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Transient regime and superradiance in a shert-pulse free-electron-laser escillater
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We investigate the transient evolution of radiation in a low-gain free-electron-laser oscillator,
driven by synchronized electron bunches much shorter than the slippage. We calculate analytically
the radiation intensity and the gain in the linear regime. We show that, in the nonlinear regime
and in the ideal case without losses, the radiation 6eld is described, as in the short-pulse, high-gain
ampli6er, by the self-similar superradiant solution.

PACS number(s): 41.60.Cr, 42.60.Jf

Recently increasing interest has been given to &ee-
electron-laser oscillators driven by electron bunches
shorter than or equal to the slippage distance [1,2].
In particular, superrad. iant emission of short radiation
pulses, whose peak intensity is proportional to the square
of the electron beam density [3], has been observed nu-
merically [4] for pulse length equal to the slippage dis-
tance. Superradiance has been supposed to play a role
in several efFects occurring in the short-pulse operation,
for example, the observation of limit cycles in a d.esyn-
chronized cavity, with a periodic generation of radiation
pulses [5]. At present, however, superradiant emission
in oscillators has not yet been demonstrated analyti-
cally. Moreover, theoretical works dealing with short-
pulse propagation, apart &om numerical simulations,
have been focused only on the research of stationary so-
lutions, called supermodes [6], and not on the transient
regime.

In this paper, we calculate analytically the radiation
field in the transient linear regime of an oscillator driven
by ultrashort electron bunches, in a condition of perfect
cavity synchronization. Although no stable solutions ex-
ist in this case, the small-signal gain per pass decreases
as n ~ as a function of the round-trip number n. Due
to the slow decrease of the gain with n, if the losses are
very low and the initial startup power sufIiciently large,
the radiation can reach the nonlinear regime for a suf-
ficiently high value of power. %'e demonstrate that, in
the case of negligible losses, the radiation intensity is su-
perradiant and the field is described by the superradiant
self-similar solution. A previous analysis [7) has shown
that this solution describes the superradiant regime in
a high-gain, short-pulse amplifier. The maximum of the
superradiant pulse amplitud. e is proportional to n and its
width decreases as n /2. For large n, secondary peaks
of lower intensity follow the principal peak.

We consider the usual model of equations in the dimen-
sionless form and in the Compton approximation, for the
complex field amplitude A and the electron phase 0 [3]:
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and zi + z2 ——z/Lg, where z is the distance along the
axis of an undulator with period A = 27r/k and rms
parameter a, L = A/4vrp and Lg = A /4mp are the
cooperation and the gain lengths, A = A (1+a )/2' is
the resonant wavelength, and vi~ is the average longitudi-
nal beam velocity; p = (1/po)(a A F/4vrrs)2)'s(I/Is)i)s
is the fundamental &ee-electron-laser parameter, E is 1
for a helical undulator and the well-known difFerence of
Bessel functions for a linear undulator, mt" pp is the ini-
tial beam energy, rp is the beam radius, I is the peak
current, and Io ——4neomc /e 17000 A is the Alfven
limit current (perfect transverse overlapping between the
electron and radiation pulses has been assumed). In Eq.
(1) the angular brackets indicate an average over the par-
ticles and f(zi) is the longitudinal electron profile nor-
malized to l at the peak.

In an oscillator, the radiation is refIected backwards
and then forwards for the next pass through the undula-
tor, so that the input field for the (n+ 1)th pass is

~("")(z,—S) =.~~"l(z,),

where Ay and Ap are the fields at the end and at the
entrance of the undulator, r accounts for the reduction
in amplitude due to energy losses at the mirrors, and
b' = 2b L/L, is the cavity detuning, where EZ is the cav-
ity shortening relative to a perfect synchronism between
the cavity round-trip time at the vacuum speed of light
and the injection period of the electron micropulse. By
shortening the cavity by LC, the optical pulse is pushed
forward. each pass by LZ2 ——b.

We limit the analysis to ultrashort electron mi-
cropulses, with f(zi) = crb(zi), where h(zi) is Dirac's
delta function and 0 is the beam length in units of L for
a beam much shorter than the slippage, cr « z/Lg.

In order to obtain the solution in the linear regime, we
have integrated Eq. (2) from z = 0 and we have substi-
tuted the solution in Eq. (1); then, we have expanded
the right-hand side term of Eq. (1) in powers of the field
amplitude A keeping into account only the linear terms.
Assuming the initial phases 80 uniformly distributed over
2n. , with (exp(imgo)) = 0 for m, = 1, 2, the solution can
be obtained using the Laplace transform technique, as
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done, for example, in Ref. [7]. Using Eq. (3), the follow-

ing result is obtained:

z2

dg(., —g)
2 "+'A~"&(g),

0
(4)

where g = 1 for 0 ( z2 ( z = I/Iy = 4+P N where
I = A N is the undulator length, and g = 0 elsewhere.
This equation gives the linear solution for an arbitrary
value of gain per pass. We restrict our analysis to the low-
gain regime, for o.z (( 1. In this limit, only the first term
k = 0 in the sum of Eq. (4) can be retained. Moreover,
we assume small losses, r = 1 —a/2, with n « 1, and
small cavity detuning, b (( z. Under these assumptions,
w.e expand A(z2 —h) in a Taylor series retaining only
the first linear term proportional to the first derivative
with respect to z2 and we treat the pass number n as
a continuous variable, ~ = n. Then, Eq. (4) can be
approximated by the following differential equation for

A(z„r)= A,'"'(z, ):
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where tI)(z2, v) = e(zi ——0, z2). It is easy to verify that
Eq. (5) can be obtained directly by linearizing Eqs. (6)
and (7).

We observe that eqs. (6) and (7) have the saxne struc-
ture as the single-pass equations (1) and (2), with two
important differences: (a) the radiation interacts with
the electrons over the slippage length, 0 & z2 ( z,
whereas in the single-pass model, the radiation inter-
acts with the electrons over the electron beam length
(0 ( zi ( Lx,/I, ); (b) due to the cavity shortening 6,
the radiation moves forward or backward in z2 depend-
ing on whether b is negative or positive, respectively. In

This equation describes the linear evolution of the radi-
ation in the cavity in the low-gain, short-pulse regime.

With the same low-gain approximations used to de-
rive Eq. (5), we can obtain the equations describing the
nonlinear evolution in the low-gain regime substituting
A(zi, z2) for the input field Ap(z2) in the equation for
the electron phases (2). Equations (1)—(3) are then ap-
proximated by the following equations:

the first case, a boundary condition for A must be as-
signed to the leading edge z2 ——0, and the radiation is
shifted by lhlw along the positive direction of z2, leaving
the interaction region &om the trailing edge z2 ——z; in
this case the radiation propagates in the same direction
as the electrons. In the second case, when b is positive
(cavity shorter than perfect synchronism), a bouxidary
condition for A must be assigned to the trailing edge
z2 ——z, and the radiation propagates backward, leaving
the interaction region &om the leading edge z2 ——0 and
moving towards the electrons. This negative slippage
provides a positive feedback with bunching and power
carried by the electrons and radiation in counterpropa-
gating directions, leading to self-modulation of the emit-
ted intensity [8]. A positive detuning b allows for the ex-
istence in the linear regime of stationary solutions of the
form A(z2, w) = exp(pw)A, (z2), where p is the complex
eigenvalue with positive real part [6]. These solutions
represent stable pulse configurations whose intensity is
multiplied each pass by a constant gain factor.

Although no stable configurations exist in the linear
regime for exact synchronism [6], it is important to in-
vestigate the transient regime in this case. We assume in
the rest of the analysis b = 0, reserving the analysis of
the more complex case with positive cavity detuning b to
a further publication. We demonstrate in the following
that for b = 0 and negligible cavity losses the radiation
emitted is superradiant.

We start obtaining the linear solution for b = 0. As-
suming a uniform initial excitation, A(z2, w = 0) = Ap,
Eq. (5) has the following solution:

i 2

A(z2, r) = Ape / ) - m! 2m!m=0

= (A /2+3xr)(2/y)'/
(3/2) (~3+i)(y/2) / —im/12 —cxr/2 (8)
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where y = germ z2, and the last approxixnated expression
in Eq. (8) is valid for large values of y. We observe that,
apart &om the factor exp( —nr/2), the field depends only
on the self-similar variable y and has the same form as
the linear solution for a high-gain amplifier starting &om
noise and in the limit of large slippage [7], where in that
case y = ~zx z2. In Fig. 1 we plot the radiation profile
vs z2, for 7 = 300, z = 2, 0 = 0.1, o. = 0, and A0 ——0.01,
as given by Eq. (8). We observe that the field is an
increasing function of z2, with a maximum in the trailing
edge z2 ——z, showing the well-known lethargy effect for
which the effective radiation group velocity appears to be
smaller than the vacuum speed of light. In the present
case, with ultrashort micropulses, the radiation intensity
peak moves at the electron velocity.

By integrating the intensity lAl over z2, we calculate
the radiation energy:

z

~(r) = d&IA(& r)l'
0
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FIG. 1. Linear regime: intensity ~A~ vs z2 for v = 300,
Z = 2, cr = 0.1, o.'= 0, and Ao = 0.01, as given by Eq. (8).

We assumed that F receives its main contribution &om
the region in which the asymptotic form of A is valid.
We next crudely evaluate Eq. (9) for the case in which
the exponent takes on its maximum value at the upper
limit, expanding the exponent about its upper limit. This
approximation yields

0.2

0.15—

(a)

0.1—

0.05—

E(7-) = (Ao/127r~3)(2/o' r' z)'~

x exp[3~3(gow z/2) ~ —nw].

Equation (10) requires for its validity (go& z) ~ )) 1.
Prom Eq. (10), we calculate the gain per pass:

We observe that g decreases as w 2~ for v large; hence
there is no stable gain for exact cavity synchronism, al-
though the gain decreases rather slowly. In Figs. 2(a) and
2(b) we compare the energy and the gain as calculated
&om Eqs. (10) and (11) (dashed lines) with the result
of a multipass simulation, integrating Eqs. (1)—(3), for
a rectangular electron beam profile of length ~ = 0.1
and for z = 2, b = 0, Ao ——0 01, and n = 0 01 (con-
tinuous line). We observe that although the asymptotic
expression (11) gives a higher maximum than the exact
result of the simulation, it describes very accurately the
gain for 7 ) 30. By making comparisions between the
exact solution for the gain, obtained by numerical mul-
tipass simulations, with the approximated expression, it
is found that the estimate of g obtained &om Eq. (11)
is accurate to within 3% for values of the ratio between
the slippage and the beam length z/o. = AN /Ls ) 4.

From the results of the linear analysis we have seen
that, for a = 0, the solution A(z2, r) is a function of
the self-similar variable y = go'~ z2. On the basis of
the results obtained for the nonlinear regime of super-
radiance in high-gain, short-pulse ampli6ers [7], one can
expect that an analogous superradiant emission should
take place in the low-gain, short-pulse oscillator. In fact,
Eqs. (6) and (7) admit, for negligible cavity losses n = 0,
the following self-similar solution in the general case of
arbitrary cavity detuning:

A(zz, ~) = 0. ~ Aq(y),

8(zz, ~) = Og(y),

where y = paw(z2+ h7. ) and Aq(y) and Oq(y) satisfy the
following ordinary differential equations:

(14)

= —A~e" + c.c. .
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FIG. 2. Linear regime: Energy E' (a) and gain Q (b) vs pass
number 7, for o. = 0.01, from a multipass numerical simula-
tion (continuous line) and from Eqs. (10) and (ll) (dashed
line); the other parameters are the same as in Fig. 1.

pass number

FIG. 8. Nonlinear regime: peak amplitude ~A~„, I, (con-
tinuous line) and peak position z~, q (dashed line) vs pass
number v from the numerical multipass simulation, with the
same parameters as in Fig. 1 and without losses, r = 1. For
v ( 760 (vertical line) the system is still in the linear regime.
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In order to verify the existence of this asymptotic so-
lution, we have integrated numerically Eqs. (1)—(3) for
b = 0, r = 1, o = 0.1, z = 2, and Ao ——0.01. In Fig. 3
we plot the peak amplitude [A[„,s (continuous line) and
the peak position z„,I, (dashed line) as a function of the
round-trip number w. In the linear regime, the peak is
at the trailing edge zz ——2. For r ) 760 (vertical dot-
ted line) the radiation leaves the linear regime and the
peak moves towards the leading edge z2 ——0; we ob-
serve that the amplitude becomes proportional to w, in
agreement with the self-similar solution (12). In Fig. 4 we
make a comparision between the exact radiation pro6le at
7 = 4000 (continuous line), as it results Rom the numer-
ical simulation for the same parameters as in Fig. 3, and
the solution (12), where Ai(y) has been obtained solving
numerically Eqs. (14) and (15) for Ai(0) = 5.75 x 10
and z2 ——y/i/or + 0.2545. The radiation profile follows
very accurately the 6rst peak of the superradiant solution
(12) and somewhat less accurately the secondary peak,
probably beacause of the finite length of the beam used
in the numerical simulation.

This result shows that for a perfectly synchronized cav-
ity and. in the limit of very short micropulses, the emis-
sion is superradiant. The superradiant scaling of the in-
tensity follows from Eq. (12) and from the definition. of
A [3]: since A oc Eo/~pI and o oc pLs, where Ls is
the beam length, then [Eo[ oc p IL&~ oc I Ls and the
intensity is proportional to the square of the micropulse
charge. The self-similar solution shows that the electron
pulse generates a train of decreasing pulses with inten-
sity growing as w and narrowing as 7 l', separated by
a distance of about 10I //or inside the slippage length
AN . The pulse profile continues to narrow for an in-
creasing number of passes through the cavity, so that
no stable con6guration can be reached. The continuous
evolution of the radiation profile explains why, in general,
when cavity losses are taken into account, the radiation
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FIG. 4. Nonlinear regime: intensity ]A[ vs zz for r = 1 and
r = 4000 (continuous line), compared with the self-similar
solution (12) (dashed line) with Ai(0) = 5.75 x 10; the
other parameters are the same as in Fig. 1.
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energy decreases after the gain per pass has crossed the
value imposed by the cavity losses.

In conclusion, we have demonstrated that in a syn-
chronized oscillator driven by micropulses shorter than
the slippage and in the ideal case without losses, the
emission is superradiant and the radiation pulse has a
self-similar profile, given by a train of peaks with decreas-
ing intensity, whose distance is inversely proportional to
the square root of the pass number. Further analyti-
cal work and numerical simulations are in progress to
examine the relation between the superradiant solution
and the limit-cycle behavior observed in desynchronized
short-pulse oscillators [5].
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