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A chaotic-scattering theory of diffusion in the Lorentz gas is presented. The scattering process is con-
sidered on disk scatterers of increasing sizes. In this way, chaotic and fractal properties of the scattering
process are related to diffusion. A formula is obtained that gives the diffusion coefficient in terms of the
Lyapunov exponent and the Hausdorff codimension of the fractal repeller of orbits trapped in the
scatterer. Numerical results are presented that support our theoretical results.
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I. INTRODUCTION

The recent works obtained this last decade on deter-
ministic chaos and dynamical system theory have shown
the necessity to revise our understanding of irreversible
processes in nonequilibrium statistical mechanics. In
conventional statistical mechanical approaches to trans-
port, only the macroscopic aspects of the irreversible pro-
cesses are considered. In particular, scaling theory of hy-
drodynamics and diffusion have rigorously shown how
the law of diffusion appears on large scales in mechanical
systems such as the Lorentz gas. However, our
knowledge is still very sparse about the way the micro-
scopic reversible dynamics can accommodate macroscop-
ically irreversible processes.

Recently, approaches have been proposed where the
transport properties are related to the characteristic
quantities of chaos such as the Lyapunov exponents, the
Kolmogorov-Sinai (KS) entropy per unit time, the escape
rate, and the fractal dimensions [1-9].

In this context, Evans, Cohen, and Morris [1] have
considered a variant of the periodic Lorentz gas model
with an electric field proposed by Moran and Hoover [2].
In order to avoid the kinetic energy to grow without
bound, a special force acts on the particle to keep the
kinetic energy constant. Accordingly, the system—
although still reversible—no longer preserves phase
space volumes so that the Liouville theorem is not
obeyed. For this kind of dynamical system, the phase
space contains an attractor as well as a distinct repeller
(which is repelling in all directions). The trajectories con-
verge to the attractor in the future and to the repeller in
the past. Both the attractor and the repeller are fractal
sets of zero Lebesgue measure. In this particular model,
the transport properties of diffusion have been related to
the sum of Lyapunov exponents and further results have
been rigorously obtained by Chernov et al. [3]. Howev-
er, the introduction of the special thermostat force is not
compatible with the symplectic property of Hamiltonian
systems.

This difficulty may be overcome by considering the
conservative Lorentz gas under nonequilibrium boundary
conditions as proposed by one of the authors and co-
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workers [4-9]. In this approach, developed independent-
ly of Refs. [1-3], the dynamics preserves the phase space
volumes as well as the symplectic property, so that the
fundamental properties of mechanics are not altered. Im-
posing nonequilibrium boundary conditions is equivalent
to considering the scattering of particles on open
configurations of the Lorentz gas. The diffusion
coefficient can be shown to be proportional to the rate of
escape of particles out of large scatterers because the es-
cape dynamics is controlled by diffusion. Using dynami-
cal system theory, the diffusion coefficient is related to
the difference between the Lyapunov exponent and the
KS entropy per unit time [4]. These quantities are
defined for an invariant measure whose support is a frac-
tal set of trajectories that are indefinitely trapped in the
scattering region. This fractal set is a repeller of saddle-
type with stable and unstable directions since trajectories
can enter and exit the scattering region. In this regard,
the fractal object considered in the scattering approach is
different from the one considered in the thermostated-
system approach.

Our purpose in this paper is to develop the escape-rate
theory and the thermodynamic formalism for the study
of diffusion and chaotic scattering in the open Lorentz
gas. The thermodynamic formalism is constructed
around the topological pressure of Ruelle from which the
different characteristic quantities of chaos can be derived.
In a previous paper [4], the diffusion coefficient has been
given in terms of the Lyapunov exponent and the KS en-
tropy or, equivalently, in terms of the Lyapunov ex-
ponent and the information dimension of the fractal re-
peller (for the definitions of these quantities, see [10]). In
the present paper, we obtain a relation that connects
directly the diffusion coefficient to the Hausdorff dimen-
sion and the Lyapunov exponent. This formula is derived
from the previous results obtained by Gaspard and
Nicolis [4]. Thereafter, we show how the diffusion
coefficient can be calculated numerically in terms of the
Hausdorff dimension of the fractal repeller. Our results
provide evidence that diffusion has its origin in the
phenomenon of chaotic scattering.

The paper is organized as follows. In Sec. II, the
infinite and open Lorentz gases are defined and the prop-
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erty of hyperbolicity is described. Sections III and IV are
devoted to the infinite and open Lorentz gases, respec-
tively. Section III on the infinite Lorentz gas gives a
preamble to Sec. IV, which contains the main results of
our paper. Indeed, several important points concerning
the invariants measures and the pressure functions may
be clarified by comparing the constructions and proper-
ties of the infinite and open configurations of the Lorentz
gas. Our formula between the diffusion coefficient and
the Hausdorff dimension is given in Sec. IV and numeri-
cal results are presented. Conclusions are drawn in Sec.
V.
II. INFINITE AND OPEN CONFIGURATIONS
OF THE LORENTZ GAS

A. Billiards

We consider classical billiards where a point particle
undergoes elastic collisions on hard disks that are fixed in
the plane, r=(x,y). The space between the disks forms
the two-dimensional domain 2 of the billiard. All the
hard disks have the same radius a (a =1 in this work).

The centers of the disks belong to a triangular lattice
r,=m.,a+n/b, 2.1)

defined in terms of the fundamental translation vectors

a=(d,0),

V3 (2.2)
— |1, ¥3
b= 2d, ) d|,

and where (mc,nc)GZ2 are integers. Different billiards
can be constructed depending on the set of pairs of in-
tegers that are selected.

1. The infinite configuration

If all the pairs of integers are selected, we fill the whole
triangular lattice with hard disks. All the centers are oc-
cupied so that the billiard is invariant under the group of
spatial translations generated by the vectors (2.1). Ac-
cordingly, the whole lattice can be mapped onto a so-
called Wigner-Seitz cell with periodic boundary condi-
tions [11]. The elementary Wigner-Seitz cell of this tri-
angular lattice is an hexagon of area

Aws=fa><b|=121dl, 2.3)
(see Fig. 1) [11]. Under this construction, the position
space forms a torus given by the quotient of the plane by
the lattice: T?=R?/Z>.

.:.:.:.:.:. > @

FIG. 1. Triangular lattice and its elementary Wigner-Seitz
cell, as well as its topological equivalence with a torus.
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The motion of the point particle in the infinite lattice is
unbounded so that transport by diffusion is a priori possi-
ble. When the dynamics is reduced to the Wigner-Seitz
cell, the position of the particle inside this cell must be
supplemented by a lattice vector of the type (2.1) in order
to determine the actual position of the particle in the
infinite lattice. This lattice vector changes in discrete
steps at each crossing of the border of the elementary
Wigner-Seitz cell.

2. The open configurations of scattering type

Rather than filling the whole lattice with disks, we can
fill only the lattice sides that are inside a closed curve Cy
[4,9]. This curve can be defined in polar coordinates
(x =r cosa, y =rsina) by the equation r =R f (a), which
may be a circle, a hexagon, a square, etc. R is a parame-
ter that varies from zero to infinity. Outside the curve
Cr, the plane is empty of disks so that the point particle
moves in a free motion from or to infinity. Accordingly,
these open configurations define systems of scattering
type (see Fig. 2). As R — «, more and more disks are
contained in the scatterer. The number of disks increases
approximately as

A
Np= R ,
Aws

(2.4)

where Ay is the area of the domain enclosed in the curve
Cg»
N 2
Ag=7R*[TIf (@)Pda, (2.5)
and A g is the area (2.3) of the Wigner-Seitz cell.
We shall especially be concerned here by hexagonal
scatterers for which the curve Cy is a hexagon reciprocal

to the hexagon of the Wigner-Seitz cell (see Fig. 2). In
this case, the number of disks inside Cj, is

Np=3n%+3n+1, for R=nd +6§, (2.6)
R

with 0<6<<d. For R —6=d,2d,3d,4d,5d,6d,7d,
8d,..., we have that the scatterer contains
Ng=17,19,37,61,91,127,169,217, . .. disks [5]. If the
particle belongs to the interior of the hexagon Cpg, its po-
sition r satisfies the condition

max{|e,'r|,|e, r|,|le;r|} <R , 2.7

(a) (b) (c)
S O

FIG. 2. Geometry of an open disk scatterer delimited (a) by a
general curve Cy, (b) by a hexagonal curve Cyi —, selecting one
shell of disk around the central one, and (c) by a hexagonal
curve Cp —,4 selecting two shells.
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in terms of the vectors that are normal to the sides of Cg:
e, =(0,1), e,=(V'3/2,1/2), and e;=(V'3/2,—1/2).

In the limit R = oo, the open configurations of scatter-
ing type become identical to the infinite lattice. In this
way, it is possible to make the connection between
diffusion defined in the infinite lattice and the properties
of the scattering process in finite configurations. From a
physical point of view, this limit is natural since diffusion
is studied in finite pieces of material in the laboratory.
Diffusion is a property of bulk matter which is extrapo-
lated from experiments on finite samples to a hypotheti-
cal infinite sample. Our purpose here is to study the de-
tail of this limit in the case of the Lorentz gas.

B. The dynamics

Between two successive collisions, the motion of the
point particle is determined by the free Hamiltonian

= L(pfﬂ)f) , 2.8)

2m

where the momentum is related to the velocity by
p=mv. At each collision, the velocity or momentum of
the particle satisfies the law of reflection of geometric op-
tics; the angle between the incident ray and the normal n;
at the point of impact is equal to the angle between the
reflected ray and the normal (see Fig. 3).

This dynamics obeys the well-known variational princi-
ple that the total length of the path from the initial to the
final positions is extremal for the actual trajectory,

N
SW({r;})=0, with W= I(r,r;;,),
i=0

(2.9)

where r; =(x;,y;) are the positions of the points of impact
on the disks while ry and ry  are the initial and final po-
sitions.

An efficient algorithm of integration of the trajectories
of the billiard is based on vectorial analysis. The particle

FIG. 3. Geometry of elastic collision: the point of impact r;;
the normal at the point of impact n;, the ingoing and outgoing
velocities, vi¥); the angle between the normal and the outgoing
velocity ¢;.
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velocities before and after the ith collision, we denote by

v}"’ and vf~+ ), are related by the law of geometric optics

vit =y —2[n;-v{ n, , (2.10)
while the trajectory between two successive collisions at

times ¢; and ¢; , is given by

r()=r,+(—¢;)v ). 2.11)

If the next collision occurs on the disk centered at r,, the
time of the collision is determined by solving the quadra-
tic equation

[r(¢)—r,]*=a? (2.12)
or

A;(t —1t;)*+2B,(t —1,)+C,;=0, (2.13)
with

A;=(viT)2

B;=v\")(r;,—1,), (2.14)

C,=(r,—r,)?—a?.
The time of the next collision is, therefore, given by

B, B, 2 c, 172
ti+1:ti_j47‘ A, _Z ) (2.15)

where the minus sign is chosen between both determina-
tions of the square root because the collision occurs at
the first intersection of the free trajectory (2.11) with the
disk (2.12). The new position on the disk c is given by

ri+1:r(ti+1) ’ (2.16)
while the normal at this point of impact is
Ti+17 T 1
n. == —(r; -_ 5 217
i+1 It 4, —T.] a( i+17Te) ( )
and the incident velocity at r; , ; is
vipi=vit) | (2.18)

The outgoing velocity and the free flight after the col-
lision are calculated identically starting again from Eq.
(2.10). In this way, the complete trajectory can be calcu-
lated by recurrence.

A few remarks are necessary here about the geometry
of the phase space. The Lorentz gas has two degrees of
freedom so that its total phase space is four dimensional,
(x%,9,Px,p,). If the momentum is expressed in polar coor-
dinates, (p, =pcos6, p,=psin0), the phase space coordi-
nates may be taken as (x,y,0,p).

Since energy is conserved, the four-dimensional phase
space decomposes into a one-dimensional continuum of
energy shells which are three dimensional, (x,y,0).
Moreover, due to the simple form of the Hamiltonian
(2.8), the topology of the trajectories on the energy shells
are similar to each other by a scaling of energy or veloci-
ty, E=p%/2m)=(1/2)mv>. Accordingly,  the
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knowledge of the dynamics at a fixed velocity is enough
to have the complete picture of the system. Here, we
shall consider the energy shell with the velocity given in
units of disk radius, v =a =1. If the trajectory has a to-
tal length L, the time of flight varies according to
t=L/v=LVm/2E. For a unit velocity, time is then
equal to the geometric length of the trajectories in posi-
tion space. The trajectories can, therefore, be
parametrized equivalently in terms of the time or the
path length: T',=(x,,y,,6,)=T,. Nevertheless, on the
different energy shells, these trajectories are followed at
different speeds.

C. Liouville invariant measure

Since we investigate statistical properties of the billiard
dynamics, we introduce the Liouville invariant measure
given by

du; =1I4(x,y)8(H —E)dx dy dp,dp, , (2.19)

in terms of the indicator function of the domain 2D
defined by

1, for (x,y)ED

Ip(x,y)= (O, otherwise . (2.20

In polar coordinates where dp,dp, =p dp d0, the invari-
ant measure (2.19) can be rewritten as

du; =ml;(x,y)8(p —V2mE )dpdx dyd9, (2.21)

where we used the property of the Dirac distribution that

P _ 5

2m

6 (2.22)

m —
=—38(p—V2mE),
» y4

when p 20. Equation (2.21) shows that the velocity an-
gles and the positions are uniformly distributed according
to the Liouville invariant measure with a density,
dI"=dx dy d 6, on each energy shell.

The Liouville invariant measure (2.21) applies to every
configuration of the Lorentz gas. This measure is not
normalizable when the area of the domain 2 is infinite in
the case of the infinite and open configurations. Howev-
er, the measure is normalizable for the reduced dynamics
in an elementary Wigner-Seitz cell where the area of the
domain 2 takes a finite value. In this finite case, the
Liouville invariant measure is a probability measure that
defines the Gibbs microcanonical ensemble of equilibrium
statistical mechanics. In the following Sec. IV, we shall
introduce invariant probability measures that are
relevant for the nonequilibrium mechanics of the open
configurations of scattering type.

D. Finite or infinite horizon

In the infinite lattice configuration, different dynamical
behaviors arise depending on the ratio of the distance d
between the centers of the disks to the disk radius a. This
ratio d /a determines the density of the disk lattice.

FIG. 4. (a) Triangular Lorentz gas in the infinite-horizon re-
gime (4a/V'3<d) with some of the special orbits traveling
through the lattice without collisions, (b) Lorentz gas in the

finite-horizon regime (2a <d <4a/V'3), and (c¢) Lorentz gas in
the localized regime (V'3a <d <2a).

1. Infinite-horizon regime

In a low-density regime where the intercenter distance
exceeds the critical value, d > 4a /V'3, the channels of the
lattice are wide enough for an infinite number of disks to
be reachable by free flight. In this case, the point particle
can travel without any collision through the whole lattice
along special trajectories. These special trajectories
without collision exist only for velocity angles taking the
discrete values 6=0, 7 /3, 27 /3, m, 47w /3, and 57 /3 so
that they occupy a set of zero Liouville measure in phase
space. This situation is referred to as the infinite-horizon
configuration [see Fig. 4(a)] [12]. It is known that the
diffusion coefficient is infinite in this regime (D= o0 ) [12].

2. Finite-horizon regime

For smaller intercenter distances, 2a <d <4a/ \/3,
only a finite set of at most six disks can be reached in free
flight by the point particle when its velocity angle 0
varies [see Fig. 4(b)]. Therefore, the horizon of the parti-
cle is now finite. In this finite-horizon regime, the
diffusion coefficient in the lattice is known to be positive
and finite (0 <D < o0 ) [12].

3. Localized regime

When the distance between the centers is smaller than
the diameter of the disks V'3a <d <2a, the disks partial-
ly overlap so that the point particle remains forever local-
ized in closed domains delimited by three neighboring
disks [see Fig. 4(c)]. In this case, unbounded motion is no
longer possible and the diffusion coefficient vanishes
(D=0).

For d <V'3a, the disks completely overlap so that the
domain of billiard is empty and no dynamics is possible.

E. Hyperbolicity and Lyapunov exponents

The collision dynamics on the disks is defocusing,
which induces a dynamical instability of the trajectories.
This dynamical instability is characterized by the
Lyapunov exponents that are the rates of exponential
separations between a reference orbit and infinitesimally
close orbits. The dynamics is said to be hyperbolic when
each trajectory is exponentially unstable.

Since the dynamics is moreover symplectic and volume
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FIG. 5. Definition of the notation used in Eq. (2.26) for a typ-
ical trajectory and its accompanying expanding front (or horo-
cycle).

preserving in the four-dimensional phase space, the
Lyapunov exponents are (A,0,0, —A) so that their sum is
vanishing [10]. One of the Lyapunov exponents vanishes
because of the absence of exponential separation in the
direction of the flow, which is a general result for time-
continuous systems. Another Lyapunov exponent corre-
sponding to the direction perpendicular to the energy
shell vanishes because of energy conservation. The dy-
namics of the Lorentz gas is not uniformly hyperbolic be-
cause the Lyapunov exponent may vary from one orbit to
the other.

The positive Lyapunov exponent can be calculated by
considering a front of particles accompanying the refer-
ence particle and issued from the same initial position
(x,y) but with different initial velocity angles 6 [12]. Be-
cause the dynamics is defocusing, this front is expanding
(see Fig. 5). Locally on the reference orbit I',, the
front—called the unstable horocycle—is characterized
by a curvature «,(I,) or equivalently, by a radius of cur-
vature 1/k,. The curvature depends on the time ¢ of the
orbit I',. We now turn to the calculation of this curva-
ture.

1. The horocycle curvature between two collisions

Around the initial position (x,y,), the front is circular
and its radius grows linearly with time ¢ (or equivalently
with time), so that

1

K (D)=, for 0<z <l . (2.23)

Therefore, the curvature of the front diverges at the ori-
gin. At the first impact, the curvature is modified accord-

Ku(l‘l)

>|

FIG. 6. Behavior of the front (horocycle) curvature «,(T,)
versus the length of path t =L for a typical trajectory escaping
from the scatterer after four collisions.

ing to the geometry of the collision. After the ith col-
lision, the front is locally equivalent to a circle of radius
p;- During the free motion to the next collision, the ra-
dius of this circle continues to grow linearly with the
path length so that

xu(l“,)=——1—, for 0<I<l; ,

I+p, (2.24)

where ;=|r; ,—r1;| is the distance between the ith and
the (i +1)th collisions and t=Iy+I,+ -+, _;+1
We observe that the curvature of the horocycle decreases
between each collision as depicted in Fig. 6.

If the particle escapes from the scatterer in free
motion, the curvature continues to decrease to zero ac-
cording to (2.24).

2. Changes of the horocycle curvature at collisions

Differentiating the collision rule (2.10) with respect to
variations in the positions and velocities of the front par-

- ticles at the ith collision, it has been shown elsewhere

[12,13] that the front curvatures before and after the col-
lision on a disk of radius a are related by

1 — 2
__:K(u+)-__K(u )+—

Pi acosp; ’
where ¢; is the angle between the outgoing velocity of the
reference orbit and the normal at the point of impact.
Since —7/2=<¢ = +m/2, we have that cos¢ =0. Conse-
quently, the curvature increases at each collision, which
is due to the defocusing dynamics of collisions on disks.

Combining the results (2.24) and (2.25), we obtain that
the curvature of the front between the ith and (i +1)th
collisions is given by the continuous fraction [12]

(2.25)

K, (T))=
I+

(2.26)

2 1

a cosg, bt gttt
i—1

where 0<! <l;and t =Ily+1;+ -+ +1[,_+1
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3. Stretching factor and Lyapunov exponent

The local curvature (2.26) of the expanding front pro-
vides the rate of separation between the reference orbit
and nearby orbits. Accordingly, the Lyapunov exponent
per unit length of the orbit of initial condition I'y is given
by

T

— . b
x(ro)—szan—Tb_Ta fTa Kk, (T,)dt .

(2.27)
Since the integral trivially diverges at t =0, we choose
T,=1,. This choice has no consequence in the limit
Tb —> 00,

We also introduce the stretching factor of the expand-
ing front between the path lengths 7, and T}, which is
defined by

T,

Ar, 1, = expr k,(T,)dt . (2.28)
Since the curvature is piecewise of the form (2.24) the in-
tegral can be performed analytically. For T,=I,
+1,+ -+ +1;, we obtain [5]

ATH,Tb=[1+llc(¢l)lo)][1+IZC(¢27117¢1710)]

X o [(1+LC (@l -y 1)] (2.29)
where
Cldili_gy...y1p)
=—2 ! ., (230
a cosg; I+ 1
o Cldi—pli—g .. -5 1)
with
Cloplp)=—2t+-L @.31)

acos¢p, Iy~

We observe that each factor in A is greater than one so
that we can expect an exponential growth of A with i.
Therefore, if the orbit has infinitely many collisions
occurring with a finite mean free path / between col-
lisions, the Lyapunov exponent is positive. This is the
case for every trajectory of the infinite lattice when the
horizon is finite because we have that (d —2a) </, <V/3d.
Accordingly, the finite-horizon regime is strictly hyper-
bolic since all the orbits have nonvanishing Lyapunov ex-
ponents.

On the other hand, when the horizon is infinite in the
lattice configuration there exist special orbits without any
collision so that their Lyapunov exponent vanishes.
Therefore, the infinite-horizon regime is not strictly hy-
perbolic since orbits may have arbitrarily small
Lyapunov exponents. However, the average Lyapunov
exponent over the microcanonical invariant measure in a
Wigner-Seitz cell turns out to be strictly positive, as we
shall see in Sec. III.

In the open configurations of scattering type, most of
the orbits escape from the scatterer after a finite number
n of collisions. For T,=Il,+I,+ - +I,+I, the
stretching factor (2.29) grows linearly with I: A~I. Ac-
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cordingly, the Lyapunov exponent of these orbits van-
ishes like A~lim;_, ,In/ /Il =0. However, we shall see in
Sec. IV that there exist orbits that remain trapped be-
tween the disks and for which the Lyapunov exponent is
nonvanishing.

III. INFINITE LORENTZ GAS

A. The billiard and its invariant measure

As we discussed in Sec. II the periodic Lorentz gas
over a triangular lattice can be reduced to the motion of
the point particle in a single Wigner-Seitz cell with
periodic boundary conditions together with a lattice vec-
tor (2.1) changing in time by discrete jumps

r(tlattice)zrgcell)_+_mta+ntb . (3.1)

The reduced dynamics takes place in a finite phase
space. This dynamical system is known to be a Kolmo-
gorov flow on each energy shell so that the mixing and
ergodic properties are also satisfied [12]. Accordingly, al-
most every trajectory I',=(x,,y,,0,) can be used to per-
form statistical averages. The time average of an observ-
able, A4 (x,y,0), is then equal to its phase space average
[14]

T
(4 )ezfA(r)due(r)=Tliinwino ATt
which defines the equilibrium probability measure over
the energy shell corresponding to the unit velocity

(3.2)

1
—dxdydo .
@ y
The normalization constant is given by the range 27 of
velocity angles multiplied by the area available to the
particle in position space, i.e., the area of the Wigner-
Seitz cell minus the area occupied by the disk

du,(x,y,0)= (3.3)

Q=27 %dz—ﬂaz (3.4)

We remark that the ergodic procedure provided by the
time average over a single trajectory has its origin in the
finiteness of the phase space. We can use this result to
calculate numerically several characteristic quantities of
chaos in the Lorentz gas as well as the diffusion
coefficient.

B. The average Lyapunov exponent

1. Definition

Using ergodicity, the average Lyapunov exponent can
be obtained from the time average (2.27) for almost every
initial condition I'y. Defining the stretching factor over a
path length 7"=L by

T
Ap(Ty)= expfloku(rt)dt , (3.5)

the average Lyapunov exponent per unit length can be
rewritten as [9]
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X, = lim iTlnAT(ro) : (3.6)

T—
By ergodicity, this time average is equivalent to an aver-
age (3.2) over the equilibrium measure (3.3)

T — hm L = lim L
A= lim de,ue(I‘)InAT(l") lim —(InAr), .
3.7)

However, there is a difference between the ways the for-
mulas (3.6) and (3.7) are applied. In Eq. (3.6), a single tra-
jectory is considered while in Eq. (3.7) the average is car-
ried out over an ensemble of trajectories. The initial con-
ditions may be chosen as successive points of a very long
trajectory in order to have the initial conditions distribut-
ed according to the equilibrium measure.

2. Properties

We calculated numerically the average Lyapunov ex-
ponent for several intercenter distances d, as depicted in
Fig. 7. As we mentioned earlier the average Lyapunov

(a)
3L ]
r 2l J
1L o ]
L square —
0 [ —— L 1 o
1 2 4 3 4 5
d
C
10° S — S—
10 [ %k (b) é
10° L \ 4
i 2
107! . Ad“/Ind
102 1
10° £ .
10% [ X hexagon p
E o+ square
10° L il . ]
1 A 10 100 1000
d d

c

FIG. 7. (a) Average Lyapunov exponent versus the inter-
center distance d for the dynamics in the Wigner-Seitz cell of
the infinite Lorentz gas on triangular and square lattices. (b)
Plot of A,d?/Ind versus d showing the dependency (3.10). The
critical value of the transition from finite to infinite horizon,
d=d,=4a/V3=2.3094q, is marked to show the absence of
consequence in the behavior of the Lyapunov exponent.
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exponent is positive in the Lorentz gas even when the
horizon becomes infinite at d =4a/V'3=2.3094a. At
this critical value, there is no apparent discontinuity in
the behavior of the Lyapunov exponent as a function of
the intercenter distance d.

At larger values of d, the average Lyapunov exponent
decreases monotonically to zero [see Fig. 7(a)]. This
behavior has been explained as follows. When the disks
are separated by a large distance d, the Lorentz gas is a
dilute gas. The mean free path between collisions is
determined by the density of disk, n ~d ~2, and by the
cross section, s =2a, according to

(3.8)

Over i collisions, the stretching factor (2.29) behaves
essentially like
i

2
4 , (3.9)

a2

I
Ap~ |— | ~
T a

for large interdisk separations, I >>a. On average, there
are about i ~ L /T~aL /d? collisions over the path length
T =L. Introducing these results in the definition (3.6),
the average Lyapunov exponent behaves like [15,16]

= a d

ke"’?ln; . (3.10)
Figure 7(b) shows that A,d?/Ind is approximately con-
stant as expected from (3.10).

For comparison, we also calculated the average
Lyapunov exponent for the Lorentz gas in a square lat-
tice. In this case, the Wigner-Seitz cell is a square. The
reduced billiard is also known as the Sinai billiard [12].
In a square lattice, the horizon is always infinite so that
diffusion is either absent or anomalous. However, this
example shows that the average Lyapunov exponent may
have a well-defined value even when the diffusion
coefficient is infinite. This result corroborates the previ-
ous observation on the triangular lattice that the transi-
tion from the finite to the infinite horizon does not induce
a change in the behavior of the average Lyapunov ex-
ponent. Figure 7 also shows that the average Lyapunov
exponent is smaller for the square lattice than for the tri-
angular lattice.

C. The pressure function and related quantities

1. Generalities

Bowen and Ruelle have introduced the pressure func-
tion into the thermodynamic formalism of dynamical sys-
tems [17-19]. The pressure function is a generalization
of the Kolmogorov-Sinai entropy per unit time and was
named pressure due to the analogy of its definition with
the standard pressure of equilibrium statistical mechan-
ics. The different characteristics quantities of chaos can
be derived from the pressure function, as we show below.

In the case of a closed billiard in which averages can be
calculated according to (3.2), we may define a pressure
function according to
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. 1 _
P,(B)= lim — In(A}7),

. 1 _
= lim FIDId#e(F)[AT(F)]I 5, (3.11)

T—o
where 3 is an exponent taking real values. Numerically,
the average is carried out by integrating a very long tra-
jectory, by cutting the trajectory into N segments of
length T, by calculating AIT'B for each segment, and by
averaging to get

M=
>
3
2
T
=

(AB), = (3.12)

1
N

j=1
For a very long trajectory, the points, {T';} j-V: 1» which are
the initial conditions of the N segments, are distributed
according to the ergodic equilibrium measure (3.3) and
(3.4). Therefore, the above procedure satisfies the second
equality in the definition (3.11).

The pressure function is known [17,18] to be a convex
function that is monotonically decreasing or constant but
never increasing. Moreover, in closed systems without
escape, as is the case here for the reduced dynamics in a
Wigner-Seitz cell, the pressure function vanishes when

B=1,

P,(1)=0 (closed systems) . (3.13)

This result follows from the normalization of the proba-
bility measure, (1),=1.

A general result obtained by Bowen and Ruelle [19]
which holds for hyperbolic systems is that the probability
measure of a ball,

B(Tye, T)={Tydist(I";,",)<¢, VtE[0,T]} , (3.14)
decreases exponentially with 7" as the inverse stretching
factor of the reference orbit I,

y‘e(-B(I‘O’E’ T))~

(closed systems) . (3.15)

1
Ap(Ty)
The ball (3.14) contains all the initial conditions I'j, such
that the orbit issued from this initial condition remains
within a distance € of the reference orbit during the time
T. “dist” denotes a distance defined in phase space. Us-
ing this property, the measure-theoretic pressure function
we define here can be related to the topological pressure
function defined by Bowen and Ruelle [17-19]. When
the exponent f3 is set equal to zero, Eq. (3.12) becomes an
average of the stretching factor, (Ay),, in which A,
compensates the inverse stretching factor (3.15) coming
from the measure so that the pressure function estab-
lished a counting of the orbits of the system. In this case,
it is known that the pressure is equal to the topological
entropy per unit length in the system [20,21]

By =P,(0) . (3.16)

top

The average Lyapunov exponent can be obtained from
the pressure function by taking a derivative with respect
to the exponent S3,

5339

_ . 1 <A%"—BlnAT>e
P,(B)=— lim ———_—<A1T_B>e

T I
Setting B=1 and using the normalization of the measure
(1),=1, we recover the definition (3.7) of the average
Lyapunov exponent so that [21]

d
B (3.17)

x,=—Pl1). (3.18)

According to Pesin’s formula, which holds here because
the system is hyperbolic and closed (no escape of parti-
cles), the KS entropy per unit length is equal to the aver-
age Lyapunov exponent [20-22],

A.=hgs(u,) (closed systems) . (3.19)

2. The finite-horizon regime

We calculated the pressure function using the
definition (3.11) and (3.12). Figure 8 shows the pressure
function versus the exponent [ for d =2.15a and
d =2.2a which are two configurations with a finite hor-
izon since d <4a/V'3=2.3094a. We observe that the
pressure function is here nearly linear with a very small
convexity that can be approximated by a Taylor expan-
sion of the pressure around =1,

P, (B)=—A (B—1)+LP/(1)(B—1)*+0((B—1)?)
(3.20)

(closed systems) ,

P(B)

P(B)

-5 PO " 1 .
-1 0 1 2

p
FIG. 8. Pressure function of the triangular infinite Lorentz
gas calculated with (3.11) and (3.12) in the case of a finite hor-
izon for (a) d =2.15a and (b) d =2.2a. The dashed line is a

straight line tangent to the pressure at S=1, the slope of which
is —A,.
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TABLE 1. Characteristic quantities for closed triangular
Lorentz gas.

d/a Xezhxs([l—e) ngPe”(l) hwp
2.01 3.56 0.54 3.68
2.15 2.34 0.71 2.38
2.2 2.09 0.67 2.14
3 0.857 0.90
7.5 0.170 0.19
10 0.107 0.12
where o0(z). denotes a quantity such that

lim,_,40(z)/z =0 [23]. The expansion (3.20) is based on
the assumption that the second derivative of the pressure
function is at least continuous [P, (B)€E €?].

The second derivative of the pressure can be interpret-
ed as the variance o2 of the Lyapunov exponents since

Pe"(l)=T1im iT((lnAT—< InA;), ), =0k, (3.21)

where InA, can be considered as a Lyapunov exponent
over a time 7.

The different characteristic quantities of chaos are
given in Table I for different intercenter distances d.

3. The infinite-horizon regime

When the horizon becomes infinite a new feature ap-
pears in the pressure function which is due to the special
orbits with zero Lyapunov exponent we mentioned in
Sec. IID 1. In this regime, a point particle may travel
without collision over a distance L if its velocity is direct-
ed in the small angles of order L ~! in the channels of the
lattice. Therefore, the probability for the particle to have
no collision over the time T =L decreases like L ~!. Ac-
cordingly, the average (3.12) contains a few terms for
which Ar=1. Figure 9 shows a histogram of the values
of (1/T)InA; obtained from an ensemble of 5000 trajec-
tories of time T =10000 when d =10a. Although small,
the number of trajectories with InA ;=0 is nevertheless
present, which has important consequences on the pres-
sure function.

density

10‘“i ya ]
¥

Llal

0 0.05 014 0.15
A <>

FIG. 9. Histogram of the Lyapunov exponents of the tri-
angular infinite Lorentz gas d =10a and a =1, calculated as
A=(1/T)InA; with T=10000 for 5000 trajectories.
(1) =2X,=0.107 is the value of the average Lyapunov exponent.
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Indeed, when 8> 1, the sum (3.12) is dominated by the
few terms equal to one which are due to the vanishing
Lyapunov exponents. The other terms decrease to zero
as T— . Accordingly, the pressure function vanishes
for > 1. On the other hand, for < 1, the sum is dom-
inated by the terms associated with unstable orbits with
nonvanishing Lyapunov exponents so that the pressure
function is then nontrivial. A consequence of the nonhy-
perbolicity when the horizon is infinite is, therefore, the
appearance of a discontinuity in the derivative of the
pressure function (see Fig. 10). This discontinuity can be
interpreted as a phase transition [20,21,24]. It is known
[17,18] that there exists an invariant measure g associat-
ed with each value of 3, which is of the form

P(B)

L

-0.2

FIG. 10. Pressure function of the triangular infinite Lorentz
gas calculated with (3.11) and (3.12) for (a) d =3a, (b) d =7.5a,
and (c) d =10a. The dashed line is a straight line tangent to the

pressure at B=1, the slope of which is —A,.
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1

(B(Iy,e,T))x ————
e 2 o [A(To) P

(closed systems) ,  (3.22)

instead of (3.15). In the particular case where =1, the
invariant measure pug—;=p, coincides with the equilibri-
um measure (3.3). For the values B<1, the invariant
measure (g is distributed over the random and unstable
trajectories of the system. Accordingly, these states ug
correspond to a disordered or chaotic phase. On the oth-
er hand, for 8> 1, the invariant measure is distributed
only over the special regular orbits with zero Lyapunov
exponents, so that these states correspond to an ordered
phase.

Because of the discontinuity, the average Lyapunov ex-
ponent is now given by the left-hand derivative of the
pressure at S=1 in Eq. (3.18). The right-hand derivative
gives the average Lyapunov exponent in the ordered
phase, which is vanishing. Since the pressure function is
no longer regular at S=1 when the horizon is infinite, we
remark that the expansion (3.20) is no longer applicable
as such.

In the following, we shall restrict ourselves to the
finite-horizon case for which diffusion is normal with a
finite diffusion coefficient.

D. The diffusion coefficient

The diffusion coefficient is defined by Einstein’s formu-
la according to [25]

D= lim 11?< (r(tlattice)_rgattice))2) . (323)

t— 0

Since the system is mixing, the average can be taken over
any smooth enough density of initial conditions. In the
limit z — oo, the nonequilibrium average is equivalent to
the equilibrium average for initial conditions in the
Wigner-Seitz cell. Using the reduction (3.1) of the dy-
namics to the Wigner-Seitz cell, the diffusion coefficient
becomes

D= lim i((mta+n,b—i—r(t“")—rgcemz)e , (3.24)

t—>o0 4t

where the average is taken over the equilibrium measure
(3.3). In the triangular lattice, diffusion is isotropic so
that the diffusion coefficient can be calculated indepen-
dently from the x or y projection of the position vector r,.
Using the Green-Kubo (GK) formula [26], the diffusion
coefficient can be expressed in terms of the velocity auto-
correlation of the particle

'@GK:%fO (v,vg),dt . (3.25)
This method has been used by Machta and Zwanzig [27]
to calculate numerically the diffusion coefficient of the
triangular Lorentz gas as a function of the intercenter
distance d.

Moreover, these authors have obtained an approxima-
tion for the diffusion coefficient in the limit of small gaps
(d —2a) between the disks. In this case, the particle
spends a long time bouncing in the triangular cells of the
lattice with rare transitions from cell to cell. According-

TABLE II. Diffusion coefficients of the triangular Lorentz
gas versus the intercenter distance d /a in the first column. The
second column gives the average Lyapunov exponent A, calcu-
lated with (3.6). The third column gives the theoretical diffusion
coefficient Dy, of Machta and Zwanzig [Eq. (3.26)]. The fourth
column gives the numerical values Dgx of Machta and Zwanzig
obtained with the Green-Kubo formula (3.25). The fifth column
gives the diffusion coefficient D, we calculated using the first-
passage method and Egs. (4.18) and (4.19). The sixth column
gives the diffusion coefficient obtained from the Hausdorff di-
mension of the fractal repeller thanks to our new formula (4.58).

D fractal

d /a ke ‘@th ‘@GK i)esc

2.002 0.00387 0.0036+0.0003

2.01 3.56 0.0180 0.017+0.002 0.0169+0.0009

2.04 0.0573  0.052+0.002

2.05 3.14 0.0672 0.058510.0004

2.06 0.0760 0.069

2.1 2.66 0.104 0.10£0.01 0.096+0.007 0.09
2.15  2.34 0.128 0.14 0.134+0.004 0.13
22 2.09 0.147 0.18 0.161+0.004 0.17
2.25 1.92 0.162 0.205+0.003  0.21
2.3 1.76 0.175 0.25+0.01 0.25+0.01 0.25

>2.3094 )

ly, the transition rate can be calculated assuming a
quasiequilibrium in each triangular cell, yielding [27]

d2
m(d*V3—2ma?)

which vanishes as d —2a as Dy, ~=1.97v(d —2a). How-
ever, this formula does not apply when the interdisk gaps
are large, in particular, near the transition between the
finite and infinite horizons at d =4a / V3.

For d >4a/V'3, the diffusion coefficient is infinite as
we already mentioned [12]. The values of the diffusion
coefficient obtained by Machta and Zwanzig [27] with
(3.25) and (3.26) are reported in Table II for comparison
with our results on the open Lorentz gas in Sec. IV.

Dy=v (d —2a), (3.26)

IV. OPEN LORENTZ GAS

A. Escape-time function and escape rate

As described in Sec. II, we consider the scattering of a
point particle on a set of regularly ordered hard disks
forming a hexagon.

Since the system is open, particles escape to infinity.
The trajectories I', issued from the initial conditions have
a diffusive motion in the scatterer until the border of the
scatterer is reached (see Fig. 11). Thereafter, the trajecto-
ry escapes in free motion to infinity. Let us recall that
the border of the scatterer is delimited by the curve Cp.

Although most trajectories escape from the scatterer,
there exist trajectories that remain trapped inside the
scatterer. They play a very important role because they
control the escape dynamics. For instance, the periodic
orbits bouncing on the line between the centers of two
nearby disks remain trapped in the scatterer for t -+ .
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FIG. 11. Trajectory of a particle escaping after 366 collisions
from a hexagonal scatterer of Lorentz type formed by two shells
of disks with R =2d, d =2.15a, and @ =2. The initial condition
is located on the central disk at an angle a=1/4.

Beside the periodic orbits, there also exist nonperiodic or-
bits that are forever trapped in the scatterer as soon as
the scatterer contains three disks [9]. The trapped orbits
are all unstable with strictly positive Lyapunov exponents
and they form a fractal set of zero Lebesgue measure in
phase space. Each trapped orbit has a stable and an un-
stable manifold that are associated with the negative and
positive Lyapunov exponents. Time-reversal symmetry
maps the stable manifolds onto the unstable ones. Be-
cause the trapped orbits are unstable, the set of trapped
orbits is repelling and is accordingly called the fractal re-
peller F; [4,9,20,28]. The existence of this fractal repell-
er is typical of chaotic-scattering processes. Many recent
works have been devoted to chaotic scattering in small
systems [29]. Here, we investigate the consequences of
chaotic scattering when the system becomes spatially ex-
tended.

Evidence for the fractal repeller is provided by the
escape-time function [9]. For each trajectory of initial
condition I'y=(xg,y0,0;), we can calculate the time at
which the border Cy is crossed, which we call the escape
time ‘TCR(FO). The escape-time function is finite for al-

most all trajectories since they escape in a finite time.
However, the escape time is infinite for trajectories that
are trapped by the fractal repeller. Trapping occurs if
the initial condition belongs to an indefinitely trapped or-
bit or to its stable manifold. The escape-time function
has, therefore, singularities on the fractal set formed by
the closure of the stable manifolds of the fractal repeller:
W (Fg)).

Figure 12 shows the escape-time function in the open
Lorentz gas for which R =2d and d =2.15a. We see that
the singularities occupy a very important fraction of ini-
tial conditions in spite of the fact that they are of zero
Lebesgue measure. This phenomenon is due to the fact
that the Hausdorff dimension of the fractal set is close to
one. This observation is fundamental for the following
considerations. The deterministic character of the escape
process is hidden in the existence of the windows of con-
tinuity in the escape-time function where the function is
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FIG. 12. Escape-time function for the scatterer R =2d,
d=2.15a, a=1, for initial conditions a=w/4 and
¢=0—a=m/2—mu X 107'°, showing the intervals of continui-
ty that form the signature of the deterministic dynamics on
these extremely small scales: (a) u €[0,100], (b) u €[0,10], (c)
u€[3,4], (d) u€[3.1,3.2], and (e) u €[3.13,3.14]. The com-
parison between the different intervals lets the scaling behavior
appear.
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regular in some intervals of initial conditions. For these
initial conditions, the trajectories follow nearby paths
that bounce on the same disks and exit through the same
two disks. However, we observe that the widths of these
windows of continuity are extremely small, which re-
stricts considerably the range of deterministic considera-
tions.

The escape dynamics can be further characterized by
statistical quantities. Let us consider a gedanken experi-
ment where a set of N, initial conditions, {I'y’}, is
chosen inside the scatterer according to an initial mea-
sure v,

1 W
dvy(l)= lim —— 3 §(F— ry)dr .

0—»00 0]_1

4.1)

The number of particles N remaining inside the scatter-
er decreases monotonically with time 7. The particles
that escape after a predetermined time T belong to the set
of initial conditions for which the escape time is larger
than T:

Yr(T)={ToE€Cg:T < T, ([y)}= ﬂ D(Cg),

<t<T
(4.2)

where ®' denotes the mapping induced by the flow over a
time ¢ in phase space. In the long-time limit, this set only
contains the closure of the stable manifolds of the fractal
repeller which are limited to Cg:

TliT Yr(T)=cl(W (Fr)NCy . 4.3)
The population decay of the initial ensemble v is, there-
fore, given by

. Nr
lim —==vo(Yp(T))= fYR p@Vo(To) - (4.4)

No— I¥g
We note that the limit Ny— o is essential to define a
smooth function of time over 0<T <+ o since Ny
shows large statistical fluctuations when N; <10 and
drops to zero after a finite time.

The decay curve (4.4) may be exponential or slower
than exponential in general systems [9]. Since the limit
set (4.3) is a fractal with a zero v, measure, the decay
curve vanishes as T— + . We expect that the decay is
exponential because all the trapped orbits are exponen-
tially unstable. An escape rate is, therefore, defined ac-
cording to [10]

y= lim iy (YR(D) . (4.5)

T—+ o
The escape rate is a further characteristic quantity of the
system in the case of open systems. We also expected
that the escape rate is independent of the initial measure
v, at the condition that this later is smooth enough.

B. The nonequilibrium invariant measure

The assumed independency of the escape rate (4.5) is
very important for the following considerations and con-

stitutes the analog of the ergodic hypothesis in the case of
open systems.

Our purpose now is to construct an invariant measure
for open systems. Contrary to the closed systems of Sec.
II1, we are not allowed to take an arbitrary initial condi-
tion, to run the trajectory for a long time, and to take
time averages. Indeed, almost all the trajectories escape
from the scatterer so that the above procedure would give
useless results. Therefore, we cannot define the average
of an observable A4 by standard ergodicity using the time
average (3.2). On the contrary, we expect that the mean-
ingful information is contained in the trajectories that are
forever trapped inside the scatterer. Accordingly, we
have to construct an invariant measure whose support is
the fractal repeller Fg.

For scattering systems, we define the average of an ob-
servable A4 (I') which is smooth enough and whose sup-
port is contained inside Cy by selecting the orbits of the
initial ensemble v, that remain inside the scatterer over
the time T and by taking the time average of 4 over the
time 7,

1

Nro
Ul A)= lim lim —— 2 ?f

A(DTE)dt
T—+x N — 0 N 0 )

(4.6)

In Eq. (4.6), the sum extends over the N particles {T'{}
of the statistical ensemble v, which are still in the scatter-
er at time 7. This averaging can be rewritten in terms of
the initial measure v, as

)= [ 4(T) lim LIy (@)

A -
el T e Tf A X (1)) X

Xdvy(®~'T), (4.7)

where I(T") denotes the indicator function of the set &
in phase space. In this way, we obtain the nonequilibri-
um invariant probability measure

1
dl'l'ne F) TEr—If—loo—f

VO(TR(T )
Xdvo(®~'T) , (4.8)

Iy (n(®@7T)

which has the fractal repeller F; as support. This mea-
sure is normalized to one because of the denominator.
This measure amounts to carry out a statistics on the set
of N initial conditions which are still in the scatterer Cy
at time 7. In the limits Ny— o and T— + o, these
transient trajectories approach closer and closer to the
fractal repeller Fr. As a consequence, the probability
measure is invariant on the repeller in the limit 77— + .

We note that this invariant measure becomes identical
with the microcanonical equilibrium invariant measure
(3.3) (after an appropriate renormalization) in the limit
where the scatterer has an infinite extension and becomes
closed. Thanks to the measure (4.6)—(4.8), we are able to
extend the thermodynamic formalism from bounded to
open systems and to rigorously define Lyapunov ex-
ponents, entropies, and fractal dimensions.

Let us add that the results (3.14) and (3.15) generalize
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to the nonequilibrium invariant measure defined here.
We define a ball around the initial condition I'j of a tra-
jectory whose escape time exceeds T[T(T'y)>T] as in
(3.14),

B(Tye, T)={T4dist(T},T,)<e, VtE[0,T]} . (4.9)

The measure of this ball decreases exponential with T as
the inverse stretching factor of the reference orbit I';,

)y~ exp(yT)

B(T'ye, T
:U‘ne( ( 0! € AT(F())

(open systems) , (4.10)

with the extra factor exp(y T') which is due to the normal-
ization of the probability measure u.

C. Phenomenology of the escape process

When the size R of the scatterer becomes large enough
with respect to the intercenter distance d, the motion in
the scatterer is essentially controlled by the diffusion
equation

3,f =DV3f , (4.11)

where f =f(x,y) is the density of particles around the
position (x,y). This diffusion equation holds when the
horizon of the Lorentz gas is finite so that 0<2D < . At
the border Cyp where the particles escape from the
scatterer, the density should be considered as being equal
to zero because the particles disappear from the diffusion
process by escaping to infinity. Therefore, the time evo-
lution of the particle density is obtained by solving the
diffusion equation with the absorbing boundary condition

(4.12)

We may expect an exponential decay of the probability
density, f ~ exp(—yt), where y is a decay rate. We as-
sume that the density evolves in time according to

zc exp(

n=1

fx,y;t)= — Y D@, (X)), (4.13)
where the constants ¢, are determined by the initial den-
sity. Accordingly, the decay rates y, are obtained by an

eigenvalue problem for the Helmholtz equation

(DV*+y,)p, =0, with Pnlc, =0 (4.14)
where @, are the associated eigenfunctions.
Using the scaling (x,y)—(Rx,Ry), the eigenvalue

equation (4.14) becomes

(V+x7)9, =0, with @,|c,_ =0, (4.15)
where §,(x,y)=¢,(Rx,Ry).
cay rates are then given by

2

The phenomenological de-

y | X

R (4.16)

We note that the preceding phenomenological descrip-
tion holds only in the limit of a large scatterer (R — )
and for the lowest eigenvalues in order to guarantee that

P. GASPARD AND F. BARAS S1

the corresponding wavelengths remain large with respect
to the size of the lattice cells: 27R /), >>d. Indeed, the
wavelengths of the higher eigenvalues may become short-
er than the lattice cells, in which case we expect a
discrepancy between the phenomenological description
and the actual Liouvillian dynamics. Hereafter, we shall
use the result (4.16) in its domain of validity for the
Lorentz gas, i.e., forn =1 and R — .

Equations (4.13) and (4.16) describe the escape of a sta-
tistical ensemble of N, particles out of the scatterer. At
long times (¢ — o0 ), the escape is dominated by the small-
est decay rate, y,. The number N, of particles still
present inside the scatterer at time ¢ is given in terms of
the density according to

N,=N, [ dxdy f(x,y;6)~Ngexp(—yt) . 4.17)
R

We obtain the result that the first phenomenological de-

cay rate y; gives the escape rate previously defined by

(4.5) for the scatterer Cy:

2

y=D|= | +o(R7?), 4.18)

1
R

in the limit R >>d.
For the hexagonal scatterers, the first eigenvalue is [30]

X1=2.67495, (hexagon) . (4.19)

Figure 13 gives the first eigenvalue y, for different shapes
of scatterers.

As a consequence of the previous observations, we can
determine the diffusion coefficient by this escape method,
which is alternative to the methods based on the Einstein
and Green-Kubo formulas. We refer to this method as a
first-passage method because the diffusion coefficient is
related to the statistics of the times of the first passage for
the diffusing particles [4,5].

In the ensemble v, of initial conditions we consider, the
positions of the different particles are identical and locat-
ed at the point x,=y,=asin(7/4) on the border of the
central disk of the scatterer. The initial velocity angles
are uniformly distributed in the interval —w/4
<60=3w/4. Figure 14 shows the decay of the number N,
of particles for a scatterer with R =2d and d =2.15a.
We observe without ambiguity that the decay is exponen-
tial after the usual transients, which allows us to obtain
the escape rate y with an accuracy of 1%. The escape

H@@@

Xi=m X1 = 2.67495  x1 = 2.40483

FIG. 13. The constant ), appearing in Eq. (4.18) for the
smallest eigenvalue of the problem (4.15) in the different
geometries of the absorbing boundary. For the hexagon, cf.
Ref. [30]. For the circle, x,; is given by the first zero of the
Bessel function Jy(x).



51 CHAOTIC SCATTERING AND DIFFUSION IN THE LORENTZ GAS 5345

11 T T T T
10 bl
.9 ]
4
E=
8 -
7 ]
6 . . . .
50 100 150 200 250 300

FIG. 14. InN, versus the time ¢ for a typical escape rate simu-
lation at R =2d,d =2.15a, and a =2.

rates for different scatterers of increasing sizes R /d but
fixed ratio d /a are then collected in Fig. 15 where it is
possible to determine the diffusion coefficient D=2, us-
ing (4.18) and (4.19). The diffusion coefficients D, are
obtained by extrapolation from the escape rates for sizes
varying from R =4d to R =10d. The error is mainly due
to the uncertainties in the different extrapolations taken
from the escape-rate values at pairs of odd or even values
of R/d. Repeating the numerical calculation for
different ratios d/a, we obtain finally the diffusion
coefficients in Table II and Fig. 16 where we compare the
results of our escape method with those obtained by the
Green-Kubo formula [27]. We see that the agreement is
excellent and that the accuracy of the escape method is
comparable to the accuracy of the Green-Kubo method.

D. Average Lyapunov exponent

For the open configuration, we may define the average
Lyapunov exponent over the invariant measure (4.8) ac-
cording to

0.02 |

0.01 |

R/d

FIG. 15. Escape rate versus the size R /d for d =2.15a and
a =2 (dots) and compared with the prediction of (4.18) and
(4.19) with the theoretical diffusion coefficient (3.26).

0.1

0.001 . . :
0.001 0.01 0.1 4 1

w w
c

FIG. 16. Logarithm of the diffusion coefficients versus the
logarithm of the gap size w =(d /a)—2 with a =1. The solid
line is the theoretical diffusion coefficient of Machta and Zwan-
zig (3.26). The numerical results obtained by Machta and
Zwanzig using the Green-Kubo formula are shown by circles.
The diffusion coefficients obtained in the present work with the
first-passage method are presented by crosses. The diffusion
coefficients obtained in the present work from the Lyapunov ex-
ponents and the Hausdorff codimensions are presented by
squares. The transition from finite to infinite horizon at
w, =(4/V3)—2=0.3094 is shown by the dashed line.

2= [ k,(T)dp,(T), (4.20)

which corresponds to taking the average of the loga-
rithms of the stretching factors at time T for all the N,
particles still in the scatterer at time 7,

1 1 N
= lim lim ——— 3 AT .
T—{TooNolToo TNT j§1 n T( 0)

(4.21)

Here, we adopted a different but similar average based
on the histogram of the logarithm of the stretching fac-
tors of the particles at their escape times: InA | () for
i=1,2,...,Ny. The histogram is composed of classes of
events defined according to the escape times by
t <TY<t+Atr where t =nAt, and At is an interval of
time. Each class contains a number of events given by
AN,=N,—N, ,,- The average of the logarithms of
these stretching factors in each class of the histogram is
defined by

AN

1 ! ;
( lnA‘T>(t;At)=W 3 InA(TY) .

t j=1

(4.22)

The average Lyapunov exponent is given by the following
expression [5]:

t—+oNy— o
which is statistically equivalent to Egs. (4.20) and (4.21).
In the limit  — o, Eq. (4.23) becomes independent of the
constant Az entering the definition of the histogram.
Using the same averaging procedure, we can also
define the variance of the Lyapunov exponent as
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FIG. 17. (InA), versus time t for R =2d, d =2.15a, and
a =2. The slope is the Lyapunov exponent A.

o?=lim lim %((lnAcT—( ALY ;000 (180 >

t—>woNy—

(4.24)

in analogy with (3.21).

We numerically evaluated the Lyapunov exponent for
open configurations of the Lorentz gas with Eq. (4.23).
Figure 17 shows the behavior of ( InA¢) A, as a func-
tion of time. The slope gives us the average Lyapunov
exponent A with a very good accuracy of the order of
0.1%. We observed that the dependence of the
Lyapunov exponents on the size R of the scatterer is
below the numerical error. The numerical values ob-
tained for open configurations are approximately equal to
the values of the Lyapunov exponents of the closed
Lorentz gas given in Sec. III (see Table III). These values
appear to be equal within the numerical error. This
seems to also be the case for the variances of the
Lyapunov exponent (compare Tables I and III). We note
that the small differences between the values of o2 in
Tables I and IIT may be due to differences in the methods
we used to obtain them. In Table I, we numerically
differentiated the pressure function while in Table III, we
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directly calculated the variance with (4.24). Although we
do not expect an exact equality between the values of
these quantities in the closed and open configurations, we
nevertheless expect that these quantities become equal in
the limit of large scatterers R — . This convergence is
rapid since an approximate equality already holds for
R =2d or R =3d. As a consequence, the Lyapunov ex-
ponents of the closed and open configurations have a
similar dependency on the intercenter distances d/a,
which we described in Sec. IIIB2.

E. The pressure function and the thermodynamic formalism

1. Definition

Our purpose in this subsection is to develop the ther-
modynamic formalism starting from a definition of the
pressure function in open configurations. In this way, we
can relate different quantities together and obtain the
generalized fractal dimensions with, in particular, the in-
formation and Hausdorff dimensions [20,21,31].

In order to define a pressure function that is applicable
to open systems of scattering type, we adapt the
definition (3.11) for closed systems to the new invariant
measure we define with (4.6)—(4.8) for open systems. We
proceed in analogy with the definition of the average
Lyapunov exponent (4.20) and (4.21). In this way, the
pressure function is defined by

= Em L 1-8
P(ﬁ)—TﬂlwTlnfTR(T)[AT(r)] dvy(T) , 4.25)

which corresponds to a statistics over the N, particles
still in the scatterer at time T,

1 | Mr
P(B)= i lim —In— A (TEH )8,
(B) ; ufrleolmw n ; j§=,1[ r(Ty")]

(4.26)

but with a normalization with respect to the initial num-
ber N, of particles. Equation (4.26) can be rewritten in
terms of the same normalization as in Eq. (4.21),

TABLE III. Chaotic properties of the fractal repeller in the triangular Lorentz gas for three different
scatterers. The escape rate 7, the average Lyapunov exponent A, and the Hausdorff dimension dy are
obtained by independent calculations based on (4.5), (4.23), and (4.45), respectively. The KS entropy,
the information dimension d;, and the codimensions, ¢y and c;, are derived using (4.32), (4.40), (4.43),

and (4.44), respectively.

R =2 R=3d

Quantity d=2.15a d=2.2a d=2.2a
x 2.32 2.08 2.080+0.002
o?=P"(1) 0.75 0.70 0.702+0.006
¥ 3.76 X1072+6X 107 4.4X1072 1.92X 10721074
hxs=A—y 2.28 2.04 2.061+0.002
d;=hgs/k 0.984 0.979 0.991+1073
c;=1—d, 0.016 0.021 0.009+1073
dy 0.984 0.980 0.9903
cy=1—dy 0.016 0.020 0.0097
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N
1. 1 T 11—
PB)=—y+ lim lim —In— 3 [ApT{)]' 7P
(B) 4 T_»ll’ileol_’mwT nNT j=1[ rile"] ’

(4.27)

where the escape rate ¥y now appears because of (4.5).
An equivalent definition uses the histogram method of
(4.22) and (4.23):

.1 _
=—y+ li —In{AYB) an) - .
P(B) Y tllTwN(l)lmw p n{AT P an (4.28)

2. Properties

Several properties follow from the previous definitions.
In particular, the average Lyapunov exponent is given by
minus the derivative of the pressure function at B=1 as
with (3.18) [21],

A=—P'(1). (4.29)

Taking the second derivative of the pressure with respect
to B at B=1 yields the variance (4.24) of the Lyapunov
exponents so that (3.21) holds here also,

o2=P"(1). (4.30)

However, differences with respect to closed systems
arise due to the extra term —y in Eq. (4.27). In particu-
lar, the escape rate is given here by minus the pressure
evaluated at f=1 [20,21],

y=—P(1) (open systems) . (4.31)

The pressure function is schematically represented in Fig.
18. It is a convex function that is either monotonically
decreasing or constant [17-19].

A KS entropy per unit time can be defined for the in-
variant measure by the standard procedure that considers
partitions into cells of the phase space around the repeller
[14]. The KS entropy per unit time is defined as the
supremum of the partition entropies per unit time over
all possible partitions [14]. The KS entropy per unit time
is known to be related to the difference between the aver-
age Lyapunov exponent and the escape rate

P(p)

FIG. 18. Schematic behavior of the pressure function in the
case of an open system.
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[9,10,20,21,23],

hxs(ine)=A—7y (open systems) , (4.32)

which generalizes Pesin’s formula to open systems. The
origin of this formula can be understood on the basis of
the result (4.10). According to the Shannon-Breiman
theorem [14], the KS entropy is given by the decay rate
of the measure, . (B(Ty,€,T))~ exp[ — Thgs(u,)]- In
the right-hand side of (4.10), the inverse stretching factor
decreases at a rate given by the average Lyapunov ex-
ponent, Ap([y) '~ exp(—AT). Hence, the factor
exp(yT) in Eq. (4.10) explains the presence of the escape
rate in (4.32).

F. The partial generalized fractal dimensions

In order to further characterize the fractal repeller, we
need to calculate the fractal dimensions. We consider a
Poincaré section of the flow that intersects transversally
with the repeller as shown in Fig. 19. Let us take a line
L across the stable manifolds of the fractal repeller. The
intersections of this line with the stable manifolds of the
fractal repeller is another fractal with generalized dimen-
sions taking their values in the interval 0=d, =1. These
dimensions are referred to as partial dimensions in con-
trast to the dimensions of the fractal repeller itself in the
three-dimensional phase space, which belong to the inter-
val 0= D, =3 and which are related to the partial dimen-
sions by D, =2d, +1.

The line .L can be taken as the support of the ensemble

esc

g

FIG. 19. (a) Schematic shape of the stable and unstable mani-
folds of the fractal repeller with an intersecting line L. (b)
Schematic escape-time function along the line .L of curvilinear
coordinate &.
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vy of initial conditions (4.1). The escape-time function
can be calculated on this line. Since the escape-time
function has singularities on a fractal, the set of initial
conditions for which the escape time is larger than T is
composed of many small intervals that form a covering of
the fractal repeller. The widths of the intervals of the
covering are approximately given by the inverse of the
stretching factors up to time 7,

U

. (4.33)
TANTY)

for trajectories of initial conditions {T'§’} in the initial
ensemble v,. On the other hand, using the result (4.10),
the probabilities of these intervals /; are given by

_ explyT)

,. D (4.34)
P oAy

with the normalization 3% ,p,=1.
Hasley et al. have shown how to define the generalized

fractal dimensions associated with a measure like .. In
the limit 7T— o, the partial generalized dimensions d,
are determined by the condition that the following quan-
tity must remain of the order of one [31],

M pf

> a-nd " 1 forM—> o ,

i=1] a

(4.35)
i
where M is the number of intervals in the covering of the

fractal. The left-hand side of (4.35) can be rewritten as a
statistical average over the measure p,,,

1

M o pf < pf~ >

) = . (4.36)
i§1pl li(q—l)dq li(q—ndq
Introducing the results (4.33) and (4.34) in Egs. (4.35) and
(4.36), the generalized dimensions must satisfy

—1)Xd, —1)
q )(

expl(q —l)rT](Afﬁ 1, (437

t;At)tH:
where we adopted the histogram method of average as in
(4.28). Using the relation (4.28) to the pressure, we ob-
tain the result that the generalized dimensions are given
as the roots of the following equations [20,21]:

P(g+(1—gq)d,)=—qy . (4.38)

When g =0, the generalized dimension is equal to the
Hausdorff dimension, d,=dy, which is given as the root
of the pressure, itself [20,21],

P(dy)=0. (4.39)

Since the escape rate is nonvanishing in open systems, the
Hausdorff dimension is smaller than unity so that the re-
peller does not completely fill the phase space as already
anticipated. When the scatterer becomes very large, the
escape rate vanishes according to (4.18) so that Hausdorff
dimension approaches the unit value in this limit R — «.
Before elaborating on this result, let us mention other
useful results.

The information dimension is given when g =1,
d;=d,. Differentiating (4.38) with respect to g and set-
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ting ¢ =1, Young’s formula is obtained [32]:

_PA) oy _Ixs
P'(1) A A
where we used (4.32). Accordingly, the information di-
mension is directly related to the KS entropy and the

average Lyapunov exponent. Let us also mention the in-
equality [31],

d,<dy ,

d;=1

, (4.40)

(4.41)

coming from the convexity of the pressure function. The
f(a) spectrum [31] can also be derived by a Legendre
transform of the generalized dimension d, [20,21]. Since
the pressure function is slightly convex when the horizon
of the Lorentz gas is finite we expect a nontrivial f(a)
function so that the repeller is a multifractal. However,
the pressure function is so close to a straight line that the
multifractal character is very small and the repeller is
very close to a uniform fractal. For these reasons, the
difference between the information and the Hausdorff di-
mension should be small also.

Because the partial generalized dimensions are close to
the value one when the scatterer is large, it is convenient
to introduce the codimensions [5] that are the defects of
the partial dimensions with respect to one,

¢, =1—d, . (4.42)

In particular, we have the Hausdorff and the information
codimensions

(4.43)
(4.44)

cg=1—dy,
CI:]——dI .

The codimensions also belong to the interval, 0=c, =1.

G. The Maryland algorithm for the Hausdorff codimension

The Hausdorff codimension can be obtained using the
following numerical algorithm developed by the group of
Maryland [33]. An ensemble of pairs of initial conditions
separated by € is considered along the line of support of
v, (see Fig. 19). The pair is said to be uncertain if there is
a singularity of the escape-time function between both in-
itial conditions, i.e., if the corresponding trajectories fol-
low paths that differ by the successive impacts on the
disks. If we associate to each trajectory a symbolic se-
quence, wyw;. . .0,, which gives the labels of the disks on
which the successive collisions occur, the pair is certain if
the symbolic sequences corresponding to both initial con-
ditions are identical. When the pair is certain, they be-
long to an interval of continuity of the escape-time func-
tion where they are not separated by a singularity (see
Fig. 19). On the other hand, the symbolic sequences are
different when the pair is uncertain. The fraction f(g) of
uncertain pairs in the initial ensemble v, is known to
behave like

Fle)~e™ .

A derivation of this result can be found elsewhere [33,34].
We used this algorithm in order to obtain an estima-

(4.45)
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tion of a fractal dimension that would be independent of
the escape rate and of the Lyapunov exponent. To apply
the Maryland algorithm, we need to integrate two nearby
trajectories and to comPare their properties. However, if
both trajectories, (r;,vi*)) and (r},v{*¥)), are integrated
by the method described in Sec. IIB, we face the
difficulty that the differences between their coordinates
cannot be smaller than the rounding error of the comput-
er used, namely &£>10"!% in simple precision and
£>1073% in double precision on a Cray computer. This
restriction would prevent one from determining the
Hausdorff dimension of large scatterers as seen below.

To avoid this restriction, we simultaneously integrate
the reference trajectory (r;,vi¥)) together with the
difference between the perturbed and the reference trajec-
tories,

(Ar;, AV =(r} —r1;, v\t —v{H)) | (4.46)

The reference trajectory is integrated by Egs.
(2.10)-(2.18). The difference (4.46) is integrated by equa-
tions given by the finite differences of Egs. (2.10)-(2.18).
In particular, the difference on the reflected velocity is

AViY'=Avi7)—2[n}-v{" ]An;

—2[n}-Av{In; —2[An;-v{']n, . (4.47)

The difference in the time of flight between both col-
lisions is

(B/+B,)AB,—AC,

Alt; oy —t,)=—AB,— ,  (4.48)
vBilz_Ci’+VBi2_Ci
with
ABi '—‘V§-+)V'Ari +AV£+)'(I', _rc) ’
(4.49)

AC;=(r;+r;—2r.)-Ar; ,

and where we supposed a velocity of unit magnitude,
A;=1. The difference in the new positions at the next
collision is given by

Ar;  =VSVA(L o ) AV (g L — )+ Ar . (4.50)

The differences in the normal vectors at the points of im-
pact and in the incident velocities are obtained as

1
Ani+1_;Afi+1 ’

- (+) (4.51)
Av; 1=Av;" .

In this way, both trajectories of the pair can be calculated
by recurrence. The integration of Eqs. (4.47)-(4.51) has
to be stopped as soon as the reference and the perturbed
trajectories have collisions on different disks, i.e., as soon
as one of the square roots in the denominator of Eq.
(4.48) becomes undefined.

In the present work, the differences on the initial con-
ditions are taken as
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Arg=a( cos(ay+e)— cos(ay),sin(ay+e)—sin(a,))

£

—sin
2

. €
=2asin ay+ , COS a0+—2—

N |m

Avit'=0, (4.52)

where a, varies between 0 and 7 /6.

This method allows us to reach the value £=~10"3%,
which is the minimum decimal power available on stan-
dard FORTRAN compilers. Since the dynamics is unsta-
ble, the difference (Ar,-,Avf-i)) is expected to grow so that
the exponent does not decrease below 1073®. In this
way, the Hausdorff dimension can be obtained for large
scatterers where cy is very small.

H. The diffusion coefficient in terms
of the Hausdorff codimension

We are now in position to relate the diffusion
coefficient to the quantities characterizing chaotic
scattering.

In a previous work, Gaspard and Nicolis [4] have com-
bined the results (4.18) and (4.32) to obtain the formula

D= lim

R— o

(4.53)

R 2
- ] [X(gR)_th(gR)] ’
X1

where the averages are taken over the invariant measure
(4.6)—(4.8) defined on the fractal repeller Fz. Equation
(4.53) can be expressed in terms of the information codi-
mension using Young’s formula (4.40),

2

D= lim MFp)e (Fr) .

R— o

1

(4.54)

Now, we would like to obtain another formula similar
to (4.54) but where the Hausdorff codimension appears
instead of the information codimension. We assume that
the horizon of the Lorentz gas is finite so that the pres-
sure function does not present a phase transition in the
closed configuration limit R — 0. As in (3.20), we as-
sume that the second derivative of the pressure function
is continuous at 8=1 to obtain

P(B)=—y—MB—1)+L1P"(1)(B—1)*

+0[(B—1)?] (open systems) (4.55)
instead of (3.20). Using (4.39) and (4.43), we obtain
» 2 P”( 1)
cHZ-%—P (1)—27%—3 +o(y2)=c1-——2i—c}+o(c}) .
(4.56)

Using the result (4.18), we infer that both the information
and the Hausdorff codimensions have a similar leading
behavior as a function of the size R of the scatterer

2
CH _.@ Xl —2
cr ]—-— — | +o(R77).

R (4.57)

A

Taking the limit R — o, we finally obtain the diffusion
coefficient in terms of the Hausdorff codimension
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2
\@: lim X(gR)CH(gR) ’

R— o0

X1

(4.58)

which is the analog of (4.54). We may expect a similar
behavior in terms of other generalized codimensions.

1. Discussion and numerical results

The Hausdorff dimensions have been calculated using
the algorithm of the Maryland group based on the frac-
tion of uncertain pairs of orbits. As discussed earlier, the
availability of the Hausdorff dimension is based on the
possibility to resolve the escape-time function into the in-
tervals of continuity separated by the singularities (see
Fig. 12). When the size R of the scatterer increases, the
time spent by the particles in the scatterer increases in
average as t ~y ! ~R? and the stretching factors of the
individual trajectories as A ~exp(At)~exp(cR?) where ¢
is a positive constant. A simple argument shows that the
intervals of continuity are of the order of A~!. We con-
clude that the determination of the Hausdorff dimension
requires one to consider extremely small differences of
the order of e~exp(—cR?) in the formula (4.45). As a
consequence, the Hausdorff dimension becomes difficult
to determine when the size of the scatterer increases.

We applied the algorithm we proposed in Sec. IV G to
several open scatterers of the Lorentz gas. The fraction
of uncertain pairs of orbits is plotted in Fig. 20 for
d =2.2a. We observe the dramatic decrease in orbit sep-
aration that is required to reach the scaling behavior
when the size R increases. This astonishing observation
shows how fast the deterministic character of the
diffusion process disappears on minute scales as the size
of the scatterer increases. A linear regression in the scal-
ing domain where Eq. (4.45) applies provides us with a
determination of the Hausdorff codimension cy. In
Table 111, we reported the values of the different charac-
teristic quantities we calculated for a few scatterers. We
remark that the information and Hausdorff codimensions

0
R=8d
05 RrR=7
I Rr=ed
)
S
s -lr Rr=sd
o0
il
1.5
R =4d
2
-400

FIG. 20. Log-log plot of the fraction f(g) of uncertain pairs
of points versus the separation ¢ for the scatterers from R =2d
to R =8d with an interdisk distance of d =2.2a (@ =1). Note
the dramatic shift of the scaling regime towards extremely small
separations when R increases. Each point is obtained with a
statistical ensemble of 10* initial conditions.
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FIG. 21. Left-hand member of Eq. (4.58) versus d /R. The
diffusion coefficient is determined by linear extrapolation assum-
ing that the left-hand member of (4.58) behaves like
Diractar+ C/R where C is a constant. The numerical values so
obtained are reported in Table II.

are nearly equal within the numerical error.

Figure 21 shows the values of the right-hand member
of Eq. (4.58) for increasing values of the size R which
behaves like Dy, +O(R ). Accordingly, we can
determine the diffusion coefficient Dy, by linear extra-
polation in a plot of the right-hand member of (4.58)
versus R ~!. These values are reported in Table I where
we see the nice agreement with the values of the diffusion
coefficient obtained by the other methods.

V. CONCLUSIONS

In the present paper, we investigated several conse-
quences of dynamical chaos in the problem of diffusion in
the conservative Lorentz gas. We considered open
configurations of the Lorentz gas corresponding to exper-
iments of scattering type. Our assumptions are complete-
ly consistent with the Liouville theorem of classical
mechanics. We showed that the dynamics of the open
Lorentz gas has properties of chaotic scattering that we
characterize in terms of the escape rate, the Lyapunov
exponent, the KS entropy, as well as the generalized frac-
tal dimensions. On the microscopic level, the escape dy-
namics is controlled by a fractal repeller of trapped tra-
jectories that forms the support of an invariant measure.
The Liouvillian dynamics on this fractal admits a spectral
decomposition in terms of the Pollicott-Ruelle resonances
[35] that have been studied in closely related problems
elsewhere [36,37]. The escape rate appears as the leading
Pollicott-Ruelle resonance [6,8]. On the macroscopic
scales, the escape dynamics is controlled by deterministic
diffusion. By combining the microscopic and the macro-
scopic properties, we are able to relate the diffusion
coefficient to the characteristic quantities of the chaotic
and fractal repeller.

We can rephrase the previous considerations in the
language of nonequilibrium statistical mechanics. The
time scale associated with the Lyapunov exponent is the
time scale where randomization occurs. This time scale
corresponds to the kinetic time scale over which a local
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equilibrium establishes itself. On the other hand, the hy-
drodynamical modes evolve on longer macroscopic time
scales given by the inverse of the hydrodynamic rates like
the diffusion rate ¥ =Dk? where k is the wave number.
In the present work, we have studied the consequences of
chaos on these long time scales. We considered diffusion
as a scattering process in larger and larger scatterers. We
showed that the finite size scatterers already presents
kinetic irreversible properties like the escape rate. We
have provided evidence for the fractal repeller which is
the fundamental object at the origin of the kinetic prop-
erties and we calculated its Lyapunov exponent, KS en-
tropy, and fractal dimensions. It is in the limit where the
scatterer becomes large that the diffusionlike behavior
emerges from the R ~2 dependence of the escape rate.

In Sec. IV, we showed that the diffusion coefficient of
the Lorentz gas can be obtained as a property of the
scattering process of a point particle in open
configurations. On the one hand, we calculated the
diffusion coefficient in such scattering configurations by
the first-passage method, the principle of which is based
on the macroscopic phenomenology of diffusion.

On the other hand, we evaluated the diffusion
coefficient from the Lyapunov exponent and the Haus-
dorff codimension of fractal repellers of increasing sizes
according to our formula (4.58). This equation, which is
the main result of the present paper, can be rewritten in
the form
2
$=xe lim cH(gR) ’

R—> o

X1

(5.1)

in terms of the average Lyapunov exponent of the infinite
lattice configuration of the Lorentz gas, since
A, =limg_  A(Fg). When the diffusion coefficient is not
too small, the numerical values obtained with (5.1)
(Diractar in Table II) are in excellent agreement with the
values obtained by the standard methods of Green-Kubo
and of first-passage (Dgx and D, in Table II). This nu-
merical agreement provides an important support to the
chaotic-scattering theory of diffusion and to the validity
of Eq. (5.1). Let us add that Eq. (5.1) can be rigorously
proved for the multibaker model of deterministic
diffusion [6].

Our results bring a very different understanding of
diffusion. In conventional schemes, the understanding of
diffusion is limited to the behavior of the system on mac-
roscopic scales. With the chaotic-scattering theory of
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diffusion, we are able to understand that diffusion is com-
patible with a microscopic reversible dynamics that is
volume preserving. This compatibility between the mi-
croscopic and macroscopic scales is realized because of
the dynamical instability at the origin of chaos. Under
nonequilibrium conditions like in the scattering
configurations, the chaotic dynamics leads to the forma-
tion of a fractal object in phase space. The nonequilibri-
um invariant measure inherits of the fractal properties of
the repeller and of the scattering process. Our results
show the necessity of introducing such fractal and singu-
lar measures to describe the nonequilibrium properties in
contrast to equilibrium statistical mechanics where
smooth measures such as the Liouville measure are
sufficient for most applications. We believe that these
special properties of the nonequilibrium invariant mea-
sures are at the origin of the major difficulties encoun-
tered in nonequilibrium statistical mechanics since
Boltzmann’s classical works.

Dorfman and Gaspard have shown elsewhere how the
chaotic-scattering theory can be applied not only to
diffusion processes but also to other transport and
reaction-rate processes [38]. On the other hand, Tasaki
and Gaspard have proved in the multibaker model of
diffusion that the fractal character of the repeller is inti-
mately related to the fractallike and singular character of
the diffusive eigendistributions associated with the
Pollicott-Ruelle resonances of the Frobenius-Perron
operator, as well as of the nonequilibrium invariant mea-
sures corresponding to constant concentration gradients
[39]. In view of this set of consistent results, dynamical
chaos and, in particular, chaotic scattering appear to pro-
vide a fundamental understanding of irreversible proper-
ties in terms of the symplectic dynamics of trajectories.
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