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This paper tackles the problem of the origin of dynamic chaos in Hamiltonian systems, with a special
emphasis on the self-gravitating N-body systems. A Riemannian approach is adopted. The relationship
between dynamic instability and curvature properties of the con6guration space manifold is the main
concern of this paper. Dynamic instability is studied with the aid of the Jacobi —Levi-Civita (JLC) equa-
tion for the geodesic spread. We point out that the approximations introduced so far to make the JLC
equation handy, that is, to obtain a scalar equation describing the dynamical instability, are still too
severe. In order to assess the validity limits of these approximations, the aid of numerical simulations is
essential. For this reason, our analysis is supported by the numerical study of the dynamics of 10 and
100 gravitationally interacting point masses. The self-gravitating S-body systems provide an illuminat-
ing ex@mple of the relevant difference between geodesic Bows of abstract ergodic theory and geodesic
Qows of physical interest. In fact, even though they correspond to manifolds of almost everywhere nega-
tive scalar curvature, this does not determine by itself the degree of chaos of these systems. %'e show
that the quantities determining the instability of nearby trajectories do not simply coincide with scalar or
Ricci curvature; rather they involve also other ingredients that are ultimately responsible for the ex-
istence of two different mechanisms to make chaos. The quantities mentioned enter a Hill equation and
give instability either when they are negative or—when positive —because of parametric resonance.
From numerical computations the e (energy density) dependence of the dynamic instability exponents is
found to be -e . Our paper aims at warning about the possibility of misleading conclusions that
might be drawn from the geometric approach if the existence of the problems discussed here is ignored.
Finally, we briefly discuss the relationship of the Riemannian geometric description of chaos with
Lyapunov exponents in the special case of gravitational N-body systems.

PACS number(s): 05.45.+b, 95.10.Ce, 95.10.Fh

I. INTRODUCTION

The present paper is a continuation along the line of a
recently proposed differential geometrical approach to
Hamiltonian chaos [1,2]. This is based on the possibility
of formulating Newtonian dynamics in terms of Rieman-
nian geometry and then exploiting standard mathemati-
cal tools to provide a new explanation of the origin of
chaos in a broad class of systems of physical interest.
The idea is not completely new. It dates back to the
pioneering work of Krylov on the foundations of statisti-
cal mechanics in connection with a dynamic explanation
of phase space mixing [3]. Geodesic Rows on Riemanni-
an manifolds are also used in abstract ergodic theory [4].
In a Riemannian framework there are also few works
aiming at demonstrating ergodicity or strong chaos in
more physical systems [5,6] and other works of, say,
heuristic nature, concerning the problem of collective re-
laxation and mixing in gravitational N-body systems
[7—10].

What is new in the approach proposed in Refs. [1,2] is
the idea that geometry must enfold all the information
concerning regularity and weak or strong chaos of dy-
namics and that this can be directly checked by numeri-
cal simulations. The latter is a key point. In fact, the
only possibility of working out good mathematical results
is limited, roughly speaking, to manifolds of constant

negative curvature, but this is not the general case of
Hamiltonian Aows of physics. Actually, numerical simu-
lations led to the discovery of a new mechanism to make
chaos: parametric resonance due to positive curvature
fluctuations along geodesics. This circumstance opens
new perspectives and problems for a Riemannian theory
of Hamiltonian chaos.

In a very recent work [11]dealing with two degrees of
freedom Hamiltonians, we have used the exact
Jacobi —Levi-Civita (JLC) equation for geodesic spread to
show in great detail that both the qualitative and quanti-
tative information about order and chaos are contained in
the solutions of the JLC equation. By qualitative infor-
mation we refer to what is usually obtained with Poincare
surfaces of section and by quantitative information to
that given by the Lyapunov characteristic exponent.
This is a good point to make reasonable the claim that
geometry must enfold all the properties of dynamics.
However, when the number of degrees of freedom is
large, one is compelled to use approximate versions of the
JLC equation; the present paper aims at discussing in
some detail the consequences of the natural approxima-
tions introduced so far, as well as to show what kind of
loss of information is also implied.

In Sec. II we recall the basic definitions and concepts
of the geometric description of chaos, and then the ap-
proximations of the JLC equation are discussed. In Sec.
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III some numerical results concerning the gravitational
N-body problem are given to show that the relationship
between chaos and Riemannian curvature is subtler than
might be suspected. In the light of our present approach
to the description of chaos, we also comment about the
meaning of Lyapunov exponents for the self-gravitating
systems.

II. RIEMANNIAN DESCRIPTION OF CHAOS

Let us briefly recall some major points concerning the
geometrical description of Newtonian dynamics. We
consider conservative systems described by Hamiltonian
functions such as

H(p, q)= g —,'p; + V(q)

or, equivalently, by the Lagrangian

where E is the total energy and a,k is the kinetic energy
metric associated with the free Lagrangian ( V=O), i.e.,
such that 2T(q, q) =a;kq'q". In Cartesian coordinates it
is a;k=5;k. Equation (6) tells us that the metric tensor

g, k in the presence of a potential function V is obtained
by a conforrnal transformation of a,k, in order to have a
nonsingular metric a restriction is needed to those
configurations of the system such that E ) V(q) (E is the
energy).

In local coordinates, the geodesic equations are

d2ql dq J dqk
" ds ds

(7)

where s is the proper time and I '.
k are the Christoffel

coe%cients of the Levi-Civita connection associated with
g;k. Using g;k=[E —V(q)]5;k, defining W=E —V(q'),
and since ds =2W dt, from Eq. (7) one gets

JV

L(q, q)= g —,'q; —V(q) . dq BV
dt Bq'

(8)

A large number of physical systems are described by such
functions; JV is the total number of degrees of freedom.

The natural motions described by the Lagrangian (2)
are, among all the varied synchronous paths with initial
and final configurations held fixed, those fulfilling the
condition

5I 2T(q', q')dt=O,
y(&)

(4)

where T is the kinetic energy and y(t) are all the isoener-
getic curves joining two given points qo and q, .

Now, remember that, given two points A and B on a
Riemannian manifold, among all the possible path. s join-
ing them, a geodesic line is such that the arc-length func-
tional is stationary, i.e.,

5J ds=O.

Locally this also means that a geodesic is the shortest
path between A and B.

By comparing (4) and (5) we realize how the geometri-
zation of Newtonian dynamics is possible. In fact, by set-
ting ds =&2T(q', q')dt, A =—qo, and B—:q„configuration
space M is given the structure of a proper Riemannian
manifold. Thus the trajectories of a mechanical system
can be viewed as geodesics of the configuration space
manifold if this is equipped with the kinetic energy
metric.

The kinetic energy metric tensor of M is defined
through

ds =g,k(q)dq'dq"=2[E —V(q) ]a;&dq'dq", (6)

5I L(q', q')dt =0,
0

which is Hamilton's least action principle. There are
many equivalent formulations of this principle. Among
them the so-called Maupertuis least action principle is
our starting point; it states that the trajectories of a
mechanica1 system are given by the condition

i.e., Newton equations.
Let us now briefly discuss the relationship between the

stability of the geodesics of a Riemannian manifold and
the curvature properties of the same manifold. This is
necessary to develop a geometrical point of view about
the dynamical stability properties of natural motions de-
scribed by (8).

The link between stability and curvature is given by the
second-order variations of the arc-length functional or,
equivalently, of the action functional. In fact, a geodesic
and a mechanical motion must obey (7) and (8), respec-
tively, in order to ensure a vanishing first-order variation
of the functionals in (4) and (5). However, Eqs. (4) and (5)
alone cannot determine whether these functionals attain a
maximum or a minimum; this can be understood only if
second-order variations are considered. We can intuitive-
ly grasp that if a geodesic (and so its corresponding
mechanical motion) makes stationary the arc-length (ac-
tion) functional without minimizing it, then it will be un-
stable with respect to variations —even sma11—of the ini-
tial conditions.

Instability of nearby trajectories leads to chaos under
two circumstances: (i) the instability condition has to
hold true for an appreciable measure of initial conditions
in phase space, i.e., there must be a finite probability for
the phase trajectories to encounter such regions of insta-
bility after a finite recurrence time, and (ii) the
configuration space manifold (M, gJ) must be compact,
i.e., the coordinates have to remain bounded during their
time evolution. In fact, there are two basic ingredients in
order to make a deterministic dynamics chaotic: stretch-
ing and folding of phase space volumes [12]. In the
Riemannian description of Hamiltonian chaos, stretching
of nearby trajectories is provided by instability and fold
ing by not allowing the distance between trajectories to
grow indefinitely, that is, by compactness of the ambient
manifold. With these conditions, the phase trajectories
are compelled to fold themselves in a very complicated
fashion, which makes them forget the initial conditions
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where (Vg/ds} is the covariant derivative along a geo-
desic and is given by

dk'+r( dx' I

ds ds '" ds
(10)

Rj1k are the components of the Riemann curvature tensor

ar,',R'.
jlk a 1

q

ar,',
', +I,kl'1 —I,1I' k .
k

The trace R.k=R'-,.
k is the Ricci tensor and the scalar

% =g~"R I, is the scalar curvature of M.
Now, assume that the configuration space of a mechan-

ical system described by (2) is equipped with the Jacobi
metric (6). The canonical connection coefficients are
r,", =-,'W 'S"-(a-, Wn, +. a, WS, aWn—,, ), so by (10)
and (11) we can easily compute the mathematical objects
entering (9). In principle, the complete form of (9) should
be used to study the stability properties of dynamics. In
analogy with Lyapunov characteristic exponents, A' new
instability exponents could be defined by averaging, along
a trajectory, the eigenvalues of the matrix 6J =RiJI, q'q
Here a practical difficulty arises due to the large number
of independent components of the Riemann tensor—
O(A )—without taking into account symmetries. It is
evident that a numerical treatment of such a problem is
likely to be rather cumbersome with a few tens of degrees
of freedom. Thus, in a first approach, it is reasonable to
seek an approximate form of (9) that might be more han-
dy.

The first and most natural idea is to replace the system
of JV evolution equations for g', . . . , g' —given by (9)—
with a single scalar equation describing the evolution of
the norm of the separation vector. Though in this way
some information will be lost, knowing the evolution of
the distance between two nearby geodesics is sufficient to
describe their stability or their degree of instability.

To this purpose, let us multiply both sides of (9) by g to
obtain

«', g, g) = (R(g, ) —)y, g&,

where V. stands for the covariant derivative (10) and the
angular brackets stand for scalar product. By standard
algebraic manipulation of (12) one finds [14]

and makes their evolution practically unpredictable (at
least for times sufficiently greater than the instability time
scale). This way of looking at the origin of Hamiltonian
chaos is an alternative to the standard approach of horno-
clinic intersections [12].

The study of the above mentioned second-order varia-
tions leads to the Jacobi —Levi-Civita equation of geo-
desic spread [13]. This equation describes the evolution
of a vector field g through which the separation between
nearby geodesics can be measured. The equation, in local
coordinates, reads

V V ~'+R' dq ~idq"
ds ds j Qs ds

'114II'+ R c q' I q'
((gijk1P d P

Vg'

ds

(13)

Vg
ds

(14)

to replace the last term in (13}. Without loss of meaning-
ful information we can choose as the initial condition for
g a suitable eigendirection of the curvature matrix QJ. In
such a case it can be shown [15] that Eq. (14) holds true
with the sign of equality. Second, we need to replace
R;J&&p~q Jp"q' with soinething independent of p (or,
equivalently, g}. To this purpose, we recognize that this
quantity is just the sectional curvature X' ' associated
with the plane spanned by g and dq/ds. Of course, such
a curvature depends upon the particular choice of g and
dq/ds at a given point of M and still requires the
knowledge of the evolution of P (or, equivalently, p').
Thus (13) is useless unless we can replace X' '(g', dq/ds)
with a quantity independent of g. The ideal situation for
such a replacement would be that of a manifold with con-
stant curvature; in fact, in this case Schur's theorem [16]
implies that all the sectional curvatures are independent
of the orientation of the two-plane chosen and are equal
to a common value independent of the point of the mani-
fold.

Abstract ergodic theory mainly deals with this kind of
manifold (assumed to be of negative constant curvature),
whereas the configuration space rnanifolds associated
with Hamiltonian fiows of physical interest are in general
neither of constant nor of negative curvature', on the con-
trary, curvature is wildly fluctuating along any geodesic
[1,2]. However, if random initial conditions are con-
sidered, then it is found that curvature oscillates around a
well-defined mean value. Loosely speaking, this suggests
that a suitable "coarse graining" of the ambient manifold
will make it look like a constant curvature manifold. So
we can apply Schur's theorem to the coarse grained xnan-
ifold in order to replace K' '(g, dq/ds ) with a fraction of
the average scalar or Ricci curvature. This is a first ap-
proximation in which fluctuations are neglected.

We shall see in the following that neglecting Auctua-
tions has major consequences on the completeness of the
geometric description of chaos. Let us refer to these Auc-
tuations as "small scale fluctuations. "

An immediate consequence of these small scale Auctua-
tions is that there are two di6'erent possible replacements
for the average of X' '(j,dq/ds) that would give the
same result only in the case of true constant curvature
manifolds. In fact, denote by g~, ~

and (dq/ds)~&~,
a, b = 1, . . . , JV, an arbitrary couple of mutually orthogo-
nal vectors (there are JV independent choices for each
vector); then the sectional curvature relative to the plane
spanned by g~, ~

and (dq/ds)~b~ is

where p'=g'/~~g~ are the components of the unit vector
codirectional with g. In order to work out a scalar equa-
tion for ~~g~ in closed form, we must make two approxi-
mations. First, we use the inequality

2



MONICA CERRUTI-SOI.A AND MARCO PETTINI sa

d '
+ah k d

llkll'=Rijkl4(a) d k(a)ds (b) s (b)

where

1 dq dq
X JV nm (22)

where we have used lldq/ds 11
=1; a well known result of

Riemannian geometry [17]states that

rC(,')=W, (16)
a, b

where % is the scalar curvature of the manifold. This
means that A/JV(JV —1) is a measure of the average sec-
tional two-dimensional curvature at any point of M.
Hence the quantity in parentheses in (13) could be ap-
proximated by A/JV(JV —1). This amounts to consider-
ing a local average over a set of geodesics issuing from a
given point in every independent direction and over all
the separation vectors orthogonal to them.

However, there is another less drastic approximation to
the original equation (13}: let us consider a given geo-
desic issuing from any point of M, i.e., we keep dq/ds
6xed at that point, and let us consider all the possible sec-
tional curvatures obtained by varying only the separation
vector g. In such a case the sum (16) is replaced by

or

X=ZR(E —V) /JV(JV —1) (23)

R.m = b.V 4—JV (VV)2
2(E —V) 4(E —V)

JV—2 82 V 3(JV—2) BV ()V

2(E —V) aq "aq 4(E —V)' aq" aq

(24)

and the scalar curvature % =R„"given by

Av 1
% =JV(JV—1)

JV(E —V)' 4
3 (VV)

2JV (E —V)'

(25)

and where g=llgl . The explicit expressions of (22) and
(23) are obtained by computing the components of the
Ricci tensor R„=R„';,which are given by

I(..(2)= dqj k dq'

11411'

dq" dq
nm (17)

5 and V stand for the Euclidean Laplacian and gradient,
respectively.

By introducing standard transformations, Eq. (21} is
transformed into (details are found in Ref. [1])

1 d'llkll'
+Xllg112

d 114'll

2 ds2 ds

'2

=0, (18)

where

the last quantity is the Ricci curvature Kz(q) along the
direction dq/ds and R„ is the Ricci tensor. This sug-
gests that we replace with I(.z(q)/JV the quantity in
parentheses in (13). Finally we have

d I
dt2

W(t) dX+ (,}X
W(t) dt

where

and 6nally cast in the form

2

+Q(t) Y=O,
dt

(26)

(27)

dq (19)
Q(t) =X(t)——1 W 1 d W+—

4 8' 2 dt 8' (28)

OI

d 2g

dt
1 dW dg 1 dg
W dt dt 2$ dt

(21)

X=% /JV( JV—1)

and where we have made use of (14) taken with the sign
of equality.

Equation (18) is an approximate version of Eq. (13), but
now it describes in closed form the evolution of the norm
of the separation vector g. The way any given trajectory
probes the curvature properties of the underlying mani-
fold enters (18) through X and in so doing determines the
stability or instability of the dynamics described by the
Newtonian equations (8). In practice one has to solve
simultaneously the equations of motion (8) and the stabil-
ity equation (18) rewritten in terms of the Newtonian (ab-
solute) time t, that is,

Equation (27) is in the form of a Hill equation. An ex-
ponential growth of Y(t) implies an exponential growth
of X(t) and hence of g(t); a bounded evolution of Y(t)
implies a bounded evolution of X(t) and hence of g(t)

Let us now notice that (a) Q & 0 is a sufhcient condition
to get an exponential growth of g(t), thus to make chaos,
and (b) Q &0 is a necessary condition for g(t) to remain
bounded, thus for regular behavior. The latter item
deserves particular attention. In fact, Q & 0 is not
sufhcient to ensure the dynamical stability of nearby tra-
jectories, because another mechanism, parametric reso-
nance, is generaljjy at work to make chaos also when

Q &0, provided that Q fluctuates in a suitable manner.
In other words, the bumpiness of the manifold (M, gz)
can be an e6'ective source of exponential instability of
nearby geodesics —thus of chaos —even in the presence
of positive scalar or Ricci curvature. It is worth men-
tioning here that the generic situation of Hamiltonian
flows of physical interest, i.e., those with bounding poten-
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1 . b. V (V'V) 3(JV—2) d V
JV " JV JV(E —V) 4~(E —V) dt

'2

tials, parametric resonance appears as the largely
predominant source of chaos [1,2, 18]. Self-gravitating
systems are in a very curious and instructive situation: in
spite of the almost everywhere negative scalar curvature,
chaos appears to stem mainly from the wildly oscillating
behavior of Q(t) through parametric instability, as
shown in Sec. III.

However, the following two points should be clearly
kept in mind: (i) the replacements of 8;Ji,&

p'j p"q ' in (13)
either with A/JV(JV —1) or with Xii(q)/JV are not exact
and (ii) by simple inspection of (26), it is well evident that
the stability of its solutions is not entirely controlled by

In fact, the sign of the coefficient of dX/dt is not
definite; thus the second term of (26) can alternatively act
as a damping or an "antidamping" and a complete ac-
count of all the possible combined effects of the second
and third terms of (26) is given by (27) and (28). Q (t) in-
stead of y(t) is the meaningful quantity for chaos.

Let us now work out the explicit expressions of Q(t)
for both replacements of y(t) with scalar or Ricci curva-
ture and denote them respectively by Qs(t) and Qz (t).
From (22) and (24) the Ricci curvature is easily found to
be

certainly more correct. These quantities, though this is
mainly true for Az, are capable of qualitatively reproduc-
ing some important feature displayed by Lyapunov ex-
ponents [1] and we can attribute the quantitative
discrepancies (the high energy scaling law} to the previ-
ous incomplete definition. Anyway, due to the crude
elimination of small scale curvature Quctuations, the
GICs convey only limited information about the source
of chaos and its strength, as will be shown in Sec. III.

As we have already noticed, dealing only with sign
definiteness of scalar or Ricci curvature is incorrect be-
cause in so doing one lacks the information given by the
second term of Eq. (26). This term arises from the
nonafBne time parametrization of the arc length of the
configuration space manifold equipped with Jacobi
metric, which means that the velocity along the geodesics
is not constant. Here we have another nontrivial
difference with abstract geodesic Qows of ergodic theory,
such as Anosov Bows, which are defined on the unitary
tangent bundle of a Riemannian manifold, which means
that geodesics are spanned at constant velocity. This is a
warning about naively borrowing tools from abstract er-
godic theory. At this point any further progress requires
the aid of computer simulations.

III. GRAVITATIONAL N-BODY SYSTEMS

A' —2 d'V
2JV(E —V) dr 2 (29)

Combining (28) and (29) one gets

b, V+ (VV}
JV JV(E —V)

3 dV
2A'(E —V)'

2

1 d V
W(E —V)

(30)

and from (23), (25), and (28)

b V 1 3 (P'V)
JV 2 A' (E —V)

3 dV
4(E —V) dr

d2V
2(E —V) dr ~

(31)

It is quite natural to define the following geometric indi-
cators of chaos (CxICs) associated with Qii and Qs ..

(32)

As= —f dt'[ —
Qq '(r')]' (33)

where by Qii s' it is meant Qz s (0. Similar quantities
have been defined in [1];however, the present definition is

Let us now focus our attention on the gravitational X-
body problem. Krylov's original intuitions about the
connection between phase space mixing and exponential
instability of the dynamics have recently suggested a new
approach to the description of relaxation and mixing of N
gravitationally interacting particles [7—10].

In Ref. [7] it is claimed that the negativity of the aver-
age curvature of configuration space is a sufficient condi-
tion for an exponential divergence of the geodesics and
thus a condition for a self-gravitating system to be mixing
on a collective relaxation time scale related to the average
curvature. Using the same approach, it has been argued
elsewhere [10] that, owing to the fact that the average
sectional curvature can actually be positive somewhere in
the configuration space, one cannot conclude anything
rigorously about the mixing properties of the system.
Nevertheless, if the regions where the curvature is non-
negative are very sma11, one could speak of chaotic or
mixing behavior. This analysis has established that the
probability that a random perturbation of a random geo-
desic experiences a positive curvature decreases exponen-
tially to zero as X~~, suggesting that at least for short
times, large systems should have a strongly chaotic
behavior.

In the cited works on this subject, the detailed deriva-
tion given in Sec. II of a stability equation is lacking and
only generic discussions about the negativity of scalar
curvature have been proposed. In the following, we show
that our more careful analysis of the geometric descrip-
tion of chaos, when applied to the self-gravitating X-body
system, yields a completely new insight in the problem.
Besides, the validity limits and the present difficulties of
the geometric approach are also clearly assessed. In any
case, the relevance and implications attributed to the
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negativity of scalar curvature must be dropped when
nonconstant curvature manifolds are involved.

We consider the gravitational X-body system described
by the Hamiltonian

q, =q,.(t),

1H= g (p„;+p;+p„)—gG (34)
q, (t+bt)=q, +d tp, ,

p, (t+ b, t ) =JJ, —b, t— V(q(t+ b, t ) ),1

2 Bg;

where r; = (x; —x~ ) + (y; —y ) + (z; —zj ) . In the above
quoted papers, it is argued that for the Hamiltonian (34),
AV can be neglected. In fact, by computing the Green's
function for Poisson equation one gets [7]

= —4m.5((r —r (),

P, =p, (t+b, t),
q,

=q, (t+ ht )+ ,'b tp, , —

p;(t+2b, t)=P, h—t V(g),a

BQ;

q, (t+2bt)=q, + ,'htp, (t-+2bt) .

where, using

m, mjV= —G g
i&j &J

and assuming that binary collisions are rare events, we
get

b, V=4+6 g m;m 5(~r; r~)—=0 . (37)

Applied to Eq. (23), with the aid of (25), this gives

(E —V)
2

1

JV(A' —1) 4
3 (VV)

2A' (E —V)

1 (VV) (0
larger/ 2 (E V)

(38)

Hence one could be tempted to conclude that a large col-
lection of bodies interacting gravitationally is always
strongly chaotic and that the dynamical instability time
scale is given by the square root of 2 W/( V' V) .

A. Numerical simulations

We have numerically followed the dynamics of X grav-
itationally interacting bodies together with the time evo-
lution of Y'(t) obeying Eq. (27) and eventually providing
the behavior of the geodesic separation vector norm g.
We chose for y(t) in Eq. (28) the Ricci curvature per de-
gree of freedom according to the definition in (22) explic-
itly given by (29).

In view of the kind of information that we want to get
from our numerical simulations, we have considered
sufficient the use of either N =10 or 100 point masses.
Though such numbers might seem exceedingly small with
respect to those of current N-body simulations, they are
at variance adequate for our purely theoretical study.

The 6% first-order Hamilton equations of motion, de-
rived from (34), have been numerically integrated without
any softening of the potential and by means of a second-
order bilateral symplectic algorithm [2,19], which explic-
itly reads as

In spite of its simplicity, this scheme is precise and
efficient. Moreover, being symplectic, it ensures a faith-
ful local representation of a Hamiltonian How.

We work with a system of units in which G =1 and all
the masses are equal to the unit mass; thus m, =1
(i =1, . . . , %. The initial conditions were chosen as fol-
lows. The spatial coordinates of each point mass have
been selected at random in an initially given cubic
volume with a uniform distribution. Also random initial
velocities have been considered with a Gaussian distribu-
tion of their components. The variance of the velocity
distribution was such that the expectation value of the
kinetic energy fulfilled the virial condition 2( T ) = V.

At given N, we have always worked with the same ran-
dom initial condition and in order to change the total en-
ergy of the system we have rescaled the positions and the
velocities. This fact ensures the homogeneity of the sam-
ples at different energies and rules out any possible doubt
about the role of the initial conditions and possibly of an
insufficient integration time of the dynamics in the ob-
served phenomenology. Anyway, we have also checked
the robustness of our results with respect to different
choices of the initial conditions.

The numerical integration has been performed without
any spatial restriction to the trajectories of the masses
which are allowed —if it is the ease —to escape up to
infinity. Though in principle each point mass could evap-
orate, we never observed such an effect during our nu-
merical simulations (with few bodies the high velocity tail
of the distribution function is rarely populated). This
practically means that the phase trajectories remained
confined in some compact subspace of (M, gz), so we
were not actually confronted with the problem of non-
coinpactness of the manifold (M, gJ) associated with the
Hamiltonian (34). Noncompactness is just due to the
possibility of producing unbound particles. If no point
mass evaporates during an integration time much longer
than the measured instability time, then one is allowed to
speak of chaos whenever the dynamics is unstable.

Along any phase trajectory so obtained, we computed
the difFerent geometric quantities of interest and the
GICs Az and Az. The simultaneous integration of Eq.
(27) along a trajectory provides another quantitative mea-
sure of the degree of chaos: the rate of the average ex-
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ponential growth of Y(t) .This takes into account also
parametric instability. Let us now discuss this in more
detail.

A typical numerical sampling of % is reported in Fig.
1(a) in the case of N = 10 and of energy density
e=~!E/N~=0. 0564. By varying N and e similar results
are found, i.e., % is always strongly varying. Thus the
configuration space manifold is far from being of con-
stant curvature and Schur's theorem cannot be applied to
properly replace K' ' with A/JV( JV—1). Besides, though
the majority of values assumed by A(t} are negative, the
corresponding values taken by Qz(t) are often also posi-
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FIG. 1. (a) The scalar curvature %' is plotted vs time for
N =10 and energy density a=0.0564. (b) The time behavior of
Qz of Eq. (31) for the same parameters.

tive, as can be seen in Fig. 1(b). As a consequence, the
solutions of (27) exponentially grow in time both because
Q (t) takes negative values and because the ffuctuationsS
of positive Qz(t) induce parametric resonance. The
relevance of this phenomenon becomes more evident
when the Ricci curvature is considered. Hereafter, unless
otherwise stated, we will be concerned with quantities re-
lated with the Ricci curvature per degree of freedom
kz (t) =K+/JV=R „q j "/JV because it corresponds to a
lesser degree of approximation of (13) and because else-
where it has been found to be more useful for the
geometric description of chaos [1,2,18].

In Fig. 2(a) kz(t) is reported for the same example of
Figs. 1(a) and 1(b). Also kz(t) is strongly fiuctuating in
time, but it takes also positive values and Qz(t} appears
in Fig. 2(b) as almost always positive valued. As a matter
of fact, the number of times that a phase trajectory en-
counters negative values of Qz(t) is a regularly increasing
function of time [Fig. 2(c)], which makes meaningful the
definition of A& and possible its computation. In Fig.
2(b) Qz (0 is seldom observed because of the sampling
frequency and of the low probability of finding Q~ & 0.

This latter circumstance makes parametric
resonance —due to ffuctuations of Qz —the dominant
mechanism of instability of the Hill equation (27) and
thus of chaos. The existence of this effect is expected on
the basis of a classical theory of stability whenever the
frequency of a harmonic oscillator is modulated in time
[20] and is proved here by numerical integration.

We have computed such solutions Y(t) for diff'erent
values of the energy density in the cases %=10 and 100.
On the average, Y(t) is exponentially growing and the
growth rate is larger for the more bounded systems, as is
reasonably expected. In Fig. 3(a) one such solution Y(t)
is reported for X = 10 and for two different energy densi-
ties. At variance, if one keeps e fixed and varies X, a
surprising result shows up. The system seems to be more
chaotic in the case of smaller X, which is against com-
mon physical sense. Figure 3(b) displays Y( t) obtained at
@=0.06 for N =10 (upper curve) and N =100 (lower
curve).

We have estimated the exponential growth rates of the
solutions of the Hill equation for several values of the en-
ergy density e and for X =10 and 100. The resulting in-
stability exponents A,H are shown in Fig. 4. There are
two noticeable features of these results: (i) A,H displays a
regular dependence upon e both at % =10 and 100, pre-
cisely Alt(e)-e, and (ii) the points AH(e, N=10) define
an experimental curve which is parallel to that defined by
AtI(e, N=100); however, the former is displaced toward
larger values. In other words, we have the confirmation
that an increase in the number of degrees of freedom ap-
parently results in a weakening of chaos.

On the basis of the comparison with the results ob-
tained for other Hamiltonian systems, we claim that the
weakening of chaos by increasing X is unreliable. In fact,
for the Fermi-Pasta-Ulam model and for Lennard-Jones
lattices [2,19], the computation of the Hill instability ex-
ponenonents gave the same effect with X, whereas measuring
chaos through the largest Lyapunov exponent I,

&
shows

an opposite tendency, i.e., an increase of chaos at larger
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N and constant energy density. Thus we conclude that
the weakening of chaos by increasing the number of de-
grees of freedom is likely to be a spurious effect of the ap-
proximations carried over Eq. (13).

The passage from Eq. (13) to Eq. (18) is a delicate point
and in its present formulation causes the loss of some im-
portant information. Replacing the function K' ' by
kz =K+/JV, we make an approximation in which the
Iluctuations of kz and of Qz tend to lower by increasing
N. Now, owing to the fact that the fluctuations of Qz
play an important role in determining the degree of insta-
bility of the dynamics, the lowering of the fluctuation lev-
el due to the replacement of K' ' with k~ entails a weak-

ening of parametric instability.
For the sake of a better approximation, we must re-

trieve in some way the fluctuations that have been dis-
carded. Recently, this has been successfully done for the
Fermi-Pasta-Ulam system [18] using Eisenhart's metric
(see Sec. III B) and in the future it will be done for the
self-gravitating systems.

The same kind of phenomena is clearly shown by
AIt(e'). In Fig. 5(a) some typical behaviors of Az vs time
and for two different values of energy density are report-
ed for X =1Q. It is evident that the more bounded sys-
tem is dynamically more unstable. Figure 5(b) displays
Az obtained at a=0.06 for N =10 (upper curve) and
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FICr. 2. (a) The time behavior of the Ricci curvature k& per degree of freedom again for X =10 and @=0.0564. (b) The quantity

Qz of Eq. (30) is plotted vs time for the same values of N and energy density as in (a). (c) The number of times that Qz & 0 is plotted
vs time. The parameters are the same as in Fig. 1.
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N =100 (lower curve). The same effect already observed
for A,~ shows up.

If we denote with A& the mean value of Az and com-
pute it at different 2V and e, we obtain the results plotted
in Fig. 6. We observe again that A„-e and that the
values at X =10 are systematically larger than the values
at N =100.

If we make a comparison between A,~ and Az at the
same N and at each e, we notice that A,~ )Az. This is a
very clear indication of the importance of parametric in-
stability in the quantitative determination of the degree
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-8—

o/o/I

1 I
I

20
-12
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10

FIG. 4. The Hill instability exponent A,H is plotted vs energy
density for N=10 (squares) and N=100 (triangles). Dashed
lines are references to power law e

—10

10

2x1d 4x10 6x10

of chaos of the system. Moreover, the exponent 3l2 can
be considered correct because it has been found for both
AH(e) and Az(e), independently of N.

It is worth reporting here that also the quantity Az, re-
lated to the scalar curvature, displays the same effect of
weakening chaos by increasing X. In Fig. 7 Az is plotted
vs time; the computation has been performed at @=0.06
for N =10 and 100. Though the curve relative to X =10
has not yet reached an asymptotic value, it is clear that it
remains well above the curve relative to X =100 by one
order of magnitude.

We have veri6ed that this is the case at any e. This
agrees with the above reported results found using Ricci
curvature. It is not out of place mentioning that the
averages of scalar-related quantities need a much longer
computing time to converge to an asymptotic value. This
is an additional reason to prefer the use of Ricci-related
quantities. Anyway, we have a consistent analogy be-
tween the behavior of "Ricci-related" and "scalar-
related" quantities. Besides, let us remark that the X
dependence of the measured quantities is not simply
deducible by pure inspection of their analytic expressions.
In this context, numerical simulations reveal themselves
as a powerful and inevitable tool for they yield auto-
nomous information which is complementary to the ana-
lytic approach.

—10
0 2x10 4x10

t
6x10 8x10

FIG. 3. (a) Typical solutions Y(t) of the Hill equation (27)

are plotted for N = 10 and e=0.0564 (upper curve) and
@=0.0338 (lower curve). (b) Typical solutions Y(t) of the Hill

equation (27) are plotted at @=0.06 for N =10 (upper curve)

and N = 100 (lower curve). (Logarithms are decimal. )

B. Lyapunov exponents for self-gravitating systems

Let us now briefly discuss the relationship between the
above Riemannian description of chaos and Lyapunov
characteristic exponents (LCEs). Details about this point
can be found in [1) and [2]. The point naturally arises be-
cause the use of LCEs as detectors of chaos in numerical
simulations is widespread; moreover LCEs are commonly
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accepted as the closest indicators to the so e standard

In order to tackle this point, we recall that the
of the ambient manifold (M

a t e choice
io,gz) is not unique. An in-

eresting alternative is given by the en
configuration space time endowede en owed wi h Eisen ar m ric

-dimensional configuration,gz). This is the n-di
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It is possible to compute explicitly the function q"+'(t)
as

q"+'(t)=k t+C —J dt L(q', q'),
0

(41)

2 l 0 0d q +~( (
g

)
dq dq

()
ds ds

2 n+1 0 i
+I n+i( a) dq

ds 2 dS dS
q

=0
dS

and since dsE =k dt, one finds

l 1 y ~ o ~ y n

=0,

(42)

(43)

dq' BV i=1, . . . , n
dt Bq'

d2q" i BV dq' dL
dt' Bq' dt dt '

d2q0 =0.
2

(44)

(45)

The first n equations are obviously Newton's equations,
the evolution equation for q"+ ' is the differential version
of (41), and the last equation states that q = t

The only nonvanishing components of the Riemann
tensor are

8 V

q q
(46)

hence we can compute the explicit expression of the
Jacobi —Levi-Civita equation for this metric, finding that
only g', . . . , g" have a nontrivial evolution [2]. Equation
(9) then becomes

d 2+i i)2 V+ . +=0, i=1, . . . , n,dt' Bq;Bq'
(47)

which is the standard equation for the tangent dynamics
and is used to compute numerical Lyapunov exponents
according to a widespread algorithm [22]. It is common-
place that numerical LCEs are asymptotic quantities.
This belief is based on the mathematical definition of true
LCEs as eigenvalues of a limiting matrix of an infinite
product of matrices [23]; the existence of such a finite
limit is ensured by Oseledets' multiplicative ergodic
theorem. However, there is no rigorous proof of the link
between the standard numeric algorithm and Oseledets'
theorem and true LCEs should be computed in a com-
pletely different way [1].

Having recognized the differential geometrical origin
of (47), we can give an alternative interpretation of the
meaning of the standard numerical algorithm and the in-
stability exponents so computed are not at all asymptotic

which shows why q"+' is related to the action; k and C
are real constants.

The nonvanishing connection coefficients associated
with gz can be easily computed and for a;~ =5;. they are
I OO=BV/Bq; and I 0;+'= —BV/Bq', so that the geodesic
equations are

quantities. In other words, since the geodesics of
(M X IR X IR,gE ) project on the natural motions in
configuration space and since the tangent dynamics equa-
tion is derived from the JLC equation written for
Eisenhart metric, when one computes LCEs by means of
the standard algorithm, one uses Riemannian geometry
without being aware of it. Obviously this is true also for
the gravitational N-body systems, but, unfortunately, in
this particular case we cannot use the scalar equation (21)
because the Ricci curvature for the Eisenhart metric is
ICx =V V(q) and after (37) Kz =0. In regard to the sca-
lar curvature, one easily finds that it is %=0 identically
for any potential function V. This last circumstance
shows once more that the scalar curvature conveys less
information than the Ricci curvature. Thus only the full
Eq. (47) can be used for self-gravitating systems.

In conclusion, while true LCEs, i.e., asymptotic quanti-
ties, might be ill defined in the case of gravitational X-
body systems because of noncompactness of the ambient
manifold, numerica/ LCEs are well defined and meaning-
ful for any finite observational time scale. This provides
a mathematical support to the concept of local Lyapunov
exponents already used in Ref. [24]. Therefore, the sta-
bility properties of the dynamics of self-gravitating sys-
tems are correctly investigated by means of the simul-
taneous integration of the equations of motion and of Eq.
(47) and the results are meaningful, provided that no
mass evaporates during a time lapse much longer than
the average instability time scale.

IV. CONCLUSIONS

In this paper we have discussed the consequences of
the simplest approximations that can be performed on
the Jacobi —Levi-Civita equation for geodesic spread
when this equation is used to describe the intrinsic chaos
of Hamiltonian dynamics. We have comparatively dis-
cussed the use of scalar and Ricci curvatures. We have
investigated the origin of chaos in a collection of gravita-
tionally interacting point masses with the aid of numeric
simulations. One of the most interesting results of these
simulations is that the degree of chaos of the system is
not determined by the scalar curvature of configuration
space, even if almost everywhere negative. This is due to
the fact that the ambient manifold is not a constant cur-
vature manifold, which implies that the relevant sectional
curvature along a given geodesic is not simply given by a
fraction of scalar curvature.

Besides, the nonaffine parametrization of the arc length
with time, proper to the Jacobi metric, has another
relevant consequence: neither scalar nor Ricci curvature
determines the stability or instability of geodesics, which
are rather determined by the curvature-related quantities
Qs and Q

Between the curvature-related quantities, Qz, related
to the Ricci curvature, corresponds to a lesser degree of
approxiination and is shown to be preferable to Qs, relat-
ed to the scalar curvature. Using Qii to describe chaos in
a self-gravitating system entails a curious situation, ' even
though the scalar curvature of the configuration space is
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almost everywhere negative, chaos is mainly due to para-
metric resonance induced by the fluctuations of Qz,
which is only seldom negative. This is the big difference
with geodesic Aow of abstract ergodic theory for which
the negativity of scalar curvature of the ambient manifold
is necessary and sufhcient for chaos and mixing.

Numerical simulations have shown that the reduction
of the JLC equation to the "effective" form (18)—or
equivalently (27)—causes an important loss of informa-
tion for what concerns the X dependence of all the chaos
indicators. Apparently the strength of chaos is reduced
by increasing the number of particles at constant energy
density e. We have discussed why this paradoxical result
is fake. In a future work we shall show how to solve this
problem with an improved approximation.

On the other hand, we find that all the instability
exponents —independently of X—exhibit the functional
dependence e; therefore some meaningful information
survives the above mentioned approximations. What is

still lacking is some nontrivial normalization which will
hopefully be found with the above mentioned improve-
ments of (21).

Let us conclude with a few remarks pertaining to the
particular system that we have investigated. The aim of
our numerical computations is to help and to comple-
ment the theoretical analysis of Hamiltonian chaos from
a Riemannian point of view. Therefore, our numerical
experiments are conceived to meet this purpose, which
has nothing to do with the aims of the usual X-body
simulations in different contexts.

Finally, there is no evidence of the strong stochasticity
threshold found in other models, i.e., of a transition be-
tween different dynamic regimes of weak and strong
chaos revealed by a crossover in the e dependence of the
chaos indicators [1,2,25,26]. We could venture a guess
that this is due to the absence of a minimum in the in-
teraction potential and thus to the absence of a "harmon-
ic limit'* of the system at low energy density.
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