with the exponent 3/2,

FIG. 1. Self-energy Z(z) expressed by the product of the
vertex parts I'(z) aud G(z). (4.22)

which shows the same singularity as the Ho ——0 case at
the edge [1, 14].

In the second example (ii), we have, from (4.7),
z = Z(z) + n coth[nG(z)].
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V. TWO-POINT CORRELATION FUNCTION
WITH NONZERO Ho AND (p GAUSSIAN

We now finally come to the two-point connected
Green's function, or correlation function, G2, (z, zv). In
an earlier work [4] we have shown that for a Gaussian
distribution P(&p) we can determine Gq, (z, u)) as follows.
First, we define

;(z) =
z —e; —Z(z)

(5 1)

For the Gaussian case, the self-energy E = G(z). For
notational convenience we also define the "circle product"

FIG. 2. Solid line, imaginary part of the one-point Green's
function G(z), for g = 0; dotted line, imaginary G(z) for

g = 1/2; dashed line, imaginary G(z) for g = —1/48. In
all three cases, the eigenvalues of Ho are +1. There is a
symmetric counterpart for z ( 0.

1"--G"(z) o G (w) = —) g,"(z)g,. (u)).

Then in the large-N limit, we found

G (z) o G (m)"' "" '= 1-G().G(-)

(5.2)

We consider further the case o. = 1.The imaginary part
of G(z) is evaluated numerically and represented in Fig.
3. At the critical value g = —1/48, the imaginary part
of G(z) shows the same singularity at the edge as before.
Note that the value g = —1/48 always remains critical,
independent of Ho. This is due to the singular behavior of
x given by (4.16) near g, = —1/48, which is independent
of Ho. We have considered the non-Gaussian probability
distribution given by (4.8). It is easy to apply the present
method to the other non-Gaussian P(p) case.

+ [G'( ) G( )1[G( ) G'( )]&
[1 —G(z) ~ G(~)] )

1 1
X

1 —G(z) o G(z) 1 —G(u)) o G(u))

(5.8)

This result was derived by summing all the relevant
planar diagrams, consisting of generalized ladders, with
arbitrary cyclic permutations of the rungs, with fully
dressed planar propagators and planar, i.e. , rainbowlike,
vertex corrections. (We have again set v, the width of
the random distribution, equal to one. )

Surprisingly enough, we can show that this rather com-
plicated expression can again be written simply in the
form

Imo N G2, (zq, z2) = — in[1 —G(z) ) o G(zq)].
Z$ Z2

(5.4)

Note that this expression has the same form as (2.2), but
with the ordinary product replaced by the circle product.
Defining u(z) = z —G(z) as before and using the identity

Z —tU
1 —G(z) o G(to) = (5.5)

we can also write

(, ,),
~

( ) (")) (55)
Bz) Bzg g zy —zz

FIG. 3. Imaginary part of the one-point Green's function
G(z), for the case in which the eigenvalues of Ho are given
uniformly between —1 and 1. The solid line shows the case of
g = 0, the dotted line corresponds to g = 1/2 and x = 11/27,
and the dashed line shows the case g = —1/48 and z = 4/3.

dG(z) G(z) o G(z)
dz 1 —G(z) o G(z)

(5.7)

just as in (2.5). To derive these compact representations,
we simply differentiate (5.4) to obtain the previous result
(5.3), using the identity
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VI. TWO-POINT CORRELATION FUNCTION
WITH NONZERO Hg AND y NON-GAUSSIAN

The remarkable existence of such a compact represen-
tation as (5.6) naturally prompts us to ask whether this
representation also holds for a general non-Gaussian dis-
tribution P(p). In this section, we answer this question
partially by studying G2, (z, iu) for the distribution

P((p) = —exp[ —N(2 Try + gTrp )] (6.1)

D

oj' G(z) o G(iu)—Sg
Bzu8z 1 —G(z) o G(2u)

02—4g [G(z)G(w)],

B~ G(z) o G(u))—4g G(z) G(ur)

(92 G(z) o G(tu)—4g~ ~, G( ) .G( )
[G'( ) + G'( )]

t92 G(z) G2(z) o G(2u)
(9iuBz 1 —G(z) o G(z) 1 —G(z) o G(iu)

G(u)) G2(iu) o G(z)
1 —G(iu) o G(u)) 1 —G(z) o G(iu)

8 G (z) G (z) o G(iu)—4g
BmBz 1 —G(z) o G(z) 1 —G(z) o G(iu)

+ G (u)) G (tu) o G(z)
1 —G(uy) o G(u)) 1 —G(z) o G(iu)

(6 2)

to erst order in g.
As contributions of order g, there are six difFerent

classes of diagrams, with their typical representatives
shown in Fig. 4. The contributions of these six classes of
diagrams to G2, (z, 2u) are

C~&

FIG. 4. Diagrams of order g for G2, (z, 2u). The dashed
line represents the ladder of y propagators.

1 - 1
—' —G(.)

(6.3)

Summing these terms D, ..., Df and adding this to the
unperturbed term N G2, (z, u)) = —

& & in[1 —G(z) o

G(iu)], we obtain

To order g, the one-point Green's function G(z) that
appears here can of course be taken to be the lowest-order
Green's function, which we denote by G&&(z) [note that
this Go(z) is diB'erent from the one defined in (4.1), where
we used it for the deterministic unperturbed one-point
Green function]. For the sake of notational simplicity,
however, we will omit the subscript 0 here. In other
words, G(z) is determined by

A Gz, (z, zz) = — (zI1 —G(z) G(w) +4g G(z) *G(zz)(2+ G (z) + G (w)]
OQJ t9Z

+G()G{ )+G{)oG{)! {) {) !+G{)oG{)! { ) { )
! ++(g

pl —G(z) o G(z) j ( 1 —G(2u) o G(tu) )

We note, that to lowest order in g,

G (z) o G(u)) = G(z) o G(z) —G(z) o G(iu) G(z) o G(z) —1 + QJ —Z

iu —z —G(u)) + G(z) iu —z —G(iu) + G(z) [iu —z —G(2u) + G(z)]2

(6.4)

(6.5)

G(z) —G(iu)
2u —z —G(zu) + G(z)

Then (6.4) may be written as

(6.6)

19N'G, .(z, 2u) = — ln
OVXJ BZ

z —~ G(.)[& + G'(.)11+ 4gG z G u) —4g+G{ )-G()~ & [.— -G(.)+G( )][1-G(.)-G(.)1

+4g
lG(zu) [2 + G'(2u)]

[z —m —G(z) + G(u)][1 —G(m) o G(m)] p
(6.7)
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The last two terms of Eq. (6.7) come from parts of dia-
grams of classes (e) and (f) in Fig. 4.

We would now like to reexpress this result using the
exact one-point Green's function as far as possible. Using
the notation Gp(z) for the one-point Green function for
nonzero Hp and for the Gaussian distribution (g = 0),
we find that the self-energy Z(z) of the non-Gaussian
distribution P(y) is given by

~()=G () — ' O(') (68)
1 —Gp(z) o Gp(z)

Then the last two terms of (6.7) are absorbed by the
expression of the self-energy K(ur) and Z(z). Therefore,
we finally obtain the following simple expression, up to
order g,

82 / z —iu
N G2, (z, n)) = — ln

OzBio (z —zu —Z(z) + Z(iU) )

V'II. DISCUSSION

Thus far we have considered the correlation function
p2 for arbitrary values of A and p, in which case all four
terms on the right-hand side of (1.3) contribute. In the
limit in which A —p tends to zero, one gets a singularity
that is entirely due to the Green's functions with oppo-
site signs of their infinitesimal imaginary parts. Indeed
[u(z) —u(ip)]/(z —iU) is not singular when io approaches
z, with z and m on the same side of the cut. However, if
the imaginary parts of z and m are opposite, and when
they approach the real axis on the support of the spectral
density of the resolvent, the ratio drastically increases at
a short distance. The residue of the singularity depends
upon the imaginary part of u, but it disappears when we
take the derivative of the logarithm. Therefore if A and
p, are such that p(A) and p(p) are nonzero, when p is
close to A we have a double pole with a universal residue
minus one:

x [1+4gG(z)G(ip)]

1
N G2, (A +ie, p, p ie) =

A —p 2 (7 1)

02 ( z —w
ln

( u(z) —u(~))

x [1+4gG(z)G(zv)] + O(g ), (6.9)

where we now define

u(z) = z —Z(z) (6.10)

G2, (z, u)) = —— in[1 —G(z) o G(iU)1 ' (z, io)]
0 0

BZ OVD

G(z) G(ip) I'&'1 (z, u)).
0 0

BZ t9tU
(6.11)

The second term represents the diagram class (b) in Fig.
4. The fact that the terms in (6.2) all collect into the
relatively simple form of (6.9) suggests to us that some
variation of this form may in fact hold to all orders in g
and possibly even to arbitrary P(y). We do not have a
proof of all this tempting conjecture at this point.

as the appropriate generalization of (2.3).
We have thus obtained the same form as in (5.6), ex-

cept for an extra factor of [1 + 4gG(z)G(tu)]. Although
this form is quite involved, it makes it clear that the short
distance singularity of the smoothened p2, (z, io) is not af-
fected by the non-Gaussian character of the distribution.
It is thus truly universal, in the sense that it does not
depend upon the spectrum of Hp or the distribution of

In Appendix 8 we show that this expression is con-
sistent with the known result for the Hp ——0 case. Since
this factor appears inside ln, we separate this term as
—4g[B,G(z)][8 G(rp)]. This term seems to be the uncon-
nected part for two-point Green's function. Thus if we
neglect this factorized term, we have the same form as
(2.5). The general expression for the connected two-point
Green's function may be written as

Consequently, for arbitrary Hp, we have, as in the simple
Wigner ensemble, a behavior

(7.2)

which, remarkably enough, is totally independent of any
specific characteristic of the problem. We have proved
this for a distribution P(y) defined with a quartic V to
lowest order in the quartic coupling, but we are tempted
to conjecture that this short distance universality in fact
holds to all orders and perhaps even for arbitrary V. We
close with a few concluding remarks.

We have checked that the same result (2.2) holds for a
model that we have considered recently [15], in which ran-
dom matrices are made of independent random blocks, as
when they are attached to a lattice. In that case the re-
sult comes out immediately from the explicit expression
given in that work. We obtain

(+N) G2c(zr z2) — ) in[1 ekG(zr) G(z2)]
Ozi 6Z2

(7.3)

with C the number of lattice sites and. eA. the single-
particle Bloch energies as defined in Ref. [15]. Similarly,
in Ref. [4] we considered a situation in which the random
matrix p depends on a parameter called time. Again, the
explicit expression given in that work may be written in
the form

N G2, (zi, z2) = — in[1 —e "1 G(zi) G(z2)],
Bzy BZ2

(7.4)

where u(t) is a function of time defined in Ref. [4]. In
fact, the universal form discussed in this paper seems to
hold in every problem with some random features.
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As noted for the simple Wigner case the short distance
singularity that one finds in (7.1) for the smoothened
correlation function is spurious: the true p2, (A, p) is fi-
nite at short distance, but the smoothening has replaced
some vanishing numerator by a constant average. This
justifies the procedure followed in the literature in com-
puting the universal fluctuations in mesoscopic systems:
the smoothened function correlation is used with some
cutoK at short distance. An integration by parts [16],
particularly easy since G2 takes the form of a second
derivative, allows one to return to the integrable loga-
rithmic singularity. The short distance cutoK may then
be removed.

Consequently, the interesting feature of these results is
not so much the universal nature of the short distance
spurious singularity, but the general representation (2.2)
of the two-point Green's function.
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APPENDIX A: CALCULATION
OF (Trrp2" Tr(p4)

Here we will calculate (Trp2 Trp4) for the probability
distribution

~2 2)2
G'(z) —(z+ 4gz')G(z) + 4gz'+, = 0,

with the end points +2a of the spectrum given by

12ga +a —1 = 0. (A4)

From G(z) we obtain, after a tedious but simple cal-
culation,

(
1 2„(2n !—Try " = '

o, "[2n+ 2 —na ].N n!(n+ 2)!
(A5)

Then one has

—Tr&p
" = (Try "Try ),2n 2n 4

gg N

n(n+ 1)(2 —a )
(2n)!

n!(n+ 2)!

2n —2 axa
Bg

(A6)

Taking Ba /Bg = —12a /(2 —a ) from (3.10), we obtain,
as announced

2n T 4) 2n+4 (2n)!
n+ 2 (n!)'

2n+4(T 2n T 4) (A7)

The method extends to higher powers of m, but becomes
very tedious. The indirect derivations of Refs. [7,10] are
of course easier.

P(&p) = —exp[ —NTr(-'p +gy )].Z

The one-point Green's function

1 ( 1
G(z) = —Tr

IN (z —y)

satisfies the equation [13]

(A2)

AP PEN DIX 8: TWO-P OINT
GREEN'S FUNCTION

The result of two-point correlation function (5.4) with
nonzero Hp and with a Gaussian distribution P(y) is also
derived by considering an equation of motion, which is
obtained by shifting the arbitrary random matrix y to

+ E The p.ropagator [1/(z —Hp —p)] '&'[1/(io —Hp

y)]&i has the corrections of order e by this shift and they
become

(
(z —H), (z —H), i, ip —H) k&

( 1 l ( 1 ) ( 1 l ( 1 l ( 1
+I Hl I Hl '

I Hl —
I Hl I Hl [~. v +4g~ (P') ]. (81)(z — ),, qm —

&
~ —H) ~& qz —Hp, qm —Hy

By setting n = i, m = j, and A: = I and summing over these indices, we obtain

+ —T
I I

— —T I- (w+4gv ) I

—T(1 1 l (1 1 ) 1 1 ( 1 l 1 ( 1

z —H) (N ~p —H) N z —H (ur —H) N Ez —H N m —H
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The second term of Eq. (B2) is written as
[2G(z) —z]G2, (z, tu) + 0 (' G(z) —G(tu) 5

)
1 f 1

z —H (tu —H) Tr! Hp! Tr = 0.
(z —Hp —lp ) tu —Hp —(p

(
z —H~ —H)

0 f G(z) —G(u)) )
cttu ( tu —z )! ! (B3)

By the factorization in the large-N limit, the first term
of (B2) is given by

(B9)
%le diagonalize the matrix. Ho with the eigenvalues r, in
the last term. The diagrams of this term are classified
into four difFerent types (Fig. 5). We note that if we
replace e, by [e, + Z(z) —z] + [z —Z(z)] in all four types
of diagrams in Fig. 5, we have only an identity without
any result for G2, (z, tu). Namely, in this case we have,
after calculations,

Tr! Hp! Tr
i, z —Hp —

V Ho —p

z —H) i N tu —H)

= G (z)G(tu) + 2G(z)G2, (z, tu)

+G2, (z, z)G(tu) + 0! ! . (B4)
t'1)g¹)

From (4.11) and (B2), we have

= [z —2G(z)]G2, (z, tu)

in[1 —G(z) o G(tu)]. (B10)
1

Inserting this into (89), we find that G2, (z, tu) cancels
out and obtain the identity equation

8 'G(z) —G(tu) )
Btu ( z —tu

0 (G(z) —G(tu) )
@~I, z —~! !

Tr~ (y+4gy ) ~Tr ) =O. (H5)
1 s) 1

iz —H ) tu —H
1 0

in[1 —G(z) o G(tu)]. (B11)

Btu I z —uj
(B6)

We consider the two-point Green's function G2, (z, tu)
based on this equation. First, we consider the simplest
case Ho ——0 and g = 0. In this case, we write the equa-
tion for G2, (z, tu),

To get the expression for G2, (z, ui), we write e, separately
for the diagrams of Figs. 5(a) and 5(c) as e, = [e, +
E(tu) —tu] + [tu —Z(tu)] and for Figs. 5(b) and 5(d)
e, = [e;+Z(z) —z]+[z—Z(z)]. Then we have the following
expression by summing the contributions of Figs. 5(a)—
5(d):

Since G(z) = 1/[z —G(z)] in the case Hp ——0 and g = 0,
we have

~ ~ ~ ~ ~ ~ ojg

1

2G(z) —z
G(z)

G'( ) —1 V'" -4
Taking the derivative of ut in (B6), we have b

1 1
2c r

—
2

x
I G(z) —G(~)+ (z —~)
r G'(tu)

1 ( ztu —4
2(z —~)' &V"2 —4V'~' —4

(Bs)

This coincides with the previous expression given by
(2 7).

For the Hp g 0 and g = 0 case, we have, from (B2),

FIG. 5. Four diQ'erent diagrams of
(Tr( i Ho)Tr ). The dotted line denotes the
eigenvalue e, of Ho.
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( H, !T
gz —Ho —y ) oo —rro —y)

=[ —~( ) —G( )]G"( )+[ — —~( )+~( )]G( ) G( )G.( )
G (z) o G(tU) [G'(~) G(z)] [G(z) G(z)]

[
— ( ) o ( )][ — ( ) ( )] [

— ( ) ( )]' [ — ( ) ( )]

[G()-G( )- + ][1-G(.)-G(.)]G'( )

[1 —G(z) o G(m)] [1 —G(m) o G(to)]

{G( ).G'( )[1-G( ).G( )]
—G'(z) o G(ur)[1 —G(z) o G(ur)]). (B13)

Using the previous identity of (Bll), we write the equa-
tion for G2, (z, tv) using (B10) and (B12),

I

and replace these quantities in (B13); then we obtain the
same result as (5.3).

For the non-Gaussian distribution P(p), we obtain the
expression of G2, (z, to), up to order g, as (6.9). When
we set Ho = 0, this expression should be consistent with
the known result, discussed in Sec. III. We will show in
the following that indeed the expression (6.9) becomes
consistent with the known result when Ho ——0.

When Ho ——0, we have by the scaling z ~ z/a and
to ~ to/a, from the expression of G2, (z, to) for the Gaus-
sian distribution P(p),

It is easy to see that this equation leads to the previous
result (5.3), which was derived by a diagrammatic anal-
ysis [4]. To see this equivalence, we write the following
two quantities as

02 z tO
Gz, (z, oo) = — lz 1 —Oo (

—
) Oo (

—
)

( Z —tU

Zt9tU z —gz' —4a' ur —V'u ' —4a' )2
'+

2

(»6)
[ —;— ( )]' [~ —"- —G(~)]'

G2(z) o G(to) —G(z) o G (to)
to —z —G(to) + G(z)

(B14)

G(,)G( )
G(z) —G(~)

to —z —Z(to) + Z(z)
' (B17)

G(z) o G(z) —G(z) o G(to)
to —z —G(u)) + G(z)

(B15)
Then we write (6.9) in the form

Now we set Ho ——0 in the expression (6.9). Then all
circle products become usual products and we have also

cl' ( lZ

—Q)
G2, (z, to) = — ln

!Bzgui q z —to + Z(to) —Z(z) + 4gG(z) —4gG(tu) ) '

where the self-energy Z(z) is given as (6.8)

with

1 —Go2(z)

4gG (z)
1 —

Gzo (z)
(B19)

Gp(z) = z — z2 —4

We expand the quantity a in (B16) as a2 = 1 —12g + O(g ) and compare (B16) and (B18). Then we find that (6.9)
is consistent with (B16) when we set Ho ——Q.
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