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Structure of random fractals and the probability distribution of random walks
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The structure of percolation clusters at criticality, described by the distribution of the end-to-end
distance r between two cluster sites as a function of their minimal path length E, P(r, I), is discussed.
Analytical expressions for the exponents describing the distribution for spatial dimensions 2 & d ( 6
are presented, and extensive numerical simulations in two and three dimensions are performed in
support of these predictions.
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Percolation clusters at criticality represent useful mod-
els of random fractals with a variety of applications in
many fields of science [1—3]. In many circumstances, a
detailed knowledge of the cluster structure is required,
as, for instance, in the study of transport phenomena on
fractals [1,2,4]. In this context, random walks on fractals
have attracted much attention in recent years. One of the
reasons for this interest is the advent of new transport
laws required to describe them and, secondly, because of
their applications for modeling anomalous transport be-
havior commonly observed in many disordered materials
[1-61

Much effort has been devoted, therefore, to elucidat-
ing the form of the probability density P(r, t) of random
walks on self-similar structures. This central quantity
represents the probability that a random walker is at dis-
tance r at time t from its starting point at t = 0. It is
generally accepted that, on average,

1
P(r, t) „ I exp[ —const x (r/R) "]

1
P(r, t) (r/R) exp[ —const x (r/R)" ], (2)

when t -+ oo and r )) R. Here, R = ([r(t) —r(0)] ) is
the mean-square displacement of the random walk, B
t /'", and d~ ) 2 is the anomalous diffusion exponent
[1,5]. The spectral dimension [5] d, = 2dI/O, dI is
the fractal dimension of the structure, and the exponent
u = d /(d —1). Since d ) 2 on fractals, u ( 2
and P(r, t) is called a stretched Gaussian [7]. We note
that (1) is consistent with the normalization condition
f dr r"t P(r, t) = l.

Recent theoretical studies have indicated, however,
that a more accurate expression for the asymptotic form
of P(r, t) is instead given by

poral derivative of order 1/d . The exact asymptotic
solution of Eq. (3) then yields

/1
(d, —1) —r.

i

. (4)

Equation (3) reduces to its standard counterpart when
d = 2 and dy ——d, the Euclidean dimension of the
space. In this case, K = (d —1)/2 and ci = 0. The
exact value of K on fractals is, however, not known at
present. More recent theoretical arguxnents, based on
the continuous time random walks formalism, have been
presented suggesting that [11]

1r = —(dI —1).
2

(5)

As we will see, Eqs. (2)—(4) are very useful since they per-
mit us to estimate analytically the exponents describing
the structure of the random fractal where the diffusion
process takes place.

In this paper, we discuss in detail a simple derivation
of the asymptotic form Eq. (2) f'rom which analytical ex-
pressions for the exponents describing the structure of
percolation clusters at criticality are obtained. These
theoretical predictions are supported by extensive numer-
ical simulations in two and three dimensions.

We start by considering the case of topologically one-
dimensional random fractal structures generated by stan-
dard random walks on regular lattices (RW chains), for
which the asymptotic solution for P(r, t) can be obtained
exactly. We are thus in a position to test the validity of
the predictions Eqs. (4) and (5) in these cases. More im-
portant, from this analysis a remarkably simple relation
is suggested which turns out to play a fundamental role
in the present approach.

containing a power-law correction term (r/R) to the
usual stretched Gaussian law [8—10]. Equation (2) can
be obtained analytically by considering a generalized dif-
fusion equation on &actals of the form [9,10]

O'I"- P(r, t) (O P(r, t) r.= —A
i

' + —P(r, t)i,Otic" ( Or r

where the symbol OiI" /Ot I" denotes a fractional tem-

Random walk chains

In the case of RW chains, the random walker can only
performs jumps to nearest-neighbor sites of the linear
path which have been created sequentially by a previ-
ous random walk. Thus, although intersection of the
path with itself actually occurs, the walker experiences
just a one-dimensional path. The distance of the walker
along the linear path from its starting point (center of

1063-651X/95/51(6)/5422(4)/$06. 00 51 5422 Qc1995 The American Physical Society



STRUCTURE OF RANDOM FRACTALS AND THE PROBABILITY. . .

the chain) is denoted as the chemical distance [1], E ) 0.
In this topologically one-dimensional space, dift'usion is
normal and the corresponding probability is simply given
by

P (g, t) exp [
—const x (//I ) ],

2

P(r, Z) - „(r/E")' exp[ —const x (r/E") ]

when r/I. " )) 1, and

P(r &) - q., (~/&")'
1

(12)

when t ) E, where I t ~ . For RW chains [1], dy = 2,
the diffusion exponent d = 2dy ——4, and d, = l.

To obtain the asymptotic behavior of P(r, t), we em-
ploy the method already discussed in the literature
[1,7,12], in which P(E, t) and P(r, t) can be related by

P(r, t) = dE C. (E ] r) P(l, t), (7)

where 4(E
~
r) gives the conditional probability that a site

of the RW chain at a distance r from the center of the
chain is at a chemical distance I., and C (E

~

r) = 0 when

E & r. It is normalized according to I& dE C (E
~
r) = 1,

where E;„r (but a different r dependence may also
take place [13)), and E m oo in general.

The function 4(E
~
r) is related to the structural func-

tion P(r, E), the quantity of interest here, by 4(E
~

r) =
Ag(r)P(r, l) The . latter represents the probability that
a site of the RW chain has grown at distance r from the
origin after E steps, i.e. ,

P(r, k) „exp(—const x r /I)2

when E&r, and is normalized according to
J' dr r P(r, l) = 1. Finally, the proportionality fac-
tor Ag(r) can be obtained &om the normalization condi-
tion on 4(E

~
r), yielding [14]

1
4(E

~
r) —(r/8 ~ ) exp( —const x r /E). (9)

The asymptotic form for P(r, t) can now be obtained by
applying the method of steepest descents in Eq. (7). To
be noticed is that the saddle [15] E, (r2t)~~s, should
occur in the interval X~;„(E, ( E~~~, where Z~~~ ~ r
gives the location of the maximum of 4(E

~
r) [16]. The

result has the form of Eq. (2), with u = d /(d —1) = 4/3
and n = 2d/3 —2. The latter can be written as in Eq. (4),
with d, = 1 and

1
x = —[(dy+ 2 —d) —1].

2
(10)

Self-avoiding random walk chains

In the following, we are going to test our result Eq. (10)
on a more complex linear fractal for which the struc-
tural function P(r, l) is also known, i.e. , chains generated
by self-avoiding random walks (SAW chains). For these
chains, the structural function reads [17]

It is gratifying that the suggested value for r in Eq. (5)
coincides with the exact result in Eq. (10), at least in
one particular case, i.e., when the embedding dimension
d = 2.

when r/E" « 1. Now, v = 3/(d + 2), b = 1/(1 —v),
t = 6 [d(v —1/2) —(p —1)], and g = (p —1)/v. For SAW
chains, dy = 1/v = (d + 2)/3 and d = 2dy, similarly as
for RW-chains [1].

The exponent p (& 1) is called the enhancement fac-
tor and is not known exactly (except when d = 2) [17].
Despite several attempts, such an accurate and simple
expression for p, as for its counterpart v (the Flory re-
sult) valid for all d, has not been derived yet [6].

For SAW chains, Eq. (9) is changed to C(f
~

r)
(1//) (r/E")" ~ + exp[ —const x(r/E")~], when r/g & 1
[which is the relevant range for the asymptotic case
in Eq. (2)], and displays a maximum at E „r~~".
The asymptotic behavior of P(r, t) can be obtained from
Eq. (7), where again the saddle [16] E

(tv~) ~~ + l. The result has the form of Eq. (2),
with o. = —u r, and

1
K = —[(dg+ Adg) —1]

2
(13)

where Ady = dy —2(d+ t)/b. To get deeper insight into
this result, we will assume that the correction term found
in Eq. (10) holds here too, i.e. , Edy = 2 —d. This yields
a prediction for p which reads

4 —d
7 =1+

6
(14)

This simple result agrees remarkably well with the best
numerical estimates presently available [17] (p = 1.33 +
0.003, p,„„=43/32 when d = 2, and p = 1.1663+0.003
when d = 3). Note that p = 1 when d = 4, as expected
[17].

Encouraged by these results, we apply the same ideas
to percolation clusters at criticality, where, however, no
analytical expressions for the analogous exponents t and
g are known so far.

Percolation clusters at criticality

Accurate numerical results on percolation clusters at
criticality [1,18] have indicated that the structural func-
tion P(r, l) can be well described by a form similar to
Eq. (11), for an appreciable range of values of the scal-
ing variable x = r/I, ", including values x & 1. However,
some discrepancies have been observed when x « 1 [18].

In the following, we assume that for percolation clus-
ters, P(r, I) actually obeys the scaling forms Eqs. (11)
and (12), when x & 1 and x & 1, respectively, and sug-
gest expressions for the corresponding exponents t and g.
In addition, we assume that b = 1/(1 —v).

For percolation, values of v are known in the litera-
ture [1,2], with v = 1/2 when d & 6. From Eq. (11)
we obtain the conditional function C (E

~
r), which is
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now normalized according to J& dl /"' 4(l
~
r) = 1,

where dg ——vdf ) 1 is the fractal dimension in E-

space (topological dimension) [1]. It is, however, con-
venient to incorporate the factor S"' into the definition
of 4(l

~
r), such that it still preserves the simple scal-

ing form (I/E)P(r/E") as in the previous examples, i.e. ,

@(&
I
")- (I/&) (r/&")" ' "+' ' exp[ —const x (r/& )']

when r/E" ) 1, and C (E ) r) (I/g) (r/g )~ when r/E" &
1, with p = d —1/v+g —At, where At = (dg —1)/v. The
resulting normalization is then f dg @(g

~
r) = I, and

min

the relation Eq. (7) does not carry any additional factor
in the integrand.

Because of the presence of loops and dangling ends on
all length scales, diffusion in chemical space is anoma-
lous on percolation clusters [1,2], and the form of the
probability density P(E, t) is not known exactly. Exten-
sive numerical studies have indicated, however, that to a
good approximation [1,7],

1
P(E, t) exp[ —const x (I/L)" ],

where I t ~", d = vd is the diffusion exponent in
E-space, and v = d /(d —1), similarly as in r-space [cf.
Eq (1)1 [121.

From our previous discussions, however, a power-law
correction term of the form (E/L) ', as in Eq. (2), may be
present also in E-space. To understand this point better,
notice that for fractals such as Sierpinski gaskets, both
8- and r-spaces are equivalent, and the same power-law
correction term, if existing, should be present in both
spaces. But percolation clusters are not deterministic
&actals and a diferent situation may actually occur, yet
such correction terms in E-space for percolation are essen-
tial as we will see below. Therefore we expect in Eq. (15)
also a power-law correction term described by the expo-
nent

E-space, obtained here for percolation clusters for which
dg ) 1, remains to be understood [19].

Our Gnal estimate for the structural exponent t on per-
colation clusters at criticality now reads

t = h (d —df) (v —1/2), (18)

g = dg (v —1/2)/v (19)

yielding P = d —df/2v, describing 4(E
~
r) when r/l" & 1.

In order to test the predictions Eqs. (18) and (19),
we have calculated P(r, E) numerically in two and three
dimensions, as shown in Fig. 1. To estimate t numeri-
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which is the main result of this work. Notice that, when
d = 6, v = 1/2, and t = 0, as required. If we write
Eq. (18) in a forin similar to that for SAW chains, i.e.,
t = h [d(v —1/2) —(p —1)], we find p = 1+dy(v —1/2).
These results generalize the previous ones for RW and
SAW chains, as can be easily verified.

Unfortunately, the exponent g describing the range
r/I" & 1 of P(r, I), cannot be derived following lines sim-
ilar to those leading to Eq. (18). However, we attempt
to estimate it by using g = (p —1)/v, as for SAW chains
[Eq. (12)]. Employing the above result for p, we obtain

t' I~e=vl —(d. —1) —Ke [,
E2 )

(16)
10

where rg remains to be determined.
We proceed with the evaluation of Eq. (7). Now, the

saddle 8, (r~t"~ )i~(~+" ), and the final result for
P(r, t) can be written in the form of Eq. (2), with n
given by Eq. (4), and K = (dy + Adf —1)/2, where

2 — - 2 20!g
Ady = d, —dg ——(d+ t —At) + —— + 1. (17)

b vb v

We now see the important role played by ng [Eq. (16)]: It
cancels out the term d„containing the dynamical expo-
nent d, in Eq. (17), and Ady is given by static exponents
only, as is reasonable to expect.

Finally, assuming that Ldy ——2 —d holds here too, we
obtain a closed expression for t. Since we expect that t
should vanish when d = 6, because percolation clusters
become similar to regular random walks when d & 6, we
finally impose this condition to t to obtain vg ——0. This
surprising result corresponds to an e8'ective topological
dimension d&

——1 if one naively assumes Icy = (d&

1)/2. The origin of such special behavior of diffusion in
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FIG. 1. The structural function for percolation clusters at
criticality. Plotted is the function rP(r, E) vs 2: = r/I. ", where
P(r, l) = r" 'P(r, l), and rP(r, I) = x f(x). In d = 2,
v = 0.88, and X = 250, 500, 750, and 1000 were used, and
averages over 10 clusters, grown up to g = 10 chemical
shells, were performed on a square lattice of (2000) sites. In
d = 3, v = 0.75, and 8 = 100, 200, 300, and 500 were used,
and averages over 2.5 x 10 clusters, grown up to E = 500
chemical shells, were performed on a cubic lattice of (300)
sites. None of the clusters touched the boundaries. The lines
represent the numerical 6ts as described in Table I.
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cally, the data were fitted using the scaling function f(x)
(times x") described in Table I, for values of x around
and above the maximum of rP(r, f) = r P(r, f) (cf. Fig.
1). The exponent g was obtained by fitting a power law
for small x. The resulting exponents are summarized in
Table I. In two dimensions, the fitted t turns out to be
much larger than in Eq. (18), while g is consistent with
Eq. (19). In three dimensions, the agreement with the
theoretical predictions is remarkably good. The appar-
ent discrepancy in d = 2 may be an indication that the
true asymptotic behavior described by t is reached for
values of x well beyond the maximum of f(x). In both
cases, the actual nature of the crossover remains to be
understood.

In summary, we have studied the structure of percola-
tion clusters on d-dimensional lattices at criticality, and
estimated analytically the corresponding exponents de-
scribing their asymptotic shape. The predicted (approx-

TABLE I. The fitting parameters describing the scaling
function f(x) (Fig. 1) for percolation clusters at criticality:
f(x) = 4 x exp( —B x ), when x ) 0.4 (dashed lines),
and f(x) = C xs, when x ( 0.4 (continuous lines). Here,
b = 1/(1 —u), and d is the spatial dimensionality. The theo-
retical values expected from Eqs. (18) and (19) are indicated
in parentheses.

d A B C t g
2 3.10 0.53 1.30 1.65+ 0.10 (0.33) 0.90+ 0.10 (0.822)
3 4.55 1.27 6.16 0.50+ 0.10 (0.50) 0.83+ 0.10 (0.833)

imate) values for the exponents are in very good agree-
ment with the numerical simulations in two and three
dimensions. Nevertheless, many questions are still open
and further theoretical and numerical work is required to
clarify them.
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