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Nonlinear excitations and their energy spectra in one-dimensional bilinearly coupled spin systems
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In this paper we have analyzed the problem of quantum energy spectra with antiferromagnetic bilin-

early coupled spin chains of both integer and half-integer values. The method of analysis involved

representing the Hamiltonian in second-quantized form followed by a derivation of quantum field equa-

tions of motion. These nonlinear equations were solved semiclassically and the subsequent quantum

corrections provided criteria for the existence of gaps in the energy spectra. Our results confirm a con-

jecture of Haldane [Phys. Lett. 93A, 464 (1983); Phys. Rev. Lett. 50, 1153 (1983); J. Appl. Phys. 57,
3359 (1985)] with specific qualifications regarding the strength and next-nearest-neighbor spin-spin in-

teractions.

PACS number(s): 05.30.—d, 73.20.Mf, 71.10.+x, 75.50.Ee

I. INTRODUCTION

In 1983 Haldane [1] suggested that antiferromagnetic
quantum spin chains, where each spin is integer, have a
finite energy gap in their spectrum whereas chains made
up of half-odd-integer spins are gapless. Numerical stud-
ies were undertaken to try to confirm [2] that there was
indeed a gap for chains with spins S =1. There were,
however, at least initially, numerical convergence prob-
lems that clouded the issue and Bethe-ansatz-like ap-
proaches seemed to indicate that there might not be a gap
when the spins were integral. In this latter approach,
however, the interactions between the spins were not of
the same form as those discussed by Haldane, so possibly
like systems were not being compared. It should be men-
tioned that two decades earlier Lieb, Schultz, and Mattis
[3] had provided a rigorous proof that there was no gap
for half-odd-integer spins, but the method was shown to
fail for integer spins. Spin wave theory for the simplest
antiferromagnetic systems was developed by Anderson
[4], Ziman [5], and Kubo [6] long ago and the situation
was reviewed by Nagamiya, Yosida, and Kubo [7].

The Hamiltonian we shall use takes the standard form

II=I, g S; S;+,+J2 g S; S;+2 .

That is, only interactions between nearest and next-
nearest sites labeled i are incorporated, J& and J2 being
the corresponding coupling coefficients. We assume that
there are X spins on the chain and we apply periodic
boundary conditions at the ends, i.e., i-j is only a multiple
of K when i =j.
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Our intention in the present paper is to analyze the
Haldane gap problem from a different perspective. To
this end we shall employ recent quantum field theoretical
advances that rely heavily on nonlinear analysis. The
particular theoretical tool that will be used is called the
method of coherent structures (MCS) [9,10]. In it the
starting point is a second-quantized Hamiltonian contain-
ing both one-body and two-body terms. Subsequent cal-
culations involve Heisenberg s equation of motion fol-
lowed by a transformation to a quantum field representa-
tion. The final steps are based on a semiclassical ap-
proach where the classical component of the quantum
field satisfies an integrable equation and the quantum
component is found as a perturbation. It is important to
emphasize that a topological argument plays a significant
role in finding classical localized solutions and its quan-
turn bound states. This, therefore, introduces similarities
with the phenomenological Landau-Ginzburg (LG) mod-
el, but the level of approximation is much more reduced.
Rather than describe the method itself in great detail, we
refer the reader to Refs. [9,10] for a full exposition. The
MCS approach will become very transparent as we sys-
tematically go through all the steps in the remainder of
the paper and take the spin Hamiltonian of Eq. (1.1) as an
example to study.

To briefly summarize the differences between the stan-
dard approaches to the problem and our method, we first
of all must emphasize the nonlinear character of the
quantum field that becomes manifest as a result of spin-
spin interactions between lattice sites. A transition to a
second-quantized formalism brings out the nonlinearity
immediately and we see it in the emergence of both four-
and six-legged terms in the equivalent Hamiltonian. To
effectively deal with the problem of interactions (two- and
three-quantum exchanges) we have decided to adopt the
less popular route via quantum field equations of motion.
The reason that such an approach has so far been less fre-
quently adopted is most likely its inherent nonlinearity.
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However, we believe that nonlinearity is one of the key
elements in the question of whether or not energy gaps
exist in these spin chains. To circumvent the problems
arising when a quantum formalism is inherently non-
linear, we subsequently adopt an approximation (which
turns out to be fairly accurate) where the quantum field is
assumed to comprise a large classical part and a quantum
correction. This type of effect is commonly associated
with coherent states and quantum phenomena that have
macroscopic manifestations (e.g., superconductivity and
superfiuidity). In such cases a so-called field translation
takes place with an attendant c-number component of the
quantum field and hence a nonvanishing expectation
value of the creation and the annihilation operators.
This, of course, highlights a broken symmetry in the sys-
tem and it is clearly so in the case of antiferromagnetic
(AF) spin chains (translation symmetry emerges in the
AF phase). We are also fortunate that the classical non-
linear field equations of motion can be solved analytically.
We do so and then implement quantum corrections
through a perturbation procedure developed in field
theory mainly by Jackiw [17] and Rajaraman [21]. We
apply this procedure to both spin-integer and half-integer
cases separately since they call for different variants of
the method. It turns out that the half-integer case is not
invariant with respect to a full spin rotation at each site,
which induces persistent phase currents in the chain in-
terpolating between energetically equivalent spin
configurations. This has serious implications on the
available quantum bound states. In particular, in almost
all half-integer cases the energy gap is removed since the
classical envelope (localized solution of the field equation)
is destabilized. As a result of this observation, we derive
quantitative criteria for the existence of quantum gaps in
the energy spectra of both spin integer and half-integer
cases that are consistent with experimental results. In
addition, our results confirm Haldane's conjecture with
specific qualifications regarding the strength of nearest-
and next-nearest-neighbor spin-spin interactions. Al-
though the algebra is somewhat involved, we decided to
omit many of its details for the reader's benefit since the
approach presented here is quite different from the
remaining body of literature on the topic. Once again,
our overriding concern is with the role of nonlinearity,
which leads to the emergence of stable, localized (semi-
classical) structures within which quantum energy levels
can be developed. The former can be thought of as
effective potentials arising due to self-focusing in the sys-
tem in analogy to other examples of self-focusing within
the nonlinear Schrodinger equation hierarchy (e.g. , opti-
cal fibers).

II. SECOND QUANTIZATION OF THE HAMILTONIAN

What we wish to do, in order to use the MCS, is to ex-
press the Hamiltonian of Eq. (1.1) in second-quantized
form. We could opt to use fermion operators but, other
than the spin- —,

' case, this seems to be unduly complicated
for general half-integral spins. For example, we might
write the spin component operators on each site i as

Szi =X maim arm ~

S+,. =g VS(S+1)—m (m —1)a; a;~ (2.1)

S;=g S(S+1)—m (m +1)a,. a;~ +,~,

where the sum over m is over all the spin components
2$ + 1 in number on one site [11]. If we adopted this ap-
proach, it would become necessary to introduce a field for
each component and, furthermore, even though they
satisfy SU(2) commutation rules on site, they commute
between sites so a further transformation to other opera-
tors would become necessary to make them true fermion
operators. Hence we shall use boson operators defined by
the Holstein-Primakov [12] transformation, which is best
understood as a particular case of a coupled Schwinger
boson representation [13]. Thus we use

S„=S—b; b;, (2.2)

b; b;
S+' S '+i'' &2$ 1 b

2S
(2.3)

and

S ' S i'' V2$ bt 1
b; b;

2S
(2.4)

S; =i/2$a, .t, S'=S —a;~a; .
(2.5)

These operators overcome the problem of the square root
that we have in a Holstein-Primakov representation, but
this is at the expense of the Hamiltonian becoming non-

In Eqs. (2.2) —(2.4) S is the total spin on each site and the
z, x, and y components of spin are denoted by S„,S„;,
and S, for the spin on site i, respectively. The operators
on each site b; and b; are Bose annihilators and creators.
These operators already commute between sites and it is
not now necessary to have labels for different components
of spin, i.e., each operator is a creator or annihilator la-
beled with a site only. There are, however, disadvantages
in that the Bose operators operate in a large-dimensional
Hilbert space whereas the spin operators act only in a
(2S+1)-dimensional space. In principle, therefore, we
ought to introduce projectors so that the new operators
are confined to the smaller of the two spaces (in fact, it is
clear that when the eigenvalues of b; b; exceed 2S, the
root will become imaginary). It is usually unnecessary to
do this as at low temperatures "spin deviations" (see Ref.
[14], for example) are slight and b, b;/2S may be co.n-

sidered small. We shall therefore ignore this problem.
It should be mentioned that two other representations

could be used. The first is the coupled fermion-drone sys-
tem due to Jordan and Wigner [15], which has been dis-
cussed by Mattis [14]. Unfortunately, this would lead to
two nonlinear coupled field equations and would be un-
necessarily complicated. A second representation intro-
duces Dyson operators [16]a, (a ) so that

S;+=&2$ [1—(a, a;/2S)]a;,
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S,S, =S„S„+—,'S,S+; + —,'S+,S;=S(S+1) . (2.6)

Hermitian and the transformation nonunitary, although
the operators in Eq. (2.5) do satisfy the correct commuta-
tion rules. Thus we shall adhere to the operators in Eqs.
(2.2) —(2.4) and note that the spin operators do satisfy the
correct SU(2) commutation relations.

It may also be verified that the operators in Eqs.
(2.2)—(2.4) also satisfy

and consider the eigenvalues of n for each value of S.
From Eq. (2.2) we see that if S =

—,
' then the eigenvalues

of S„are + —,
' and —

—,
' so the eigenvalues of n are those of

S —S„., namely, n =0 or 1. Similarly, if S =1 the eigen-
values of n are 2, 1,0 whereas when S=—', they will be
3,2, 1,0. It may be shown that for any finite total spin S,
the root operator may be written, for the eigenvalues at
least, as a polynomial of order 2S. That is

1/2

Substituting the relations in Eqs. (2.2) —(2.4) in the Hamil-
tonian of Eq. (1.1) we obtain

n1—
2S

=aO+a1n +a2n + . +a2qn (2.8)

N
H =J, g (S b; b; )(—S b;+—,b;+, )

+Sb; 1—
2S

2S

1/2
bi+1bi +11—

2S i+1

b; b;~+1 1—
1/2

bi + lbi+1
2S

+ (next-nearest-neighbor interaction) . (2.7)

Note that Eq. (2.7) holds even for half-integral spins S
despite the fact that these are fermions and we have used
a bosonic second-quantized representation. The next
problem is to tackle the awkward square roots that ap-
pear in Eq. (2.7). In order to use MCS in its simplest
form we wish to retain only one-body- and two-body-like
interaction terms, i.e., two-legged or four-legged opera-
tors only, respectively, since we want to retain only the
first and simplest nonlinear term. There are at least three
ways of doing this. These are as follows.

(a) Simply expand each square root and retain only the
second term. Such a procedure seems a little naive since
one would be truncating an infinite series with little hope
of seeing how well retaining the second term would be.

(b) We could perform a so-called Maleev similarity
transformation to rationalize the square roots. It does
preserve the commutation rules and the on-site number
operators [14],but because of its nonunitary character we
will not adopt this.

(c) Suppose we denote the number operator b; b; by n

I

where the above is understood to be a relation for the ei-
genvalues of n. For example, if the total spin S =1, then

1/2

1 ——
2

3 2=1+ ——+
2 v'2 n+ —— — n

1 1

2 v'2

(2.9)

The first coefficient ao is always unity but all the
coefficients ao, pi, a2, . . . , a2& may be found from a set of
2S+ 1 linear equations, one for each eigenvalue, there be-
ing 2S+1 coefficients ao, a1, . . . , 02& to evaluate.

We shall take the coefficients appearing in Eq. (2.8) for
each spin to be those in an expansion of each root n now
being replaced, for example, in the nearest-neighbor in-
teraction by b, b,. or b;+1b;+1 as appropriate. One advan-
tage of this approach is that there is a finite number of
terms, namely, 2S+ 1, for each total spin S, so it is much
easier to see whether the remainder terms are small rela-
tive to those retained. Furthermore, we eventually have
to solve classical 6eld equations so to insist that the eigen-
values of the operators from the roots are correct is not
at all unreasonable. In Table I we list the coefficients
a1 a2 - a2s for spins S =1,—,', 1,—', , . . . , 10. The one
noticeable point to make about them is that ai for in-

tegral and half-integral spins is always negative. It is also
obvious from Table I that the coefficients ai rapidly de-
crease with increasing i, at least for small spin values, a
useful feature in itself.

Using Eq. (2.8) and substituting into the Hamiltonian
of Eq. (2.7) we find

N
H=J, g IS S(b; b;+b;—+)b;+, b; b;+, b;+,—b;)—

+(b; bb;+, b;+&+Saib; b;+&b;+&b;+i+Sa&b;+,b;+ib;+&b;+Saib; b; bb;+, +Sa&b, +ib, bb;)

+(Sa2b; b;+,b;+,b;+,b;+,b;+, +Sa2b;+, b;+,b;+,b;+,b;+,b;+Sa, b; b; b;b;+,b;+,b;+,

+Sa,b;+, b(~+,b;+, b; b;b(+Sa2b; b; b;b; b;b;+. , +Sa2b;+, b; b;b; b;b; )J

+ ( next-nearest-neighbor terms ), (2.10)

where we have written out six-legged operators explicitly.
Some of these additional terms are not negligible and
later we indicate how their e6'ect may be included. At
this point, however, we simply assume that the parameter
ai, which appears in Eq. (2.10), is an effective one. That
we can view this parameter in this way, without affecting

I

the form of the operators, becomes clear at a later stage.
Clearly the next-nearest-neighbor term may be obtained
from that for the nearest-neighbor interaction, given ex-
plicitly in Eq. (2.10) by the transformation

J,~J2, b;(b(~)~b;(b; ), b;+,(b;+, )~b, +2(b;+2) .
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TABLE I. Coefficients appearing in the expansion of root operators in Eq. (2.8).

Spin a& Q2 Q3 a4 a& a6 Q7 Q9 aio Sai

0.5 —1.0
1.0 —0.085 79
1.5 —0.275 06
2.0 —0.11779
2.5 —0.11938
3.0 —0.093 78
3.5 —0.080 36
4.0 —0.069 46
4.5 —0.061 15
5.0 —0.054 54
5.5 —0.049 19
6.0 —0.044 79
6.5 —0.041 09
7.0 —0.037 96
7.5 —0.035 27
8.0 —0.032 93
8.5 —0.030 88
9.0 —0.029 07
9.5 —0.027 46

10.0 —0.026 02
Spin a»

—0.207 11
+0.13931
—0.023 77
+0.030 97
+0.015 93
+0.015 61
+0.012 77
+0.01070
+0.008 94
+0.007 49
+0.006 29
+0.005 29
+0.004 46
+0.003 76
+0.003 17
+0.002 66
+0.002 22
+0.001 84
+0.001 51

Q&2

—0.047 75
+0.01195
—0.025 93
—0.01440
—0.01698
—0.015 25
—0.013 93
—0.012 36
—0.01078
—0.009 21
—0.007 68
—0.006 21
—0.004 79
—0.003 43
—0.002 12
—0.000 87
+0.000 35
+0.001 54

Q13

—0.004 36
+0.01071
+0.006 70
+0.011 55
+0.012 24
+0.012 94
+0.012 71
+0.011 85
+0.010 38
+0.008 37
+0.005 88
+0.002 95
—0.000 40
—0.004 13
—0.008 22
—0.012 69
—0.017 62

Q14

—0.001 94
—0.001 78
—0.005 24
—0.007 03
—0.009 06
—0.01023
—0.01045
—0.009 46
—0.007 06
—0.003 07
+0.002 67
+0.010 33
+0.020 03
+0.031 94
+0.046 25
+0.063 50

Qlg

+0.000 20
+0.001 41
+0.002 71
+0.004 57
+0.006 21
+0.007 20
+0.006 82
+0.004 30
—0.001 22
—0.01068
—0.025 09
—0.045 54
—0.073 20
—0.109 50
—0.156 76

a&6

—0.000 17
—0.000 62
—0.001 56
—0.002 74
—0.003 77
—0.003 80
—0.001 58
+0.004 63
+0.01708
+0.038 60
+0.072 64
+0.123 32
+0.195 80
+0.297 75

Ql7

+0.000 07
+0.000 32
+0.000 83
+0.001 44
+0.001 59
+0.000 02
—0.005 47
—0.018 34
—0.043 67
—0.088 48
—0.162 23
—0.277 62
—0.453 63

Q)8

—0.000 03
—0.000 15
—0.000 38
—0.000 48
+0.000 37
+0.004 11
+0.01447
+0.037 92
+0.084 77
+0.170 66
+0.318 71
+0.565 09

Ql9

+0.000 01
+0.000 06
+0.000 10
—0.000 24
—0.002 16
—0.008 58
—0.025 59
—0.064 51
—0.144 89
—0.298 96
—0.580 92

Q2p

—0.5
—0.085 79
—0.412 59
—0.235 59
—0.298 45
—0.281 33
—0.281 25
—0.277 85
—0.275 15
—0.272 70
—0.270 57
—0.268 72
—0.267 11
—0.265 71
—0.264 49
—0.263 42
—0.262 48
—0.261 64
—0.260 89
—0.260 22

5.5 0.000 00
6.0 —0.000 01
6.5 +0.00008
7.0 +0.00080
7.5 +0.00380
8.0 +0.01337
8.5 +0.03894
9.0 +0.09935
9.5 +0.22966

10.0 +0.49448

0.000 0
—0.000 02
—0.000 20
—0.001 22
—0.005 32
—0.018 46
—0.054 69
—0.144 02
—0.348 14

0.000 00
+0.000 03
+0.000 27
+0.001 56
+0.006 74
+0.023 86
+0.073 12
+0.201 67

0.000 00
—0.000 04
—0.000 32
—0.001 83
—0.008 07
—0.029 62
—0.095 18

0.000 00
+0.000 04
+0.000 35
+0.002 04
+0.009 35
+0.036 03

0.00000
—0.000 04
—0.000 36
—0.002 22
—0.01068

0.00000
+0.000 04 0.000 00
+0.000 37 —0.000 04 0.000 00
+0.002 39 —0.000 38 +0.00004 0.000 00

Realizing that, by Eq. (2.5), Bose operators on different
sites commute, we have used this to arrange the terms in
Eq. (2.10) into pairs that are obviously the Hermitian
conjugates of each other.

The next step in the analysis is to Fourier transform
the second-quantized Hamiltonian of Eq. (2.10) so that
we can directly use the methodology of the MCS and
draw physical conclusions regarding the Hamiltonian's
structure.

III. FOURIER TRANSFORMATION

We begin by Fourier transforming each annihilator
and creator to remove the site dependence. Thus we set

N

b, =N '~~ g b„exp[+i/„j ],
k=1

N
bt=N '~ g bktexp[ —iPk j],

k=1
where the angles Pz are defined by

2m.k
for k =1,2, . . . , N

(3.l)

(3.2)

and the operators bk and bk satisfy Bose commutation
rules.

Using Eq. (3.1) we see that

N
2 cos(Pq )bkbk

k=1
and similarly

(3.3)

(b; b(+2+b;+~b;) —g 2cos(2/k)bkbk .
i=1 k=1

thus the one-body terms in Eq. (2.10) become
N

S N(J&+Jz)+S g [J&[2cos(gk) —2]
k=1

(3.4)

+J2 [2 cos(2/k ) —2] I bk bk,

(3.5)
where we have made use of translation invariance to ob-
tain

N N

b, b; = g b;+,b;+, = g bkb„.
i=1 i=1 k=1

In a very similar way we can find second-quantized forms
for the two-body interactions and the truncated Hamil-
tonian becomes

(bJ b+, +b +. ,b ).
j=l

N N

g bkb&exp[ i [Pk +P&(j +1)]—]+H.c.
j=1 k, l
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H =S N(J, +J2)+2S g [J,[cos((bk) —1]+J~[cos(2/k) —1]]bktbk
k=1

N
+— g (J,cos(p„—p„)+J cos2(p„—p„)+2J Sa, [cos[2(p„—p„—p„)]+cos[2(l)) +p„—p„)]]

k), k2, k3, k4

+2JiSa i [cos('(i k 0k (i'k )+cos('(i'k +4k '(i'k ) ] )~(0k +4k 'tI k yk )bk bk bk bk

We define
I

From the commutation rules we have

cok = [Ji [cos(Pk ) —1]+J2[cos(2/k )
—1]I2S (3.7)

and denote the coeKcient of bk bk bk bk, apart from the
1 2 3 4

1/N factor, in Eq. (3.6) in the two-body term by
Qk k k . The parameter b, (p) is defined to be unity if
$=2rrn, where n is an integer or zero, and zero other-
wise.

Therefore, we have accomplished a transformation
from the original lattice type of Hamiltonian in Eq. (1.1)
to a second-quantized wave number representation in the
Hamiltonian of Eq. (3.4). The latter form, although
seemingly more complex, is much more amenable to the
subsequent analysis using the MCS. The next section
provides the remaining steps in the quantum field
theoretic investigation of this problem.

[bk bk ~ bk') — ~kk'bk

Similarly,

[bkbl bmbk+l —m~bk']—

~k', 1bk bm bk +1—m ~k', k bl bm bk +1 —m

Thus, from Eqs. (4.1)—(4.4) we have

«~tbk =+~k&k, k bk

klm0
X N I ~k', lbkbmbl+k —m

k, l, m

+~k', kbl bmbl+k —m I

(4.3)

(4 4)

(4.5)

IV. EQUATIONS OF MOTION
FOR THE QUANTUM FIELDS

Having obtained a suitable form of the Hamiltonian in
Eq. (3.6) we then calculate the equation of motion of the
particular Bose operator by using Heisenberg's equation
of motion

where we have assumed that the conservation of momen-
tum is satisfied. Both sides of Eq. (4.5) are now multi-
plied by exp( ik'x), d—ivided by &N, and summed over
k' from k'=1 to X. At the same time we define a quan-
tum field

ih'B, b„=—[H, b„] (4.1)

+ & bkbl bmbk+l m. —
klm

k, 1,

(4.2)

For simplicity of exposition we write k
&

=k, k2 = l,
k3 ~ and +k, k, k, k +k —k kl, so the Hamiltoni-

an H becomes

H =S N(J, +J2)+g a)kbkbk
k

P(x) =N ' g bkexp( —ikx),
k

(4.6)

where k is defined by k=2mk/N. We are using a one-
dimensional chain of spins so we define the field using
exp[ —ikx] as opposed to the general situation where the
exponential would be of the form exp[ —ik r]. Further-
more, k is regarded as a C number relative to bk. Equa-
tion (4.5) now becomes

N
i fir), itl=+ g b„,exp[ ik'x]—-

X kk'm
k', k, m

bkexp(+ikx) b exp( —imx) bk, +k exp[ i(k'+k —m )x]—
&N

k', 1, m

bitexp(+ilx) b exp( —imx) bit+k, exp[ i (l+k' —m )x—]

&N +N &N

Since the two-body interaction in Eq. (4.2) may be written
as

l

and as the annihilators and creators refer to bosons, we
must have efFectively

N X &klmbkbl b bk+l m-
k, 1, m

(4.8) klm ~ 1km (4.9)



NONLINEAR EXCITATIONS AND THEIR ENERGY SPECTRA. . . S323

Thus, in the second term of Eq. (4.7), using Eq. (4.9), we

may set nkk, =+Ok, k . Hence changing l to k in the
third term of Eq. (4.7), our equation of motion becomes

@2=—
[

—J,cosgp —4J2cos2$p] .
1 2m

(4.17)

N Cgk,
ibid, Q= g —bk, exp( —ik'x)

Hence, using Eqs. (4.15)—(4.17) and (4.10), our equa-
tion of motion becomes

X k'km
k', k, m

bkexp[+ikx] b exp[ i—mx]

&N &N where the coe%cients are

(4.18)

p3 —2(J, +J2 —2J2cos2$p) (4. 1 1)

In zeroth order, ~k must be expanded to quadratic devia-
tions from the critical point. The first and second deriva-
tives of cok with respect to k are

bkt+k , -exp[ i (k—'+k —m )x]
X

&N

(4.10)
The procedure now in MCS is to take only the zeroth-

order interaction terms. That is, we expand Ak I about a
critical point in reciprocal space and retain only the
zeroth-order term. We can make the specific assumption
that, at this critical point, pk =pk =p~ =pp. We make
the further assumption that Pp takes the value pp=0 for a
ferromagnetic ground state, Pp=~ for the antiferromag-
netic case, and 0(gp(m for the helicoidal structure. In
other words, we identify the ground states of the various
phases with a particular value of pk, for any k, namely,

The A's in Eq. (4.10) may therefore be taken out of
the summation and, using the definition of the quantum
field P in Eq. (4.6) and performing the summations, we
find that the interaction term gives p3g*gitj where

Pp=2S [J,(cosgp —1)+Jz(cos2$p —1)]

+Pp2S (J) slnfp+ 2 J2sln2fp)
—Sgp( J,cosgp+4J2cos2$p),

p& =2S [
—J, sinPp —2Jzsin2$p]

—2S [
—J,cosPp —4J2cos2$p] Pp,

p2 =S [ +J,cosPp+4J2cos2$p],

(4.19)

(4.20)

(4.21)

P3=2[J, +J2+4Sa, J,cosgp+4Sa, J2cos2gp] . (4.22)

Clearly Eq. (4.18) is of the nonlinear Schrodinger type
and thus can be readily analyzed in the classical approxi-
mation, which we do in Sec. V. In Eq. (4.10), if we were
to expand Qk, k to quadratic deviations from the critical
point, we would find [9] contributions of the form

ax ax
' '

ax
'

ax
L

2~
[
—J,sinpk —2Jzsin2$k ]

2
CO 27T

dk2 [
—J,cospk —

4J2cos2$k ] .

Thus,

tok =2S [pp+p, (k —kp)+p2(k —kp) ],
where

pp= J, (cosPp —1)+J2(cos2$p —1),
2K

p&
= j

—J, sinPp —2Jzsin2$p],

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

where a is a constant determined in terms of Inatrix ele-
ments of the original second-quantized Hamiltonian. In
fact, a renormalization argument [9] may be used to show
that these are the only terms we need to consider; all oth-
ers redress the ones we retain. As these describe small
deviations away from the critical point we omit con-
sideration of these terms. However, we have retained
quadratic deviations for cok since, apart from the zero or-
der contribution po and the fact, as we see later, that the
first derivative term may be removed, the quadratic term
is the first nontrivial contribution to arise from the one-
body component.

As commented earlier, below Eq. (2.10) we cannot sim-
ply drop other terms for the nearest-neighbor interaction
other than those in Eq. (2.10). To see this we examine the
six-legged terms that arise from nearest-neighbor cou-
pling:

Sa2b; b;+ib;+]b;+,b;+,b, +, +Sa2b, +,b;+,b;+,b;+,b;+,b;+Sa ib; b; b;b,-+,b;+ib;+, +Sa,b, +,b,-+,b, +,b, b;b;

+Sa2b; b; b;b; b;b;+i+Sa2b;+ib; b;b; b;b; . (4.23)

By using the commutation relations for the annihilators and creators it is obviously possible to write them in the form
b b b bbb, the standard form of a second-quantized three-body operator. However, we find that when we do this two-
body operators of the form b b bb also appear and these will contribute to those in Eq. (2.10) and also will be of the
same order of magnitude as those retained after the Fourier transformation in Eq. (3.1). The associated matrix ele-
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ments for the three-body operators remaining are at least a factor of II/N smaller so we can safely neglect them. From
Eq. (4.10) it is clear that we shall obtain additional contributions

Sa~b, b;+,b;+jb;+, +Sa2b;+, b;+)b;+,b, +Sa2b; b; b;b;+)+Sa2b;+)b; b;b;, (4.24)

the terms in a
&

being already in three-body form since annihilators and creators on different sites commute. By com-
paring Eq. (4.24) with Eq. (2.10) we see that each term or form of operator is modified by those in Eq. (4.24) by the addi-
tion of a2 to a, to form an effective a, . In fact, if we consider all other-legged operators we find that the effective a, be-
comes a &,&, where

25
a ]eg ar

r=0

and the effective two-body coefficients become

&k k k
—(~leos(ek, 4k, )+J2cos(ek 4k, )+2J2~aleffI«s[2(ek, 0k

—
0k, )]+cosl2(ek, +4k 0k )]—I

+2~1~a 1 ff'I cos(0k Wk 4k )+cos(4'k +4k 4k, )] )~(0k +4k 4k 0k )

(4.25)

(4.26)

Saz,bj b, +&b;+,b;+ib;+&b;+

+Sa2bj + $bj+ $bj +]bj+]bj+]bj

Sa )b; b; b;+)b;b;+)b;+)+Sa, b;+,b;+,b; b;+,b;b;,

(4.27a)

and three- and higher-body interactions are taken into ac-
count.

The corresponding three-body terms from Eq. (4.23)
take the form

V. CLASSICAL SOLUTION OF THE NLS

'We begin by assuming that the dominant part of the
quantum field g is classical in nature, but its quantum as-
pect can be subsequently recovered through semiclassical
approximation [17]. We first assume itj(r) to be complex
and remove the gradient term in Eq. (4.18) by changing
the independent variable to a moving coordinate system,
where

(4.27b) x ~x —(P, /fi)t (5.1)

Sa2b; b; b; b;b;b;+j+Sa2b;+]b; b; b;b;b;, (4 27c) so that the equation of motion becomes

where the contributions are from nearest-neighbor cou-
plings and have been arranged in Eq. (4.27) in Hermitian
conjugate pairs. Utilizing Eqs. (3.1), the first term of Eq.
(4.27a), for example, takes the form

Sa2+,' y y expl i ( 0k 4k 4—k- —
k, k, k '=1
k4 ks k

+4'k, +0k, +4'k, )J]

B2
i&d 0=&4+92, +934'A . (5.2)

Next, we adopt a modulus-argument form for the field g
and also introduce time dependence in the phase oscilla-
tions by writing

g(r, t)=e' '2)(r)exp[i/(r)] . (5.3)

This, when substituted into Eq. (5.2), results in two cou-
pled equations for the real and the imaginary parts, re-
spectively, giving

Xexp[i( pk pk +pk —+pk —+pk )]

Xbk bk, bk bk4bk5b (4.28)
and

(Po+Aai)9+P3vl'+P2V 9 f28(Vp) =0—

2V2) V/+2)V /=0 .

(5.4)

(5.5)
The sum over j in Eq. (4.28) is only nonvanishing when

k, +k2+k3 —k„—k5 —k6=0,
i.e., linear momentum is conserved, and produces a factor
of X. The coefticients within the summation, since the
exponentials have unit modulus, are less than or equal to
unity. Similarly the other three-body terms have net
coefficients of order [S(a2 or a 1 )/N ]N. Next-nearest-
neighbor three-body interactions may be treated in an
analogous way. Thus, by comparison with the two-body
terms, the three-body contributions are a factor of 1/X
smaller and may therefore be neglected.

It is easy to see that Eq. (5.5) can be thought of as a con-
tinuity equation since it is equivalent to

—V [n'V4]=01

7l

and it can be directly integrated to give

2) V/=CO+V XF:—j,

(5.6)

(5.7)

where Co is an arbitrary integration constant vector, F is

an arbitrary vector function, and the right-hand side of
Eq. (5.7) has been equated with a phase current density.
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This latter quantity can be defined following standard
quantum mechanical approaches as

j=—,'Im(Q*VQ —/VS*) . (5.8)
90 +99

We will see in a later section that it plays an important
role in the Haldane gap phenomenon. With this
definition and VP from Eq. (5.7) we return to Eq. (5.4) for
the field envelope g and obtain an autonomous,
effectively decoupled, differential equation in the form

tanh $a waves

(Po+&~)n+P3n'+PzV'n P2—, =o (5.9)
lk (k

Let us first deal with the question of time-dependent
oscillations. It is very easy to determine that the underly-
ing Hamiltonian density giving Eq. (5.2), from the varia-
tional principle, is the celebrated LG Hamiltonian

Ik (k

II

H« ——f dx p, lVq—l'+p, lyl'+ "'
ly

' . (5.10)

With this functional it is also a simple task to show that
both the mean-field (homogeneous) solutions to Eq. (5.9)
and the higher energy localized solutions (which will be
discussed shortly) increase their energy as co is increased.
Therefore, to obtain the lowest lying solutions we hence-
forth set co=0, meaning that stationary solutions are in-
vestigated in the first instance.

We now briefiy discuss the solutions of Eq. (5.9) taking
j=0 to begin with. This simplifies Eq. (5.9) further and
brings us to consider a stationary nonlinear Klein-
Gordon equation of the form

- 3 -d'~=
Po'9+93'9 +P2

dX
(5.11)

in one-dimensional space. It can be immediately integrat-
ed to yield

2

dt's
dX 2P2

(5.12)

where +ri, and +i)2 are the (possibly complex) roots of
the quartic polynomial

2PO
q + g +co=P(g),

P3
(5.13)

where co is an integration constant setting the energy
scale. In our case, three types of real, nonsingular solu-
tions can be readily found (see Fig. 1): (a) constant (homo-
geneous) solutions

n =+no=+( —Po/P3)'" (5.14)

g = i),sn[+&hgz(x —xo), k] (5.15)

which correspond to an antiferromagnetic ground state
since the magnitude of the order parameter g can be in-
terpreted as the sublattice magnetization; (b) elliptic waue
solutions

I, sa wav

FIG. 1. Illustration of the real nonsingular types of solutions
of Eq. (5.12): (a) constant, (b) domain walls, and (c) nonelliptic
wave.

k =il&/gz (in the limit of k ~1 we obtain the following
well-known localized solution below); and (c) a domain
mal/ in the form

g =+rt, tanh[&b, i),(x —xo ) ] (5.16)

is found with xo denoting an arbitrary integration con-
stant. It is apparent from Eq. (5.10), when the coupling
constant for the cubic term is small, that for po/p2 posi-
tive (this may happen when the gap disappears if ro is
close to zero and below 0.25), the oscillatory solutions ex-
ist and similarly for (b) when k~0 [18]. Since P3/P2 is

negative, the cubic term will have the effect of lowering
the energy of the oscillatory solutions. In fact, it is easy
to demonstrate that with the elliptic wave solutions in (b)
above, when the elliptic modulus k tends to zero we ob-
tain periodic solutions that have a higher energy than the
solitonic form when k~1. That solitonic solutions may
coexist with spin waves is very strongly supported by the
recent work of Takeno and Kawasaki [19], who used a
Dyson-Maleev transformation from spins to second-
quantized operators, a coherent state ansatz, and a time-
dependent variational principle [20] deduced equations of
motion. They showed that there were two varieties of in-
trinsic self-localized models, symmetric and antisym-
metric, below the magnon frequency band, which arose
from the nonlinearity in magnon systems in one-
dimensional Heisenberg antiferromagnets.

Turning now to the case when a nonzero current densi-
ty j is present, we solve Eq. (5.9) in one-dimensional
space and, as before, taking cu as a zero, to find the lowest
energy solutions. This equation becomes

where sn denotes a Jacobi elliptic function [18],6= —p3/2p2, and the Jacobi modulus k is given by

d g P2J'
Po'9+P3'9 +92

dX
(5.17)
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This can be readily integrated once to give

dx/
i) +ar) +p+ =R(q),

dx
(5.18)

j& jc
where a=2po/P3, P is an arbitrary integration constant,
and y = (2pz/p3) j . Equation (5.18) can be analyzed in a
way similar to Eq. (5.12) by plotting (di)/dx) as a func-
tion of q. This is shown in Fig. 2. In this analysis it is
crucial to determine the number and location of the ex-
trema of the polynomial R (i) ). Substituting y = i)
reduces the problem to the cubic equation

2y +ay —y=O

whose discriminant is proportional to

D = (y /16)( —1+a /27@ ) .

It turns out that when

(5.19)

(5.20)
j Qjc

S t ~ ~ I I t I ~ ~ ~
1

~ ~ ~ a I I a S a a a

4 poj(jc=
V&3

(5.21)

the polynomial R (il) may have up to six real roots de-
pending on the integration constant p. If, on the other
hand, j j, the cubic equation in (5.19) has only one real
solution and consequently R (i)) has only two real roots.
As illustrated in Fig. 2, the consequence is that, unlike in
the j &j, case, when j j, no nonsingular real solutions
exist. For completeness we have summarized all the real
solutions of Eq. (5.18) in Table II where the coefficients a,
b, and c denote the roots of the cubic equation (5.19).

The solutions 1a and 1b are nonsingular and oscillate
periodically via an elliptic sn function between the two

FIG. 2. Graphical analysis of the solutions to Eq. {5.18) for
{a) j (j, and (b) j j,. The numbers indicated correspond to
those in Table I.

real roots of the polynomial R (il) as indicated in Table
II. Solutions 2 and 3 are periodic and singular. Solution
4 is an algebraic singular function. Solution 5 is periodi-
cally singular, while solution 6 describes a localized soli-
tary wave in the form of a "bump. "

This completes the analysis of the classical solutions of
the field equations of motion. What remains to be done is
a semiclassical quantization, which we brieAy discuss in
Sec. VI.

TABLE II. Summary of the real solutions to Eq. (5.18) where a, b, and c denote the roots of Eq.
(5.19),y =g, and k is the Jacobi modulus of the corresponding elliptic function.

No.
Root

condition

a)b ~y)c

a&b)y~c

y~a)b&c

y~a

b, c&C

y &a =b=c

Solution

q=+[c+(b —c)sn (x/g, k)]'

'g —+ a (b —c)sn (x /g, k)—b (a —c)
(b —c)sn (x /g, k) —(a —c)

—1/2
(a —c)+csn (x/g, k)

'g —+
sn (x/g, k)

+ ( A —a)cn(x /g, k)+ {a + A )7l=+
1 —cn(x /g, k)

=[(Reb) —a] +(Imb)
1/2

4+ ax7l=

—1/2

—1/2

2/v'a —c

2/&a —c

2/&a —c

(b —c) /(a —c)

(b —c) /(a —c)

(b —c) /(a —c)

A +(Reb) —a
2A

y~a)b =c i1=+ a +(a —b)tan
~

x&(a —b)
2

1/2

1/2

c=b)y&a q= + a +(b —a)tanh' —(b —a)
2
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VI. SEMICLASSICAL QUANTIZATION VII. PHYSICAL INTERPRETATION

Let us recall that the initial field equation (5.2) was
solved by assuming that the quantum field g is predom-
inantly classical [17]. In this section we wish to examine
the consequences of implementing semiclassical quantiza-
tion carried out on the classical solutions through a linear
perturbation procedure, i.e., we take

g=g, +A, (6.1)

where iij is the quantum field, P, its real classical com-
ponent, and A the "small" quantum correction. Substi-
tuting Eq. (6.1) into Eq. (5.2) and linearizing with respect
to A gives

EA =poA+ 3p3$, A+ p2
d A

(6.2)

Note the presence of an eA'ective potential proportional
to g, as a result of a nonlinear classical envelope provid-
ing a binding potential. We will not engage in detailed
discussions here since these can be readily consulted in
monographs such as Rajaraman's book [21]. What has to
be said, however, is a qualitative description of the prob-
lem. We therefore state the results for the types of classi-
cal solution P, obtained in Sec. VI. First of all, constant
solutions obviously lead to a continuum of plane waves in
free space and no energy gaps are formed. If lt, is a
singular solution, scattering states will be formed, but
again no bound states with energy gaps arise. The third
class of solution found in Sec. V are elliptic waves in
which case the Schrodinger equation corresponding to
Eq. (6.2) becomes a Lame equation [22]. The characteris-
tic feature is that energies associated with the solutions of
this latter equation exhibit band formation. Although
gaps may exist between bands, within a given band ener-
gies are distributed continuously.

The most important result from the above analysis is in
regard to solitary wave solutions where f, is proportional
to either the hyperbolic (tanh) or the (sech) function. In
both cases the Schrodinger equation can be reduced to
the same general form where

In order to obtain the tanh solution of Eq. (5.16) we
must make sure that the asymptotic states + Po, between
which the solution interpolates and which correspond to
the nonlinear potential s minima, are physically attain-
able. This means that not only must $0 satisfy the equa-
tion of state

I 040+83 Po f040 (7.1)

but it must also be compatible with the basic physical fact
that the value of spin projection ranges from —S to +S.
Therefore, the field variable squared, i.e., gogo, must not
exceed 2S, which corresponds to a complete spin reversal
from —S to +S on a single site. We therefore conclude
that the following inequality must be satisfied if the two
discrete quantum levels within the tanh envelope are to
be of physical consequence. That is

& 2S
P3

(7.2)

V(q)

+7)0

~+25 UL
&/r

if the chain's spectrum is to have a gap. To enable the
reader to understand this we have schematically com-
pared the two situations that arise in Fig. 3.

Let us now be more specific and interpret (7.2) in terms
of our model parameters. Substituting po and p3 from
Eqs. (4.19) and (4.22), respectively, and assuming the an-
tiferromagnetic ground state, i.e., setting Po=m. , we ob-
tain the criterion

—d A
2

+ [(L —co„) L(L + 1)sech g]A —=0 (6.3)

with the independent variable g and the coefficient co, be-
ing linearly transformed for convenience. In both cases
the parameter I =2. In the language of Morse and Fesh-
bach [23] L(L+1)=u and ni„L=e u. With the—se-
parameters the bound energies are given by

mtisoliton soliton elliptic
NOV8

e=e„=u —[Q u + —,
' —( n + —,

'
) ] (6.4)

n =0, 1, . . . (Qu+ —,
' —

—,
' (6.5)

As L =2 there are only two quantum bound states [22,23]
corresponding to n = 1 and 2 separated from a continu-
um above. The picture that then emerges is that the ex-
istence of localized sech or tanh solutions is a prerequisite
for the presence of an energy gap conjectured by Haldane
[1]. What we should do then is to examine our physical
model presented in Secs. I—IV to see whether localized
solutions for g, are physically admissible. This is the ob-
jective of the next section.

bound
states

en8fgg
bands

FIG. 3. Schematic illustration of the two possibilities in Eq.
(7.1): (a) when ~itjo~ (2S a soliton state is allowed that has two
quantum bound states; (b) when ~it ~

)2S the soliton state is no
longer physically admissible and a periodic solution with a con-
tinuum of quantum states within a band replaces the soliton.
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(4 v—r )+4~ ro

2I(1—4Sa, )+ro(l+4Sa, )]
(7.3)

whel e ro =J2/J~ ~ First of all, in all the experimentally
investigated materials the value of ro is very small indeed
ro ((1 and hence the appropriate terms in Eq. (7.3) can
be ignored. Second, using the values of Sa

&
from Table I,

we And that the condition above is satisfied in the asymp-
totic limit of large spin S and on this basis we would ex-
pect the Haldane gap to be present there. Furthermore,
all the lower spin values satisfy the above criterion. In
the special case of S =1 the result of this analysis strong-
ly depends on the value of ro. It turns out that for
ro & 0.0 1 the condition is satisfied and a gap exists. This
latter result, however, has incorporated only a

&
in the in-

equality from Table I and has not included additional
components to a &,& that arise from six-legged and
higher-legged operators when the square root operators
are expanded in Eq. (2.7). When the a„s is used from
Eq. (4.25), the above condition, i.e., that when
S=1,ro)0.01, is no longer applicable and Eq. (7.3)
holds for all spin values S including S = 1. However, it is
interesting to note that even early numerical computa-
tions su@'ered from difhculties in the S =1 case, but from
many later approaches so far reported a gap for the S =1
case appears to be certain.

On the basis of our analysis so far we could not ac-
count for the diA'erence in behavior between integer and
half-integer spin cases. However, an important distinc-
tion has to be taken into account when dealing with the
half-integer cases. Here the local spin state is not invari-
ant with respect to a 2~ rotation, but results in a sign re-
versal unlike in the integer spin cases. Since a 2~ rota-
tion is not an invariant for the ground state of half-
integral spins it induces a degeneracy that has to be ac-
cominodated by the system if time-reversal symmetry is
not to be violated. Suppose the antiferromagnetic ground
state of the spin chain begins at one end with a spin-up
projection; then a completely equivalent arrangement be-
ginning on a spin-down projection is allowed to exist. In
order not to violate the time-reversal symmetry the spin
chain will oscillate in time between these two equivalent
ground states. This can be viewed as a Aow of "phase
current" backwards and forwards along the chain. The
mathematical implications on the equation of motion are
very simple to understand and this has been discussed
from a more mathematical standpoint in the second part
of Sec. V. We now use the results of Sec. V, which show
that there exists a critical value of the current j, for
which all nonsingular solutions disappear (including the
localized one). This value is given by the condition [see
Eq. (5.21)]

der the same conditions. The criterion in Eq. (7.4)
translates into

[ 4—v—r'(4r0 —1)]'
4 X 27(1 4r—o ) I 1+ro+4SQ, (ro —1)]

(7.6)

and (b) there may be a gap present (if the current density
is less than j, ) for either

v(g)

i&lc

90

which takes precedence over Eq. (7.3) for half-integer
spin chains.

In Fig. 4 we have graphically illustrated the two gener-
ic situations for half-integer spins in regard to the value
of the critical current density, i.e., (a) j (j„implying the
existence of localized envelopes with two bound states
(and hence an energy gap), and (b) j)j„where not only
the bound states disappear but the classical envelope be-
comes delocalized removing the energy gap.

We have displayed the roots of the cubic in Eq. (7.6)
for all spin values from S =

—,
' to 10 in Table III from

which it becomes clear that one root is always close to
ro =+0.25, one close to ro =+0.60 and a negative root
at ro= —0.46. For lower values of spin these values
depart from these latter values but the magnitude of the
root is always greater than

~ ro ~

=0.21. Bearing in mind
that the term in ro from Eq. (7.5) can be chosen to be pos-
itive so that for large negative values of ro the cubic is
negative and large positive values it is positive, we see
that there will always be a regime where the gap disap-
pears and this is between the negative root and the small-
est positive root. Taking as an example the asymptotic
value for Sa, of —0.25, for example, we can conclude
that (a) the gap disappears (i.e., the current exceeds its
critical value j, ) whenever

J2 J2—0.42 =r + +0.25 or )0.61

A.3
.2 4 Po

Pu' 27 -2 '
P3

(7.4)

j, =2Svr (7.5)
states

since there exists a phase shift of m between adjacent
spins in an antiferromagnetic state and since g =2S un-

FIG. 4. Illustration of the effect of phase currents on the
classical envelope and the quantum bound states within it.
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0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
~~Sa) = —0.25

+0.2476
+0.2582
+0.2526
+0.2544
+0.2536
+0.2538
+0.2538
+0.2539
+0.2539
+0.2538
+0.2539
+0.2540
+0.2540
+0.2540
+0.2540
+0.2540
+0.2540
+0.2540
+0.2540
+0.2540
+0.2542

+0.6994
+0.5303
+0.6719
+0.6083
+0.6336
+0.6270
+0.6270
+0.6256
+0.6246
+0.6237
+0.6228
+0.6220
+0.6214
+0.6208
+0.6203
+0.6199
+0.6196
+0.6192
+0.6189
+0.6186
+0.6144

—0.9331
—0.2104
—0.7187
—0.4011
—0.4997
—0.4715
—0.4714
—0.4659
—0.4616
—0.4577
—0.4543
—0.4515
—0.4489
—0.4467
—0.4448
—0.4432
—0.4417
—0.4404
—0.4392
—0.4381
—0.4226

TABLE III. Roots of Eq. (7.6) for difterent values of the
spin S.

Spin

1, but we nevertheless encourage experimental studies in
this direction.

In terms of the physical interpretation, the obtained
analytical solutions to the equation of motion fall into
three general classes. Nonsingular periodic solutions (el-
liptic waves) can be interpreted as nonlinear magnon
waves (these are, for example, solutions Nos. la and lb in
Table II). Localized but nonsingular solutions, such as
No. 6 in Table II, correspond to magnetic solitons
formed in the chain. Singular solutions are less straight-
forward to interpret since they can either arise due to the
various approximations taken in the procedure (e.g., the
continuum limit) or they describe genuine defects in the
magnetic structure of excitations. The existence of non-
linear magnons as well as magnetic solitons has been re-
cently confirmed experimentally for the very representa-
tive AF compound Ni(C2H8Nz)NO2C10& (see Ref. [26]).
Interestingly, it was commented there that the presence
of an energy gap is related to a transition associated with
a condensation effect of solitons. The latter can be limit-
ed by instanton fluctuations. These statements appear to
closely echo our findings regarding the consequence of
phase currents, which is the destruction of localized solu-
tions.

0.61 &
J)

J2=r &0 25 or & —042 .0 J)
From Table III it is easily seen that similar conclusions
hold for other values of spin. These conclusions are
strongly supported by inserting values for po, p2, and p3
from an exact treatment of the S =

—,
' case [24] where here

there is only one real root that is negative well away from
the origin, the minimum in the cubic curve being above
but close to the horizontal axis at ro=0. 26. As already
mentioned, all the known experimental cases involve ro
whose value is much less than one. Indeed, we recall that
in the spin S =

—,
' chain one of the criteria for antifer-

romagnetism [25] is that ro be less than 0.25. This then
strongly indicates that the energy gap that appeared to
exist based on Eq. (7.3) becomes forbidden as a result of
the presence of phase currents whose densities exceed the
critical value for all practical purposes. Thus we con-
clude that our analysis supports the Haldane theorem
and we restate our findings in the following summary.

(a) For all integer spins there is an energy gap. This
conclusion is without qualification and the apparent
problem for S =1 may be eliminated when Sa„~ is used
instead of Sa, .

(b) For all half-integer spins the energy gap is absent as
a result of phase currents, which can be seen as oscilla-
tions of the ground state in time between the equally al-
lowed spin projections (see Fig. 4). A qualification we
have to make here is that when J2/J& exceeds the lowest
positive root of the cubic in Eq. (7.6) and less than the
largest positive root [this "window" varies (see Table II)
with the value of spin, particularly for lower spin values]
a gap may reemerge. A similar conclusion follows if ro is
less than the negative root. Both these last situations,
however, are most unlikely as r p is usually much less than

VIII. DISCUSSION

Regarding the question of fully quantum mechanical
treatments of Heisenberg or Ising metamagnetic chains,
the reader is referred to Ref. [27] for an up-to-date re-
view. However, it should be said that it has been known
for a number of years now that the inclusion of next-
nearest neighbors changes the nature of the ground state
dramatically. While the quantum ground state is disor-
dered in the nearest-neighbor case, a gap opens in the ex-
citation spectrum of the next-nearest-neighbor model at a
critical value of j =J2/Ji. Simultaneously, ground-state
correlations change from those governed by a power law
to an exponential decay type [28,29]. The ground state,
which is often referred to as the dimer phase, is charac-
terized by the domination of short range, two-spin
singlets, i.e., resonating valence bonds (RVB's). A com-
parison with the ground state of the classical Heisenberg
Inodel indicates that the RVB state appears in the helical
phase [30]. The first rigorous example of a spin-one cal-
culation for an antiferromagnetic chain with a Haldane
phase was given by Aleck et al. [31], who showed that
an S =1 isotropic bilinear-biquadratic spin chain has a
short-range valence bond ground state with a gap in the
infinite length limit. Moreover, AfBeck, Lieb, and Kolb
[32] showed that such a state does not appear in the spin
half-integer case.

Exact, fully quantum mechanical calculations were, in
the past, performed for several types of special cases. For
example, for J2=0 and J, /2 the obtained results [33] in-
dicate the absence of Neel long-range order. Instead, an
ultrashort-range RVB has been found in the form as men-
tioned above. This RVB-type ground state seems to be
also a characteristic feature of quantum Hamiltonians
with bilinear and biquadratic exchange terms [31]. It
therefore appears that quantum Quctuations destroy
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long-range order arising due to the inherent nonlinearity
of these problems. The extent to which this competition
is resolved in favor of the disordering role of quantum
fluctuations is not entirely clear and thus our results
might be of use to this end. In fact, a number of papers
have been published [34—36] that attack the problem
starting from the classical limit (which is especially ap-
propriate for spins larger than —,

'
) and then superimposing

quantum corrections. It has been demonstrated that the
emerging picture with thermally activated solitons works
well in the low-temperature regime. A very recent paper
[37], which came to the authors' attention after this pa-
per was submitted for publication, applied a method very
similar to ours to study nonlinear excitations in the anti-
ferromagnetic CeAs. The authors applied the Dyson-
Maleev transformation, a coherent state ansatz and a
long-wavelength approximation. The results obtained
there are similar to ours in it that the resultant equation
is of a nonlinear Schrodinger type and it leads to soliton
solutions representing bound magnon states. Their calcu-
lations, however, were restricted to the spin- —,

' case and

did not directly attack the Haldane gap problem.
In connection with the question of soliton and solitary

wave excitations in magnetic spin chains we refer the
reader to a recent review paper by Mikeska and Steiner
[38] for an exhaustive and up-to-date discussion. It
should be mentioned, however, that within the classical
framework, soliton solutions have been obtained [39,40]
in the continuum limit of the Heisenberg model. Analogs
of classical solitons have been found by various approxi-
mation techniques in quantum spin chains, too [41].
Quantum mechanically based approaches typically rely
on coherent state representations and Holstein-Primakoff
expansions for spin operators [42] and can also be used
with the inclusion of biquadratic or anisotropic interac-
tion terms [43]. The existence of solitons is intimately re-
lated to the integrability properties of the underlying
models. Studies of quantum spin chains with competing
bilinear and biquadratic interactions indicate that com-
plete integrability can be furnished for spin chains with
spins greater than one-half provided a suitable term in a
power of S;S. can be added to the Hamiltonian [44—46].
While soliton modes have been seen to exist and indeed
govern the dynamics of elementary excitations in fer-
romagnetic Heisenberg-type Hamiltonians [47], much

less progress has been evidenced in the antiferromagnetic
cases. Some results have been obtained in classical iso-
tropic Heisenberg antiferromagnetic spin chains [48] and
evidence has been found of the presence of twists and in-
stantons, which lock the neighboring spins into parallel
pairs [49].

It appears therefore that our approach can be very use-
ful since it allows for a consistent treatment of both in-
teger and half-integer cases within a common scheme.
The results we obtained point to the important role
played by solitonlike excitations that lead to bound states
with energy gaps. For spin half-integer cases, these local-
ized states are subjected to phase currents that are similar
to instantons that destabilize the bound state and close
the energy gap. In this connection, Fadeejev and Takhta-
jan [50] showed that there exist integer spin models for
arbitrary spin values 5 in which elementary excitations
are spin- —, solitons with a dispersion relation independent
of the spin magnitude S. The observable excitations are
composite particles. For topological reasons solitons can
only appear as singlet or triplet pairs. The energy of such
soliton pairs is described by two parameters so that the
excitations form a continuum spectrum. It has been very
recently demonstrated that the symmetry properties of
the excitation quanta are diFerent for spin integer and
half-integer cases [51], which is fully consistent with our
results.

Finally, it should be said that the present approach can
be applied to spin systems with the inclusion of distance-
dependent interactions covering all "coordination
spheres" and not just the nearest and the next-nearest
neighbors. We intend to investigate this general case in
the near future. A comparison then could be made with
the fully quantum mechanical calculations of Pimpinelli
[52], who showed that the RVB state remains the ground
state even when the couplings between spins are extended
to 2n next-nearest neighbors provided the relation
J]=277 J2 =2' 1, . . . , J2„=1 holds.
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