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Formulation of a moment method for multidimensional Fokker-Planck equations
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A moment method for general n-dimensional (n ~ 1) Fokker-Planck equations in semi-infinite
domains with mixed boundary conditions is developed in this paper. Generally, time evolution equa-
tions of moments include terms with reduced distribution functions. With mixed boundary conditions in
n-dimensional phase spaces, the reduced distribution functions are not explicitly known. This adds an
openness to the time evolution equations of moments. We develop an auxiliary set of variables that al-
low the removal of this type of openness by introducing it into a general moment truncation scheme.
The other openness of moment equations caused by the general phase space dependence of drift and
difFusion coeScients is removed by using the conventional central moment truncation scheme. The
closed set of time evolution equations of moments is numerically solved with the LsoDA package of com-
puter programs [A. Hindmarsh, in Scientific Computing, edited by R. Stepleman et ai. (North-Holland,
Amsterdam, 1983), pp. 55—64]. The method is apphed to three examples. The coupling of moments and
reduced moments is first demonstrated by an interstitial clustering process in diatomic materials. Then,
the moment equations for a one-dimensional Fokker-Planck equation in a semi-infinite domain are de-
rived as a special case of the present method. The moment equations of the one-dimensional Fokker-
Planck equation derived by Ghoniem [Phys. Rev. B 39, 11 810 (1989)] for atomic clustering are thus
recovered in the second example. Finally, the moment method is also tested by applying it to a two-
dimensional Ornstein-Uhlenbeck process, which can be solved analytically. Numerical calculations of
the first three moments with truncation only at second-order moments are in very good agreement with
the analytical results. Truncation at fourth-order moments is found to give similar results for the first
three moments.

PACS number(s): 02.50.Ey, 02.60.Lj, 05.20.Gg

I. INTRODUCTION

The Fokker-Planck equation (FPE), which was first
developed by Fokker [1] and Planck [2] to describe
Brownian motion, has been used in many fields involving
stochastic processes. A general review has recently been
given by Risken [3]. Analytical solutions can be obtained
for very limited conditions, e.g. , linear driving force, con-
stant diff'usion coefficients, and infinite domains [4—7]. It
is generally not possible to obtain analytical solutions of
second-order partial differential equations. Many ap-
proximate and numerical approaches for the solution of
FPEs have already been developed. Some of these
methods rely on the specific nature of the equation and
many are limited in their range of applications. The
reader is referred to procedures based on Lie algebra
[8—10], eigenfunction expansion [ll —14], perturbation
expansion [15—19], path integrals [20—22], Green's func-
tion [23—25], Monte Carlo method [26,27], moment
method [28—32], and finite difference integration
[33—37]. The analytical method is the simplest one, but
is usable in a very small class of problems. Numerical in-
tegration of a FPE in finite domains could be very accu-
rate with intensive computational efforts. Numerical
solutions of multidimensional FPEs in infinite (or semi-
infinite) domains are ineff'ective and may even give false
results. The various approximate methods could be very
efticient, if their specific assumptions are satisfied.

'Present address: Lawrence Livermore National Laboratory,
P.O. Box 808, L-268, Livermore, CA 94550.

Although the moment method can be used to solve
general FPEs, convergence of the method has not been
theoretically proven. However, experience has shown
that the method is accurate if one truncates the moment
equations at high enough order [38]. The moment
method for one-dimensional FPEs has been developed for
both infinite and semi-infinite domains [28,29,32], while
that for multidimensional FPEs has been developed only
for infinite domains [28,32].

Generally, moment equations are not closed. There
are two factors that render the moment equations open.
First, drift and diffusion coefFicients cannot, in general, be
expanded in terms of limited order polynomials. This
makes the time evolution equations of lower-order mo-
ments depend on higher-order moments. A truncation
scheme must therefore be employed to eliminate this
openness. To obtain moments of up to Xth order, mo-
ments of order higher than % need to be omitted or ex-
pressed in terms of lower-order moments. This is termed
Nth-order truncation or truncation at Xth-order mo-
ments. Three truncation schemes have been tested and
two of them are found to be good in many cases [30,31].
This openness can therefore be easily removed by using
an appropriate truncation scheme.

The other openness comes from mixed boundary con-
ditions (linear combinations of Neumann-type and
Dirichlet-type [39] boundary conditions) at finite boun-
daries in multidimensional phase spaces. For multidi-
mensional Fokker-Planck equations, one mixed boundary
condition at a finite boundary gives a governing equation
of a reduced distribution function. The reduced distribu-
tion function, which is unknown, comes into time evolu-
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tion equations as a boundary condition. Since the re-
duced distribution is unknown, time evolution equations
of moments are rendered open. By introducing an auxih-
ary set of variables, which we term reduced moments, and
employing an appropriate truncation scheme, we are able
to remove this openness. This paper extends the moment
method to more general cases where (1) multidimensional
semi-infinite phase spaces are considered and (2) bound-
ary conditions are mixtures of the Neumann and the Dir-
ichlet types. Pure Dirichlet-type boundary conditions are
considered as special cases of general mixed boundary
conditions.

In Sec. II we develop the moment equations. In Sec.
III the moment method is applied to three examples. In
the first example, coupling of moments and reduced mo-
ments is demonstrated by an interstitial clustering pro-
cess in diatomic materials. In the second example, the
moment equations are applied to the one-dimensional
FPE investigated by Ghoniem [29]. The moment equa-
tions derived by Ghoniem are recovered as a special case
of the present method. Finally, we apply the moment
equations to a two-dimensional Ornstein-Uhlenbeck pro-
cess, where an analytical solution is available. Good
agreement between numerical calculations of the mo-
ments solved from the moment equations and their
analytical counterparts is achieved. The e6'ect of trunca-
tion is also investigated. It is found that truncation at
fourth-order moments gives similar results of the first
three moments as truncation at second-order moments.
In Sec. IV we summarize our results and conclusions.

II. MOMENT EQUATIONS

An n-dimensional FPE in a semi-infinite domain is
written as

n

F, (JV;t)C(JV;t)
Bt

1
BX.

n g2+ g D,, (JV, t)C(JV;t)
ij=1 i j

with the initial condition

when x; =x;*, (3)

and the Dirichlet boundary condition at each infinite
boundary

C (JV, t) =0 as x, ~ oo

where A'= [x„x~, . . . , x„] is a set of coordinates in the
n-dimensional phase space. The asterisk superscript indi-
cates a coordinate at a finite boundary. F;(JV, t) and

D;, (JV, t) are compo. nents of a drift force vector F(JV, t)
and a difFusion tensor D(JV, t), respectively. C(JV, t) is a

C(JV, t =0)=CO(JV),

the general mixed boundary condition at each finite
boundary

Bu;(JV, t)C(JV, t)
=U, (JV;t)C(JV;t)+w, (JV, t)

Bx;

distribution function in the n-dimensional phase space
and u, (JV, t), U;(JV, t), and w;(JV, t) are arbitrary well-

behaved functions.
The boundary conditions defined in Eq. (3) is a

mathematical generalization of the following boundary
condition:

aD, , (JV, t)C(JV, t)
F, (JV, t)C(JV, t)

X;

=U,'(JV, t)C(JV, t)+m, (JV, t) when x, =x,*,
which is also a special case of another generalized bound-
ary condition

BD, (JV, t)C(JV, t)
F;(JV;t)C(JV;t)

~

1 Bxj

=U (JV, t)C(JV;t)+w;(JV;t) when x, =x,.*,

where U (JV, t) is another well-behaved function. For this
paper, we are satisfied with the boundary condition
defined by Eq. (3), which represents defect clustering pro-
cesses in multicomponent materials.

The general moments (M( ) )~ are defined by

N~(M( ))~=I M)J, )C(JV,A, t)dJV, (7)
A'

where A =- Ix„*,x„*,. . . , x„' I represents a set of coordi-
nates that will be fixed (reduced). JV is a subset defined by
JV=JABA. Im I =Im„m2, . . . , m„I is a set of integers
that define a specific moment. X&, which is usually
termed total number (e.g. , total density, total probability),
is the integration of the distribution function over a re-
duced phase space, in which a set of coordinates % are
fixed to be their boundary values. The moment functions
Mg ) are defined as

n

Q(x, —(x, &Jt)
' when y m, xl

k=1
n n

Qx; ' when gm;=1 .

,m; =0 gives the total numbers N&. g,",m, =1
gives the average values (xk)&. g,",m;=2 gives the
variances ((x~ —(x )&(x —(x )&))&. g," im, ~2
gives the higher-order moments. When % is empty, we
have the conventional moments. When % is not an emp-
ty set, we have the reduced moments. The order of reduc-
tion can be up to n —1.

To make the formulation more tractable, we define two
operators I& and T~. I~, which we call the drift vector
operator, is defined as

I~= QI~e, ,

l~f(JV, &,t)= f, f(JV,&, t)C(JV, A, t)dJV
JV' Bxk

if xk EJV, (10)
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I~f(N &, t) =f, „f (N;A, t)C(N;R, t)d JV~* ax„"

if x„*EA,

where f (N', A, t) is a well-behaved scalar function. T&,
which we call the diffusion tensor (dyadic) operator, is
defined as

T~'f(N&, t)=Tg f(NA, t)

=f, .f(N', W, t)C(JV,A, t)dN'~* ax, Ox„*

if x eN, x„*EA, (14)

if x„*,x„"EA . (15)

Tg &f(N;W, t) = f f(N;R, t)C (N', A, t)dN~* Bx„*Bx„*

T~= g Tge;e, ,
17J —1

2
T~gf (N, &,t)= f, f (N;R, t)C(N;A, t)dN'

Jv Bxp Bxq

if x,x EJV,

(12)

(13)

Operations of the I& and T& convert a given function
into its moments, reduced moments, and some simple in-
tegrals, which can be expressed as

I~kf(N;%, t)= —N~ (f(JV„,A„,t))~, (16)

where Ak is an extended subset defined by Wk =JP e Ixk I
and Nk is in turn given by

JV=JV„%„,

I "f(N'% t)=

f (N ~ )
- u„(JV,&,t)f (JV,&, t)

+Nrem u„(JV A t) ' ' +
Bx„*„u„(N;R,t) u„(JV,A, t)

r

w„(N, X,t)f (N, A, t)
dJV if u, (JV,A, t)%0, (17)

u„(JV,A, t)

oo

Bx*
"k

w„(JV,%, t)f (N;A, t)

u„(N, A, t)
dN if u„(JV,&, t) =0,

Tgf (JV,&, t)=N& f(JV,A&, t) if pWq, x x~EN,

where%
q

is another extended subset

defined

by =AS Ix,x*I and N is in turn given by N=JV&qe%&~,

Tgf (JV,A, t) =

f (N, ,A, , t) u„(N'„R„t)f (N, ,A„t)
ax,' u (N,R, t)

wp(JV, A, t)f (N'p, %p, t)
dJV if u (N, , t 0,

u, (N„A, , t)

w (JV,R, t)f (N„,&,t)
dJV if u (JV,R~, t)=0,

u~(JV&, W~, t)

(20)

(21)

f (JV,~, t) u.,(N A t)f (N +p t)
N~ u„(JV,A—, t) „+ u„(N', %,t)

q q q

T~'f(N;W, t)= '
2„(JV,A, t)f (JV~,%p, t)

"q

u„(JV,R, t)

w~(N, A, t)f (N ,A,t)'
~p Bxr up(JV„,A, t)

q

dN if u„(N,A, t)%0,
p r (22)

(23)
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Tg 'f(JV', %,t)= '

A.

f ( JV + )-U„(JV,A, t)f (JV;%, t)
+X~ u„(JV,A,t),~

' ' +
Bx„* u„(JV,R, t) u„(JV,R, t)

P . P P

U„(JV,A, t)
+X& 2u„(JV,&,t), ' ' +f(JV &, t)

Bx„* u„(JV,&, t) Bx„* u„(JV,R, t)
P . P P P

f (JV + t)U (JV,+, t)w (JV,+, t) f (JV,JP, t)Bw„(JV,R, t)

u„~ (JV,A, t) u„(JV,A, t )Bx„*
P

P

+ 2m t ' ' if u t 0
Bx„* u„(JV,R, t)

P . P

(24)

~)fc

P

f (JV,A, t)w„(JV,&, t)
P

U„(JV',%, t)
P

dJV if u, (JV,A, t)=0,
P

(25)

Tg 'f(JV, R, t)=

u„(JV,A, t)
+X~ u„(JV,~, t)

''
ax„* u„(JV,X, t) ax„*

P p
r r

f (JV', R, t)u„(JV', %, t)
+X~ u„(JV,A, t)

Bx„" u„(JV,A, t)u„(JV', %, t)

U„(A;%,t)u „(JV,A, t )

ax„* u„(JV,X, t)
P q "q

f (JV', R, t)u„(JV ,W, t)U„(JV'', %, t)
+N~

u„(JV,A, t)u, (JV,A, t)

f (JV,X, t)U„(JV,R, t)w„(JV ,%,t)'
u„(JV,~, t)u„(JV,~, t) ax„*

P

f (JV,R, t)w„(JV,&, t)
"q

u„(JV,R, t)
q

u„(JV,A, t)w„(JV,%, t)

ax,'
P

f (JV,A, t)
u„(A', A, t)

q

if r Wr, u„(JV,Q, t)u„(JV, R, t)&0 (26)

B2

r r

f (JV,A, t)w„(JV,R, t)
q

U„(JV,R, t)
q

dJV if r Ar, u„(JV,X, t)u„(JV,A, t)=0 . (27)

The derivation of these equations is straightforward and is therefore omitted here. Using the drift and diffusion
operators, we can express time evolution equations of the moments in the following compact form:

d [N&(M( ) )&] =+X~ F(JV,A, t)
dt

d(JV&

dt

n

I pm, —2
k=1

~ Y~Mg )

+X~ ( D(A B,t) Z~M("() +T~ [D(5/ X, t]M]r( ]

—I~-I [F(JV,A, t)+Y~.D(JV;%, t)+D(JV, A, t) Y~]MIR ) j, (28)
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n I;
—( ))''

n m;(m. —5,, )„,(x, —(x, & )(x, —(x, &X) ' &
'

dt

(29)

(30)

(31)

dCi =f ] [ C], C2 C( x], x 2, t ),a I,dt

dC2 f, [C—], C„C(x]yxz, t), a] y

dt

(33)

(34)

described by master equations and large defects are de-
scribed by a FPE. This approach has been extended to
defect clustering processes in diatomic materials and ap-
plied to silicon carbide [42]. The two sets of equations
can be expressed as

1 if g~O
0 iffy&0. (32) =fii[Ci C2 «xi»z t»&]

dt
(35)

Details of the derivation for Eq. (28) are given in the
Appendix. The reduced distribution functions, which are
included in time evolution equations of moments, and can
be expanded in terms of their moments and reduced mo-
ments. By introducing the reduced moments and em-
ploying an appropriate truncation scheme, we have
closed the openness caused by mixed boundary condi-
tions at finite boundaries. Generally, the drift ve'ctor and
the diffusion tensor are expansions of infinite-order poly-
nomials of their phase space coordinates. This makes
time evolution equations of lower-order moments depend
on higher-order moments. Therefore, the time evolution
equations of lower-order moments are generally not
closed. This openness can be removed by truncating the
time evolution equations at an appropriate order. There
are several truncation schemes proposed [30,31]: simple
moment truncation, central moment truncation, and cu-
rnulant truncation. By applying the truncation pro-
cedures to some analytically solvable processes, it has
been found that the central moment truncation and cu-
rnulant truncation schemes are more accurate as com-
pared to the simple moment truncation scheme. For gen-
eral FPEs, the central moment truncation scheme is
easier than the cumulant truncation scheme and will
therefore be adopted in this work. The moment equa-
tions, which are a set of ordinary differential equations,
can be easily solved with the LSODA package of computer
programs [40,41].

III. APPLICATIONS
OF THE MOMENT METHOD

BC(x„xz,t)
F, (x&,xz, t)C(x„x2, t)Bt,. i Bx;

2 a2+ g D; (x„x2,t)C(x„x2,t),
( Bx)Bx.

C( oo, x2, t) =C(x &, ~, t) =0,
C(x„x2,0)=known function of x, and x2,
C( 1, l, t) =C„,

(38)

(39)

(40)

where f&, f2, and f» are known functionals. a
represents all material properties and damage conditions.
2, (x „x2,t) is a known function. C„C2, and C» are
concentrations of type- 3 interstitials, type-8 interstitials,
and stoichiometric di-interstitials, respectively, while
C(x&,X2, t) represents concentration of defect clusters.
The di-interstitials are described by both the master equa-
tions and the FPE.

The FPE can be converted to a set of moment equa-
tions as described in Sec. II. Simultaneously solving the
moment equations and master equations, we can get a
distribution of defect clusters. Details of this physical
problem are discussed in Ref. [42]. Coupling of the mo-
rnents and the reduced moments is highlighted through
the equation for zeroth-order (nonreduced) moment

a
F~(x„x2,t)C(x (,X2, t) — D;;(x„x2,t)C(x),X2, t)

Bx;

= A;( x„zx,t)c( x&, X2t) at x; =1, (37)

In Sec. III A, coupling of the moments and the reduced
moments is demonstrated by an interstitial atoms cluster-
ing process in diatomic materials. Moment equations for
one-dimensional FPEs in a semi-infinite domain
developed by Ghoniem [29] are recovered as a special
case in Sec. III B. Numerical accuracy of the method is
demonstrated in Sec. IIIC by applying it to a two-
dimensional Ornstein-Uhlenbeck process, for which an
analytical solution is available.

A. Interstitial atom clustering processes
in diatomic materials

When defects are produced in a solid, they tend to
form clusters. According to the two-group approach
[38], defects (vacancies, interstitials, and their clusters)
are described by two sets of equations: small defects are

dN =T D„(x„x2,t)+T D ( 22),xXt2)
dt

+T' D,2(x„x2,t)+T 'D2)(x), X2, t)

I'F& (x „xz,t) ——I F2(x &,xz, t),

where

I'F, (x „X2,t) = N( «}(F)(x (,xp—, t) ) („«},

I F2(x„x2,t)= —
N( «}(Fi(xi,X2, t))

T D$](x]pxpyt)

(F,(x;,x2, t) A, (x ),X2, t) ) (—X )

(41)

(42)

(43)

(44)
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T D22(x»x2, t)

N—g, (F2(x),x2, , t) —A 2( xi, x2, t))(Ix~ I X2

T' D)2(x), xp, t) D]2(x1 ~x2, t)C11

T '
D2, ( x„x2, t ) = D~, ( x*, , x 2, t ) C„.

(45)

(46)

(47)

B. One-dimensional FPE in semi-infinite domains

u(x, t)=D(x, t), (48)

Considering the one-dimensional FPE in a semi-infinite
domain studied by Ghoniem [29], we can write the
boundary conditions as

It is clear that the reduced average terms have to be ex-
panded in terms of the reduced moments. The zeroth-
order moment X is therefore shown to be coupled with
the reduced moments. Similarly, higher-order moments
are also coupled with the reduced moments. Equations
for the moments and the reduced moments and the mas-
ter equations have to be solved simultaneously to obtain
defect distribution functions.

w(x, t)=- dN
dt

U(x, t)=F(x, t) . (50)

Substituting these boundary conditions into the right-
hand side of Eq. (28), we have

dX, ~ dD(x*, t)C(x*,t)=F x*,t C x*,t—
dt 8x

d(x ) &, „d in% D(x', t)C(x*,t)

d(m( )) =m ((x —(x ) ) 'F(x, t) ) +m (m —1)((x —(x ) ) D (x, t) )
dt

m (x"—(x ) ) 'D(x*, t)C(x", t) d in%[(x* —(x ) ) —(M( ) )] (M( i) )
d(x )

x dt dt

(51)

(52)

These equations are precisely the same as Eqs. (23), (25),
and (27) in Ref. [29], except for the use of different sym-
bols. The moment equations are solved simultaneously
with several master equations describing small defects
[29]. It is worth mentioning that there are two matching
boundary conditions at the finite boundary x* because
both C(x, t) and its first-order spatial derivative are con-
tinuous in order to be physically meaningfu1. Since they
are matching boundary conditions, the problem is
mathematically well posed.

1
C(xi, x2, t) =

0.02m(e ' —1)

X exp
(x, —e')~+(x2 —e')

0.02(e ' —1)
(57)

It is easy to prove that this is also the solution of the
same FPE in a semi-infinite domain, which is defined as

x, E(x*, , ~) and x2P(xz, ~), if we choose the follow-

ing boundary functions at the finite boundaries:

C. Ornstein-Uhlenbeck process

A simple Orn stein-Uhlenbeck process in a two-
dimensional infinite phase space can be described by the
following set of equations:

u;(x„xz, t)=1.0,

x; —e'
U, (x„x2,t)= ——

10 (e '—1)

w, (x, ,x2, t) =0.0,

(58)

(59)

(60)
BC(x „xq, t)

g a;kxl, C(x&,x2, t)
j=1 & k=1

2 a2+ g DJC(x„xz, t),
, Bx,.Bx,

C( „xz,xt =0)=5(x, —1)5(x2—1),
C(x„x2,t)=0 as x;~~,

(54)

(55)

(56)

where 5(x) is the Dirac delta function. In this example
a,-k and D;~ are constants. We take a,k

=6;k and

D;~ = 10 5;, with 5; being the Kroneker delta function.
This problem can be solved analytically and the distri-

bution function can be expressed as [3]

where i can be 1 or 2 depending on which boundary is
considered.

Moments of this distribution function in the semi-
infinite domain can be directly calculated. With the
chosen boundary functions, we can also solve for the mo-
ments using the method developed in Sec. II. Moments
calculated from the analytical solution at t =5.0 with
x*, =100 and x2 =100 are used as initial conditions for
the moment equations. The time dependence of the mo-
ments is studied by both the moment method and the
analytical distribution function. Truncating the moment
equations at the second-order moments, we have solved
for the first three moments. Because the problem is
symmetrica1 with the two coordinates, we do not need to
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TABLE I. Effects of truncation on the accuracy of (M~ ~ ) —(Ml ~ ),=, o.

E( ~ (%%u)

Moment
7tl ),m2

0, 0
1, 0
2, 0
3, 0
4, 0
2 2

Analytical

1.1054X 10
9.6250X 10'
3.7988 X 10

-6.1622 X10'
9.3412X 10
3.1058X10'

Second
order

1.1049 X 10-'
9.6250 X 10'
3.7988 X 10'

Fourth
order

1.1049X 10-'
9.6250 X 10'
3.7988 X 10
3.4314X10'
9.7683 X 10'
3.1058 X 10

Second
order

0.05
0.00
0.00

Fourth
order

0.05
0.00
0.00

5668.47
4.57
0.00

consider moments of all coordinates. The time depen-
dence of the total number obtained from the moment
method and that of its analytical counterpart are com-
pared in Fig. 1. Similar comparisons for average values
and variances are shown in Figs. 2 and 3, respectively.

The approximate moments obtained using the moment
method agree very well with their exact counterparts. To
study the effects of truncation, moments and their rela-
tive errors are calculated with various orders of trunca-
tion as

where Ed, ~ represents relative error of moment increase
(M ( ) ) —(M ( ~ ), 5 o, with zeroth-order truncation.
The subscript t =5.0 indicates initial values of moments.
Nonzero moments and their relative errors, at t =5.5, for
truncation of second and fourth orders are calculated and
listed in Table I. The moments that have an analytically
zero value are not included in Table I since the magni-
tude of all their approximate values is less than 10
The results of lower-order moments are stable with
respect to truncation at two different orders. The large
relative error for a third moment is due to the fact that
its analytical value is very small. In this ease, contribu-
tions of higher-order moments dominate and truncation
causes a large relative error.

It is worth mentioning that we chose the boundary
function U;(x&, x2, t)= —(x; —e')/10 (e '—1) to obtain
an analytical solution. This function, however, is singu-
lar when t =0.0. Therefore, t =5.0 rather than t =0.0 is
taken as a starting time to avoid numerical difhculties.

IV. CONCLUSIONS AND REMARKS

In this work, the moment method is developed for n-
dimensional FPEs in semi-infinite domains with mixed
boundary conditions. The idea introduced here can be
directly applied to deriving moment equations of n-
dimensional FPEs in finite domains with mixed boundary
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FIG. 1. Comparison of the total number solved from the mo-

ment equations with its analytical counterpart. The moment in-

crease N —N, =, is plotted against the time increase t —tp. The
p

initial values are tp=5. 0 and N, =, =0.998 8946319.
p

0.1 0.2 0.3
Time (Arbitrary Unit)

0.4 0.5

FIG. 2. Comparison of the average value of x& solved from
the moment equations with its analytical counterpart. The mo-
ment increase (x, ) —(x& ),=, is plotted against the time in-

p

crease t —tp. The initial values are tp
=5.0 and

(x, ),=0=148.442 1234.
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conditions, whenever necessary. Several salient con-
clusions can be drawn based on this work.

(i) The moment equations for one-dimensional FPEs
derived by Ghoniem are recovered as a special case of the
general moment method developed in this paper.

(ii) With truncation at second-order moments, the mo-
ment equations accurately predict time evolution of the
first three moments of a simple two-dimensional

FIG. 3. Comparison of the variance of x& solved from the
moment equations with its analytical counterpart. The moment
increase ((x &

—(x
& ) ) ) —((x, —(x, ) ) ), , is plotted against

the time increase t —to. The initial values are to=5.0 and
( (x, —(x

& ) ) ),=, =218.851 608 3.
0

Ornstein-Ohlenbeck process. The relative errors are less
than 0.05%.

(iii) With truncation at fourth-order moments, the mo-
ment equations give the same prediction accuracy of the
first three moments as truncation at second-order mo-
ments. On the other hand, prediction of a third-order
moment is in large relative error with its analytical
counter part. This can be accounted for by the fact that
this moment is very small compared to higher-order mo-
ments. Therefore higher-order moments dominate and
truncation causes larger errors.

(iv) From results obtained with truncation of diff'erent
orders, we suggest that convergence of moments should
be tested for each problem. This can be done by solving
for first several moments at various orders of truncation.

There are several ways of constructing a distribution
function based on known moments. Choosing a recon-
struction scheme may introduce some uncertainties.
Since in many cases the first three moments (or higher-
order moments) give enough information of a random
process, we will not discuss construction of distribution
functions in this paper. The method developed here can
be applied to many fields involving FPEs, particularly de-
fect clustering theory for multicomponent materials [42].
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APPENDIX: DERIVATIQN QF THE MQMENT EQUATIQNS

dX„(M (-) ), „~ . ~ aF, (W,X, t) ~ a'D, , (W,R, t)
II(x —(x) )

' —~ +
j=l J j, l = 1 j I

C (A;A, t)d JV

m, d(x, )~—f,g — ' — ' g (x; —(x;)~) 'C(JV, A, t)dJV .
i (XJ (XJ )~) dt

The second term does not exist for zeroth- and first-order moments. For higher-order moments, it can be written as

(Al)

x —x 'C t d = —X — .Y~M (A2)

The drift term can be expressed in terms of moments as

—f „ff (x; —(x, )A )
' g F, (JV,A, t)C (JV,%, t)d JV'

i= i j=l J

= —f , g „F~(A',A, t) +(x;—(x; )rt) 'C(A', W, t)dA'
j=l J i = 1

n m.
+ f g — „' F (A;%, t)+(x, —(x;)~) 'C(JVR, t)dA'

XJ. X~

= —I F(JV% t)M(ti )+X~( F(JVR t) YAM)ti ) )~ .

For the difFusion term, if j%1,we have



FORMULATION OF A MOMENT METHOD FOR. . .

[(x,—&x, &/) '(x, —&x, &yt) 'DJ, (JV,W, t)C(JV,W, t)]
BxiBX .

a2=+(x,—&x, &jt) '(x, —&xj&yt) ' [D,, (JV,A, t)C(JV, n, t)]
Xh BXj

+m, m (x, —&x, &yt)
' (x, —&x &yt)

' D;(JV,A, t)C(JV, A, t)

+mJ(x/ —&x, &„) '(xj —&x, &r ) — [D,/(J-V, tl', t)C(JV, A, t)]
BX )

82=+(,—&, & ) '(, —&, & )
' [D,;(JV-,X, t)C(JV, A, t)]

X(BXj

mim —(xi —
&. xi &&)

' (x —&x. &yt)
' D i(JV,A, t.)C(JV,A, t)

+mj — [(xi —&xi &yt) '(x —&x &yt)
' Dji(JV', A, t)C(JV, W, t)]

BXI

+m/
g

[(x/ &x/&/) (xj &x &~) 'D)/(JV, A, t)C(JV,X, t)] .
BXj

Ifj =1, we have

[x —&x &yt) 'D, (JV', A, t)C(JV;%, t)]
BX~

=+(x, —&x &~) ' [D (N, A, t)C(JV;%, t))
BXJ

+m. (mj —1)(x —&x &yt)
' D (JV;A, t)C(JV'.,W, t)+2m (x —&xj &Jt. ) ' [D (JV,A, t)C(JV, &, t)]

BXj

=+(xj—&x, & )"",[D,, (JV,iV, t)C(JV, JV ,t)].
X~

—m (mj —1)(xj —&xj &yt)
' D (JV;A, t)C(JV;J&., t)+2m [(xj—&xj. &yt)

' D (JV",A, t)C(JV. ',A, t)] . (A5)
BXj

Therefore

O'D, , (JV,A, t)C(JV, W, t)„,Q(x, —&x, yt)
' g dJV
j=1 BX BXI
l&j

=+jVyt&D(A;%, T) ZytM( ) &yt+Tyt D(JV,A, t) —I~ [Yyt D(JV,A, t)+D(JV;A, t) Yyt]M[jt )

If (x; —&x; & („)) is replaced by x; or 1, the above formulation is unchanged, except that the last term in Eq. (Al) disap-

pears. Therefore, we have

d jV~&M( ) &„ =+ F(JV,&,t)—
d&~&yt

'
n

I ym, —2 Y~Mg )

i=1 JY

+jV- &D(JV,X, t) Z Mg-) & +T .D(JV, X~, t)M(-)
—I~ [F(JV,&, t)+Y~.D(JVA, t)+D(JV, A, t).Yy, ]M/ ) .
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