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Relation between relativistic quantum mechanics and classical electromagnetic field theory
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The objective of this report is twofold. In the first place, it aims to demonstrate that a four-
dimensional local U(1) gauge invariant relativistic quantum mechanical Dirac-type equation is derivable
from the equations for the classical electromagnetic field. In the second place, the transformational
consequences of this local U(i) invariance are used to obtain solutions of different Maxwell equations.

PACS number(s): 41.20.8t, 03.65.—w

I. INTRODUCTION

In the early history of quantum mechanics, some phy-
sicists tried to interpret the formalism of quantum
mechanics in terms of classical physics. Two examples
are the hydrodynamical interpretations of Madelung and
Korn [1,2]. Despite the fact that those classical interpre-
tations fell short on the conceptual side [3], they revealed
interesting similarities in mathematical structure between
quantum mechanics and classical physics. The
Madelung-type transformation was applied in, for in-
stance, Bohm's hidden variable interpretation of nonrela-
tivistic quantum mechanics [4] and, more recently, in
Vigier's study on neutron interferometry [5] and in
Kyprianidis's study of the Sutherland paradox [6]. The
Made1ung transformation was also applied in Purce11's
study of Lie-Baecklund transformations of quantum
fluids [7] and in Perrie's study of the mapping of classical
wave systems to nonlinear Schrodinger equations in
which nonlinear Schrodinger equations are obtained as
resultant Euler-Lagrange equations [8]. In the present
paper, as in a previous one [9], the connections between
quantum and classical physics are studied further. It will
be found that an equation similar to a four-dimensional
relativistic quantum mechanical Dirac equation can be
derived from classica1 field theory. In addition, the ob-
tained forrnal relation can be used to derive solutions of
different Maxwell equations. The structure of this report
is as follows. In Sec. II, the problem is defined. In Sec.
III, the necessary mathematics is briefly outlined. Then,
in Sec. IV a Dirac-type equation is derived, and in Sec. V,
the U(1) invariance of this equation is employed to obtain
solutions of generally nonsolenoidal Maxwell equations.
In Sec. VI, the obtained result is briefly discussed.

II. PRELIMINARIES

For mathematical convenience, the dielectrical con-
stant and the m.agnetic permeability are chosen to be uni-
ty. Moreover, A=c =1 and the factor 4m is included in
the charge density and the electrical current vector.
With this system of units, the Maxwell equations can be
written as

V XF=i +j V.F=q,
at

VX F—i —i J =O.
at

Because the "curl on grad" operation produces the zero
vector, we are allowed to introduce a function P such
that

F i i J=—VP —.
i3t

Moreover, it is assumed that

(5)

V C=i
Bt

Hence, taking the divergence of (5) and using (6) and the
divergence condition on the F vector, it follows that
( Q& =V2 —Q2/Qt 2

)

H P=q(x) —iV J=—co . (7)

Suppose the F vector, the current vector, and the charge
density can be decomposed as

4 4 4
F= gF", j= g j", q= gq" (8)

p=1 @=1 p=1

with F"=E"+i8"(k=1,2, 3) and (E',E,E ) the elec-
trical vector, (8',B,B ) the magnetic vector, and
(j',j,j ) the electrical current vector. q is the charge
density. Note that it is assumed that the fields depend on
the array (x&,x2, x3, t), with xq the spatial coordinates
(k = 1,2, 3) and r the time. Later on, use will be made of
x =(x&,xz, x3,x4), with x4=it. Those coordinates are
useful for relativistic quantum mechanics. The depen-
dence will be made explicit in special cases only. Suppose
we start with a solenoidal system of equations with a
charge density that is independent of time. This means
we may write

q(x)=V Q(x)
j=V'XJ .

Moreover, suppose that there is a vector (C', C, C )

such that

F=Q(x)+VXC . (3)

Because the "div on curl" operation vanishes, the diver-
gence condition on the F vector, given in (1) applies. It
can also be concluded from (2} that the system is
solenoidal. Substitution of (2) and (3) in (1}then gives
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and that, for each component, an equation similar to (1)
applies. This entails the functions P", such that

Furthermore, S is the sum of two other matrices S& and
S2 with

U P"=—co", @=1,2, 3,4 .

Or, in the form of four-dimensional vectors,

sa
S, =

0
a =1,2,

sg
(17)

(1()) and the 2 X 2 matrices s i and s2 are defined by

where the tilde indicates a four-dimensional vector. This
equation will be the basis for further analysis. s) = 1 —i 0 0

0 1+i ' ~ 1 —i

—1 —i

III. DEFINITIONS AND THKORKMS

In this section the necessary mathematics will be out-
lined. First, use will be made of two 4X4 matrices J&
and J2. The entries of those matrices are defined by

(Jl ),A, 5', i.(5p, l+5p, 2)

Moreover, a matrix T is defined by T =I —S. From this
definition and using y"y +y y"=2I5"', it follows that
T = —3I.

Third, a matrix R(X) is associated with a matrix X
such that

(J2),i. 5p, A. (5AM, 3+5,4)

with 5„&Kronecker's 5.
In the second place, a matrix S is defined by

s=I —y'y —y y —y y', (12)

Y=A(X)= Y„i=+X' i .

Using this notation, we may present the following
theorems for two arbitrary four-vectors (f ',f,f,f )
and (g', g,g,g ). The first theorem is

with y" the Dirac matrices (p=1,2, 3,4) and I the 4X4
unity matrix. For k = 1,2, 3, the Dirac matrices are equal
to

y"(fg )=
I &(y")f] [&(y")g], (20)

with the pth component of the direct product defined by

O —io-'
(Jg)"=f"g" (21)

io-" O
(13)

with 0 the 2X2 zero matrix and o" (k =1,2, 3) the Pauli
matrices

for p=1,2, 3,4. The proof of the above theorem is based
on the fact that the Dirac matrices for each column or
row vector contain only one entry unequal to zero. Two
other theorems can be proved similarly. The first is

0 1 0
1 o 2

1 0 ' i

—i 1 0
0 ' 0 —1

The matrix y is defined by J
&

—J2.

From (13) it then follows that

y's=sy', y's=sy', y's=sy', y's=sy'. (15)

y"s.(feg ) = [&(y"s.)f )e Ã(y"s. )g], (22)

y"J.(Jg ) = [&(y"J.)f1 [&(y"J.)g 1

with a =1,2. In addition, we have

J, (fag )=(J,f)g =f(J. g) =(J,f )(J, g) .

(23)

(24)

with a =1,2 and the S, as defined previously. The
second is

yf'~'S=Sy~, ~——1,2, 3,4. (16)
I

Or, more generally, when f(1)=2, f (2)=3, f (3)= 1,
f (4)=4, In the following a theorem will be presented that is cru-

cial to the derivation. Suppose there are three diFerent
types of four-vectors,

f, (x)=(g,'(x), P', (x),g', (x),P, (x)), gb, (x)=(gb, (x),gi, ,(x),gb, (x),gt„(x)),
X~b, (x) =(APb", (x), Ag', (x),Ag', (x),Rib', (x))

with x =(x,it); x are the space coordinates and t is the time coordinate. (25)

In (25), a, b, =l, 2 and @=1,2, 3,4. Those vectors are
supposed to be related by

I

Substitution of (26) in (27) and making use of (22) and the
summation convention for c,d = 1,2, with 5'"
Kronecker's 5, then gives

A(y"J, )gb =%(yf'"'S, )gi, +R(y")(gl, , +X), )

with b =1~b =2, b =2~b =1 .

Observing (23) we may write

(26)

yi'J (gi$2)=yf(~~S, (gi$2)+(1 —5' )y"(g, ,SX~d, )

+y~g, .@g2.)+y~(A, ", .g A2. )

+ (1—5'")[%(yf'"'S, )Q, ]

y"J.(4 0 )=[&(y"J.)4 1[&(y"J. 4 ] . (27) [&(y")Cd,.+4,.)1 . (28)
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After rewriting the terms of (28) we arrive at

Tr"(4i 42)

=(1—5c )5"y"(1T —-'g )eg

+(1—5'")5' y"(itr„—g„——,'X"„)X"„ i, ,

with the summation convention for a, b, c,d = 1,2 and

(29)

Pc, a
=Jafc (30)

This mathematical outline ends by noting that the appli-
cation of the '%" operation to the Pauli matrices gives
the following relations:

(39)

Note that this equation for a certain, yet unspecified sub-
set of cases, contains the following U(1) gauge invariant
equation:

y"B„qr=0 with 0=(f,f ), (40)

which can be identified as a massless free-particle Dirac
equation with gauge covariant derivatives. Hence, from
a set of classical field equations, an equation similar in
form to an equation central to relativistic quantum
mechanics can be derived. The U(1) invariance of Eqs.
(39) and (40) can be illustrated by noting that if

A(iir")A(iO ) =%(iver") %(iCr")=I2

with X~ the adjoint of X,
while

.R( I,gt( —I, )'=N—( I, )'X( —I,)=I,—.

(31)

qr —+e' 4, C„~G„+iB„R,
both Lagrangian functions

L i(x) =qi~y (y"8„)qi,

L,(x)=4 y4(y"D, Tyi"8„)4

(41)

Moreover, we remark that in this paper the summation
convention for greek letters also applies unless special
emphasis is wanted.

remain invariant [10].

V. APPLICATION OF U(1) INVARIANCK

IV. DERIVATION OF A U(1) INVARIANT
DIRAC-TYPE EQUATION

With the transformation in (41), new Maxwell equa-
tions can be derived from the original solenoidal system.
Because the qr vector transforms like in (41), we may take

In order to derive a Dirac equation, we first identify
the vector on the left-hand side of (7), containing the
functions P", with the first term on the right-hand side of
Eq. (29) (summation convention for a, b, c,d = 1,2),

(33)

eiR /2q

Moreover, let us assume that (a, b = 1,2)

eiR/2g

(43)

(44)

The second term on the right-hand side of (29) is written,
for short, as

U"=(1—5")5' (g —
g

—-'X," )eX," (34)

Hence, (29) may be rewritten as

Tr "(Pi42) =r "0+r"U" . (35)

(37)

In addition, a gauge covariant derivative is defined by

B„=B„—G„with 6„h(x)=G (x)h (x) (36)

and G„(x) a gauge function. With the definition of the
Ui" vector and the gauge covariant derivative, the right-
hand side of (7) can be identified as

4
co=y 8 g yi'8 U"+y"y'[l„l d„C„C„"d,]P —. —

In this case, a new vector P' can be obtained from (33),
using the previous two equations,

iRy (45)

This means that for each pth component of the new vec-
tor P' the gradient can be written, using (5), as

.ac~VP'"=i/'"VR+e' F" i i J"——
Bt

(46)

with R =R (x). This equation can be rewritten as

Vying

e iRFP+ &e iRyPVR &
(C/leiR )

Bt

'R ~+ ~ iR—C"e' —i J"e'
at

(47)

If the F, the Q, and the j vector in the primed system are
written as

F'"=e'R[F4+iP"VR ], q'"=V Q'"

Tr"&„(AA ) =y"&„0+g r"&„U" (38)

Operating gauge covariant di6'erentiation on the proper
terms we obtain with Q'"=e' [Q"(x )+i/"VR i(VR ) X C"]—,

(jf)' ~ . ~ ~ Qgj'~= — ~ +V X e'R J"—iC"
at Bt

(48)

Employing the operator y D on both sides of the previ-
ous equation and making use of (37), the following equa-
tion can be derived:

then, taking the curl of (47) and noting that (C")'=e' C
(k =1,2, 3), the following irregular set of Maxwell equa-
tions can be obtained:



5154 BRIEF REPORTS 51

and

B"=B'—ImQ' (50)

E"=E'+X,
with (X',X2,X ),

(51)

.-MX= Im e' J—iC
Bt

(52)

Then it follows that in the double primed system the ir-
regular Maxwell equations (49) can be rewritten as

BB//
V XE"+ =0,

at

QE //

VXB"—
at

=''
In this case we have

V B —0

E// //

q"=Req'+V. Im e'~ J—iC
Bt

(54)

for the charge density and

BB'
V XE'+ = —Imj', V B'=Imq',

Bt

M'
V XB' — =Rej', V.E'=Req' .

Bt

This irregular system, which resembles the system of
Maxwell equations in Dirac's monopole theory [11],can
be transformed into a regular system as follows. Suppose
we define a double primed system as

j"=Rej'—V X (ImQ')

a „- . -az
m e l

for the current density vector. Note that Eqs. (33) and
(34) determine the g, g, and k vectors. Because of the di-
mensions of the system, we actually have
(1 X4) +(4 X4)=20 equations. Moreover, there are, ac-
cording to (26), only four "free" A, vectors. Because there
are 2 X 2 gb, vectors and 2 gb vectors, we have in totality
(4X4)+(4X4)+(2X4)=40 variables available. Hence,
the proposed derivation and transformation can be per-
formed in principle.

VI. CGNCI. USIQN

In this Brief Report two things have been demonstrat-
ed. In the first place, an equation similar to a relativistic
quantum mechanical Dirac equation can be obtained
from classical field theory. Hence, classical field theory
and relativistic quantum mechanics are more deeply con-
nected than is generally assumed. A similar finding was
obtained by Moses [12]. However, Moses used a six-
dimensional theory, whereas in the present Brief Report a
four-dimensional theory is used. In the second place, the
local U(1) gauge invariance of the Dirac-type equation as-
sociated with the classical field equations is used to obtain
solutions of generally nonsolenoidal Maxwell equations
from the original solenoidal system. This adds to our tac-
tics for deriving analytical solutions of Maxwell elec-
trornagnetic field equations.
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