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The phase diagram and the scaling behavior of self-avoiding fluid vesicles as a function of the
bending rigidity v. and the pressure increment Ap is studied using Monte Carlo simulations and
scaling arguments. For Ap ) 0, a line of first-order transitions is observed between a branched-
polymer-like phase and an inQated phase. The scaling behavior in the in6ated phase along this line
seems to be characterized by a universal exponent v 0.8. The 6rst-order line ends at small positive
Ap; it extends to negative Ap as a line of compressibility maxima. For Ap ( 0, this line can be
understood as a line of buckling transitions. For even more negative Ap and suKciently large e,
stomatocytes are stable. We present evidence for the absence of a phase transition as a function of K

at Ap = 0 by showing that the volume V of a N-monomer vesicle scales as (V) = N Ov(~N/(„),
with a smooth scaling function Ov. The exponential z dependence of the persistence length (~ is
found to be in excellent agreement with renormalization group results.

PACS number(s): 05.40.+j, 64.60.Fr, 87.22.Bt

I. INTRODUCTION

The thermal behavior of membranes and vesicles
has recently attracted a great deal of attention [1—3].
Membranes are (approximately) incompressible two-
dimensional films composed of amphiphiles or lipids
which —on experimentally relevant time scales —do not
change their area. For this reason, the shape and fluc-
tuations of membranes are controlled by their bending
rigidity [4—6] rather than by a surface tension as is the
case for interfaces. For bilayer membranes, which do not
have a preferred radius of curvature, the curvature elastic
energy has the form [5]

u/(kyar) = f ds [2+H'+ RK],

still an open question whether there is a phase transition
separating a low-bending-rigidity, branched-polymer-like
phase [8,9,19,20] from a high-bending-rigidity, extended
phase. For v = 0, a first-order transition is observed be-
tween a low-pressure, branched-polymer-like phase and a
high-pressure, inflated phase [11]. Experimentally, low-
bending-rigidity vesicles have been shown to be able to
penetrate through the intact skin [21], and may thus have
a large number of applications in medicine, biotechnol-
ogy, and other areas.

In this paper, we present the results of an extensive
Monte Carlo simulation study of the phase diagram of
fluid vesicles as a function of the bending rigidity K and
(positive and negative) pressure increment Ep.

II. CURVATURE MODEL

with bending rigidity K and saddle-splay modulus R, ,
where H is the mean curvature and K the Gaussian cur-
vature. Theoretical and experimental work on vesicles
has been restricted almost exclusively to the very-large-
bending-rigidity regime, where thermal fluctuations are
of only minor importance [7]. Very little is known, how-
ever, about the behavior of vesicles in the low-bending-
rigidity regime.

The two intensive thermodynamic fields that deter-
mine the conformation and structure of vesicles are the
bending rigidity m and the pressure diBerence Lp
p, —p „q between the vesicle interior and exterior. Lp
is the thermodynamic variable conjugate to the enclosed
volume V. The behavior of self-avoiding low-bending-
rigidity vesicles has been studied theoretically as a func-
tion of v for Ep = 0 [8—10], and as a function of bp for
v = 0 [11—15]. In the first case, a peak in the specific heat
is observed at K 1. The interpretation of this peak is
the subject of intense current debate [8,16—18], and it is

The model we study consists of N hard spheres of di-
ameter 0.0 ——1 which are connected by flexible tethers of
length Io ( ~3oo to form a two-dimensional network of
spherical topology. Zo is chosen to ensure self-avoidance.
In our simulations, we have used both Eo ——Q2.8 and
Eo ——+2.0. In order to allow for diffusion within the
membrane, and thus to describe fluid membranes, teth-
ers can be cut and reattached between the four beads that
form two neighboring triangles [22,23]. A Monte Carlo
step (MCS) then consists of an attempt to update the
positions of all N beads by a random increment in the
cube [

—s, s], followed by N attempted tether cuts. We
chose s = 0.15 for Eo ——g2.8 and s = 0.10 for /o ——/2. 0
so that approximately 50% of the attempted coordinate
updates were successful. Averages are typically calcu-
lated over runs &om 20 to 100 million MCS. In the rest
of this paper we employ the dimensionless pressure incre-
ment p = Aprro/k~T and measure the volume in units
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of Oo.
The bending elastic energy we employ is [24]

prolate

'8/(kgyT) = A) (1 —n; n;),
(ij)

(2)

where n,- is the unit normal vector of triangle i, and the
sum runs over all pairs of neighboring triangles. In the
continuum limit [25],
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so that for our choice of bending energy (2), v, =
The relationship between the coupling constant A in (2)
and the bending rigidity v can be determined by covering
a sphere of radius B with equilateral triangles of side E
and taking the limit B ~ oo. In this way we find

(4)
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For compatibility with our earlier work [8,11] we use the
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dr, (V;/3) '~', (5)

where r; is the three-dimensional coordinate vector of
vertex i, and q, its coordination number. A comparison
of the results of Ref. [11]with those of Ref. [12],where the
factor (q, /3) ~ has been omitted, shows that the extra
contribution in the measure has no noticeable e8'ect.

FIG. 1. Phase diagram of Quid vesicles as a function of
pressure increment p and bending rigidity A, for (a) N = 127
and (b) N = 247. First-order transitions are denoted by solid
lines, compressibility maxima by dotted lines. The dumb-
bell-metastable discocyte transitions are shown as a dashed
line. The error bars span the spinodals for the transition to
stomatocytes. The solid line through their midpoints serves
as a guide to the eye.

III. PHASE DIAGRAM

The A-p phase diagrams for systems consisting of N =
127 and N = 247 beads are shown in Fig. 1. The first-
order transition observed previously [ll] at A = 0 per-
sists to finite values of A. With increasing A, the tran-
sition occurs at lower and lower values of p, since both
the bending rigidity and the (positive) pressure act to
increase the volume of the vesicle. This first-order tran-
sition is characterized by a bimodal probability distribu-
tion function P(V) for the volume. We locate the tran-
sition at the point at which the two maxima of P(V) are
of equal height. These maxima approach each other with
increasing A, and merge into a single peak at A 0.32
for N = 127, A 0.45 for N = 247, and A 0.52 for
N = 407. Thus, the line of first-order transitions extends
to higher values of A for larger system sizes. For values of
A beyond this "critical" point, we And a line of maxima
of the compressibility

1
X

(V) g ( )

This line extends to the highest values of A studied in this
paper, A = 6. It crosses the A axis at A 1.0 for N = 127
and A 1.2 for N = 247. For larger A, there is a rapid
change in the vesicle shape, &om roughly spherical pro-

late to dumbbell, as this line of compressibility maxima
is crossed with decreasing p. A few typical configurations
are shown in Fig. 2.

The phase diagram (in the pressure ensemble) as a
function of A and the reduced volume v = vo (V)(1V—
2) ~2 is shown in Fig. 3. Here, vo ——3 ~ 2 ~ 7r ~ (E)
is a constant, and (E) 1.35 is the average distance be-
tween neighboring beads [26]. The phase diagram in the
volume ensemble should be rather similar. All coexis-
tence regions shrink to single lines in this case, since the
volume in both phases has to be identical at coexistence.
These lines must be located somewhere inside the two-
phase coexistence regions of Fig. 3.

The large-v portion of our phase diagram difFers from
that obtained by minimizing the bending energy in the
pressure ensemble [27], where only a single transition
from spheres to prolates is found with decreasing p ( 0.
In this ensemble, stable non-self-intersecting T = 0 con-
figurations cease to exist before other phase transitions
can occur. We And much better agreement with the
T = 0 analysis of vesicle shapes in the volume ensemble
[28], where a transition &om stomatocytes to discocytes
occurs at a reduced volume v = V/V, zh, ,„=0.59
v ~ ~, and a transition &om discocytes to dumbbells at
v = 0.65 = v( ~. Our simulation results indicate that the
discocyte-prolate transition occurs at 0.45 ( v~ & ( 0.52
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FIG. 2. Typical configurations of vesicles
vrith N = 247 monomers. (a) A = 0.35,
p = 0.125 (branched polymer), (b) A = 0.35,
p = 0.125 (inflated), (c) A = 2.0, p = —0.05
(prolate), (d) A = 2.4, p = —0.19 (dumbbell),
(e) A = 2.4, p = —0.35 (branched polymer),
(f) A = 3.0, p = —0.27 (stomatocyte), (g)
A = 3.8, p = —0.35 (discocyte).
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FIG. 2 (Continued)
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FIG. 3. Phase diagram of Quid vesicles in the pres-
sure ensemble, as a function of reduced average volume

'(V)(W —2) ~, with v ' = 3'~ 2 ~ ~'~ (E), and
bending rigidity A, for N = 247. Compressibility maxima are
denoted by dotted lines, the dumbbell-metastable discocyte
transitions by a dashed line. The solid line in Fig. 1(b) has
been used to estimate the average volume (V) at the transi-
tion to stomatocytes.

3

for the values of A studied, see Fig. 3. In general, we
expect transitions to be shifted to smaller values of the
reduced volume compared to the T = 0 results since
thermal fluctuations reduce (V), while v is defined with
respect to the volume of a rigid sphere (of equal area).
The good agreement between our results and the phase
diagram obtained by minimizing the bending energy in
the volume ensemble is due to the fact that the effects of
both self-avoidance and thermal fluctuations are included
in our analysis.

In order to characterize the shape of the vesicles, we
have studied the eigenvalues Ai ( A2 ( A3 of the mo-
ment of inertia tensor,

where r; is the position of monomer i, and q; is its co-
ordination number. The probability distributions of the
anisotropies Ai/As and A2/As are shown in Fig. 4 for
A = 2.0 and four values of p in the vicinity of the line
of maximum compressibility. Note that for all pressures
shown, the distributions P(A;/As) are very broad, in-
dicating enormous shape fluctuations. With decreasing
pressure, the average shape changes from spherical pro-
late to dumbbell, as mentioned above.

For large A and sufFiciently negative pressures, sto-
matocytes are found to be stable. Stomatocytes decay
with increasing pressure into dumbbells, and with de-
creasing A into branched-polymer-like shapes. The tran-
sition at large A is strongly first order, and, therefore,
cannot be localized easily. The error bars shown in Fig.
1 span the spinodal lines. Stomatocytes are also unstable
at large negative pressures with respect to flat, pancake-
shaped configurations since the latter have a smaller vol-
ume in our model. In the limit of very large negative pres-
sures these pancakes transform smoothly into branched-
polymer-like configurations. The lowest value of A for
which stomatocytes are stable is A 3.1 for N = 127

0
0.0

I

0.5 1.0
2/A3

FIG. 4. The probability distribution P(A, /A3) of the mo-
ments of inertia, for 1V = 247, Eo = v 2.8, A = 2.0,
and p = 0.10 (dashed-dotted lines), p = 0 (dotted lines),
p = —0.05 (dashed lines), and p = —0.10 (solid lines). (a)
P(Ai/As), (b) P(Ag/A3).

and A 2.4 for N = 247. The region of stability of
stomatocytes, therefore, extends to smaller values of A

for larger system sizes.
We also see discocytes, but it appears that they are

only metastable, and always decay into stomatocytes.
Nevertheless, we do observe a transition between disco-
cytes and prolate, dumbbell-shaped vesicles. There is a
line of first-order transitions between these two phases for
large A, which ends in a loner critical point. There is also
a line of maxima in the compressibility at lower values
of A; however, it is very short and never approaches the
line of compressibility maxima mentioned above. In this
case, the "critical" point occurs at A 3.5 for N = 127
and A 3.3 for N = 247, i.e., the critical point moves to
lower A with increasing system size.

It should be emphasized that there is a fundamental
difFerence between the "phase transitions" for small A

(i.e. , the transition between the branched-polymer phase
and the inflated phase) and for large A (i.e. , the transi-
tion between prolates and stomatocytes). In the former
case, a true first-order transition occurs in the thermo-
dynamic limit N ~ oo. This can be seen by studying
the volume distribution function P(V) as a function of
the vesicle area; with increasing N, the bimodal struc-
ture becomes more pronounced [11]. In the latter case,
the energy barrier between the two coexisting shapes re-
mains finite even for N ~ oo because the bending energy
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is scale invariant [29]. This implies that there is a finit
probability for a vesicle to jump between the two min-
ima of the free energy, independent of the system size. In
our simulations, we see an indication that this is indeed
the case because the number of MCS it takes for a vesi-
cle of N = 127 monomers to jump &om a prolate shape
to a stomatocyte is roughly the same as for a vesicle of
N = 247 monomers.

(V) = V % i Ov(y)

with

4~ )
y = yp(Eo) v N exp

~

—r—
~) (12)

If scaling is complete, the scaling function should describe
the behavior of branched-polymer-like vesicles, where
(V) %, in the limit y m oo. We, therefore, expect

IV. SCALING BEHAVIOR FOR @=0 Ox'(y) y (13)

The behavior of membranes as a function of the bend-
ing rigidity e has been discussed intensively in recent
years. In many studies of membranes, both with and
without self-avoidance, the specific heat has been found
to have a peak near A = 1. The location of this peak
has been interpreted either as a second-order phase tran-
sition between a crumpled, small-K phase, and an ex-
tended phase at large bending rigidities [17,30—35], or as
the point at which the persistence length [36] reaches the
system size [8]. Both of these interpretations seexn to be
incorrect. It has been shown in Refs. [16] and [17] for
vesicles without self-avoidance that the peak in the spe-
cific heat stops growing with system size for suKciently
large N, and that the location of the peak becomes in-
dependent of N. It has also been demonstrated in Ref.
[16] that the specific heat of the two-dimensional Heisen-
berg model, where the absence of a phase transition can
be proven exactly, shows a very similar behavior. The
specific heat is, therefore, not a good quantity to ana-
lyze when studying the phase behavior of membranes as
a function of K.

A valuable guide for understanding the scaling behav-
ior of vesicles is the scaling analysis of ring polymers in
two dimensions [37—40]. In particular, it has been shown
[40] that the area A enclosed by the ring polymer in two
dimensions scales as

for large y. Our results are shown in Fig. 5. The data
follow the expected scaling behavior extremely well. The
data for Eo ——+2.0 show a breakdown of scaling at small
A [44]. However, it has been shown in Ref. [40] for ring
polymers that this is due to the "saturation" of the bend-
ing rigidity as A —+ 0. Scaling can be extended into this
region through the use of nonlinear scaling fields [40].
The origin of an "intrinsic" bending rigidity is the use of
hard spheres of finite radius to model self-avoiding mem-
branes [45].

In fact, the same scaling ansatz for the volume of low-
bending-rigidity vesicles has already been used in Ref.
[9]. However, they employed the ratio N/r. as the scaling
variable. A comparison of our Fig. 5 with Fig. 3 of Ref.
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(A)„;„s——A N O~(N/r), (8) 10-' 10 10'

where N is the number of monomers in the ring. For
large N,

e~(y) - y ""', (9)

(4~ l
(x,(ves) = ao(lo) exp

~

r~—
Thus, the volume should scale as

where v = 3/4 is the self-avoiding random walk exponent
in d = 2. Thus, for small r, (A)„; s % ", as expected.

Let us try now the same scaling ansatz for vesicles.
To do so, note that the scaling variable in Eq. (8) is the
ratio of the radius R„;„sof a large-r ring polymer and the
persistence length (z(xing). We assume that the scaling
variable in the case of vesicles is the same ratio of length
scales, R/(~. For ring polymers, one has R„; s % and

(„(xing) It, while for vesicles, R„„~N,and [41—43]
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FIG. 5. The scaled volume (V)N ~ (/) for p = 0
as a function of the scaling variable

y = yo(&o) MN exp[ —4vrA/(3~3)]. Data are given for
Io = g2.8, with N = 127 (+), N = 247 (p), and N = 407
(x), and for lp = /2. 0, with N = 127 (Cl), N = 247 (A),
and N = 407 (o). (a) yp(lp) = 1.0, (b) yp(+2. 8)—:1.0, and
yo(+2.0) = 0.75.
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[9] shows that the data collapse is much better when the
correct scaling variable (12) is used.

In summary, (i) the data scale for all values of K, (ii)
the persistence length we determine is in complete agree-
ment with the result of field. -theoretic renormalization
group calculations [41—43], and (iii) for any fixed K, suf-
ficiently large vesicles exhibit branched-polymer scaling
behavior. It follows that there is no phase transition at
p = 0 for finite e so that for large enough membrane size
and fixed e, vesicles are always crumpled.

0
XN7 o

0

0.005-

0.0

V. SCALING BEHAVIOR FOR LARGE BENDING
RIGIDITY ~

An analysis of vesicle shapes in the low-temperature
limit [28] implies that the correct scaling variable in the
large-r regime is the reduced pressure p = pV,„h,,„,/r
pN /' ~ . Phase transitions should occur at p = const.
The scaling behavior of both the discocyte-dumbbell
transitions and the line of compressibility maxima for
p ( 0 are consistent with this prediction, see Fig. 6. The
peak height y of the compressibility along this line
scales as y N ~, with p = 1.35+ 0.05 for p ( 0,
as shown in Fig. 7. This seems to imply that there is a
continuous phase transition in the thermodynamic limit
on crossing this line of compressibility maxima.

The scaling behavior of the volume and the aspherici-
ties in the prolate phase at large bending rigidities can be
understood by considering the effective Gaussian Hamil-
tonian

FIG. 7. The scaled peak compressibility y N with

p = 1.35+0.05, as a function of the bending rigidity A. Data
are given for Eo ——+2.8 and N = 127 (+), N = 247 (o), and
N=407( ).

d2k 1

1 1 (T
ln 1+ I—

4mo. 4vr2 Ir, )
We now use the Laplace equation to relate the surface
tension o of a vesicle of radius B to the pressure incre-
ment p,

20p= B
The area of an in8ated vesicle is 4vrR 2(N—
2)(E)'~a/4, so that

B.yg/(kaT) = j'd*r -', e(v'u)'+ a(vu)* (14)
R=3 ' 2 vr (l)QN —2.

With I = 4mB, we finally arrive at

(i7)

for the undulations of an almost flat membrane with a
surface tension (T. Here, u(r) measures the deviations of
the membrane positions Rom a flat reference state. For a
membrane of linear lateral extension I, the mean-square
amplitude of fluctuations is

(u ) = in' lip
2~pR r ) (18)

where P = 1/(2vr) 0.159. For a vesicle that is ellip-
soidal on average, the volume can be estimated to be

max

0+

(v) = —(R —a, Q(u*)) (R —og/(u'))

x B—o3 u2

4m R' R —(ai +—n2 + ns) Q(u2) + O(l/R)3
(19)

2
Thus, for shapes that deviatiate not too stongly &om a
sphere, we have

-1.0 -0.5 g3i2 0.0
4'

(V) RR —n—
3

1 ( pRs)
ln

~

1+P
~

. (20)
27rpR ( ~ )

FIG. 6. The location A of the maximum in the com-
pressibility as a function of the scaled pressure pN for
p ( 0. Data are given for Eo ——v 2.8 and N = 127 (+),
N = 247 (o), and N = 407 ( ).

Since we have made several approximations in the deriva-
tion of Eq. (20), we use not only n = (ai + a2+ ns) but
also P as adjustable parameters when comparing with the
Monte Carlo data.
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R —n; Q{u')r, = =1 —(, — .)g( )/R —ns Q(u')
(21)

so that

Similarly, the asphericities I'q = (Aq/As) and I'2

(A2/A3) should be given by
an approximate fashion by adding an efFective potential
[49] to the Hamiltonian (14) which describes the ffuctu-
ations of a membrane between two planar walls of sepa-
ration 2d,

24.2ti(24T) = f 4'
2 (2' ") + (2t") + 4ii "

K

( pRs)1; =1 —(~, —~),»
I
1+P

27rpRs q K ) (22)
(24)

In the vicinity of the buckling transition, the condition

The most important contribution to the integral (15)
comes &om the long wavelength modes. These modes are
controlled by the renormalized bending rigidity [41—43]

with a constant )a 1/6 [48) implies

(25)

3
ft;~(R) = fc ——ln(R/ap),

4m
(23)

1 o4('=I
I

+(4ccttrP) r) (26)

where ao is of the order of the tether length Eo. Thus, v
in Eqs. (20) and (22) should be replaced by K~(R). The
renormalization of o and the eÃect of a Bnite 0. on the
renormalization of f" can be neglected for R & gf"/~o~
[46], which is just the regime we are interested in [47].

The result (20) shows that the maximum in the com-
pressibility is due to a buckhng transition of a 6nite mem-
brane which occurs for p & 0 and ~p~ / r./pR . When
the renormalization of v is neglected, the transition pres-
sure scales as pN ~ /K, as observed above. The renor-
malization of v. gives only a weak logarithmic correction
to this scaling behavior. A comparison of (20) with the
Monte Carlo data for two diferent system sizes is shown
in Fig. 8. Here, the coefficient P has been determined by
the requirement that (uz), Eq. (18), diverges at the po-
sition of the peak in the compressibility. Both the shape
of the curves and the finite size behavior are in good
agreement with our data.

In order to understand in more detail the behavior of
the volume and of the compressibility in the vicinity of
the buckling transition, we have to include the eKect of
the entropic repulsion [48] between segments of the mem-
brane on opposite sides of the vesicle. This can be done in

2

(u ) = IJd 1 —— —arctan 8vr + L47rf p—2 1 2
2 7r K I2

(»)
For a vesicle, we identify L = 4zR, o' = pR/2, and
d=A, so that

2 ( pRsl
(u*) = cpR* 2 ——cretan

~

4c+
~

2crp ).7r ( K j
(28)

This result can then be inserted into Eq. (19) to deter-
mine the volume. The compressibility (6) is then easily
calculated to be

y = R F(pR, K), (29)

with

R'(pR', r) = ti2ccp, ( 2 —atfp/2f(pR', c) f(pR, c)
—1

x 1+g(pR, f. ) (3o)

We can now proceed as before and calculate (u ) for a
finite piece of membrane of linear extension L:

where

1000- f (pR, r) = 1 ——arctan (g(pR, fc))

(V)
N=247

and

g(pR', v) = 2~@ (47r~ +pRs) . (32)

0.0 0.1

In this result, K, should again be replaced by the renor-
malized quantity tcR(R).

If the renormalization of K is ignored, the scaling form
(29) immediately implies

FIG. 8. The average volume (V) as a function of the pres-
sure p for A = 2.0. The full lines are the Monte Carlo data
for N = 247 and N = 407, with Eo ——g2.8. The dashed lines
are the result of the approximation (20), with n = 2.73 and
P =0038.

3j2N

or p = 1.5. The renormalization of r, Eq. (23), gives an
additional logarithmic correction to this scaling behavior.
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Since the Monte Carlo data are certainly affected by cor-
rections to scaling, we believe that (33) is in reasonable
agreement with our simulation results. where

(V) = Vop N "+

VI. SCALING BEHAVIOR FOR SMALL
BENDING RIGIDITY e

1 —v V
V+

3v —1 3v —1
(35)

The scaling behavior in the small-K, portion of the
phase diagram is difFerent. We have argued in Ref. [11]
that, for A = 0, the crumpled-to-inflated transition oc-
curs at p = pN~ = const, with ( = 1/2. This is consistent
with the data presented in Ref. [11] when a "shift vari-
able" No is introduced to account for the leading correc-
tions to scaling [38], so that p = p(N No) ~.—We find here
that this scaling behavior holds not only for A = 0, but
along the whole line of erst-order crumpled-to-inflated
transitions, see Fig. 9(a). Furthermore, data taken along
the line of compressibility maxima for A ( 1.0 also scale
in this way. When no shift variable is used, our data scale
best with ( = 0.65 + 0.05, as shown in Fig. 9(b). For
A = 0, this value ( is in agreement with the result of Ref.
[12]. With the present range of vesicle sizes, however, it
is not possible to distinguish between these two estimates
for (.

In the inflated phase, for A = 0, the volume was found
in Ref. [11] to scale as

with an exponent v 0.79, so that 3~ = 0.47 + 0.01
and 3v+ ——1.735 + 0.005. We have, therefore, calculated
(V) and y as a function of p in the inflated phase, for
A = 0.50 and A = 1.0, with vesicle sizes N = 247and N =
407. The results obtained using the Ferrenberg-Swendsen
reweighting technique [50] are shown in Figs. 10 and 11.
For A = 0.50, we fin that 3u = 0.42+ 0.02 and 3v+ ——

1.718 + 0.010, in agreement with Eq. (35). Accounting
for the fact that the range of pressures for which the data
scale decreases with increasing A, we believe that these
values for w and v+ are consistent with those obtained
for A = 0. Our results, therefore, support the conclusion
that the scaling behavior in the inflated phase near the
line of crumpled-to-inflated transitions is described by a
single, universal exponent v 0.79. For A = 1.0, we find
3~ = 0.265 + 0.02 and 3v+ ——1.653 + 0.010, which is
considerably smaller than the values obtained at smaller

[but still consistent with the scaling relation 2v+
1+u implied by Eq. (35)]. However, data taken for this
value of A probably lie outside the small-v scaling regime.
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I'IG. 9. The location A of the maximum in the com-
pressibility as a function of the scaled pressure for p ) 0. (a)
p(N —Ns), with No = 40; (b) pN~, with ( = 0.65. Data
are given for /0 ——g2.8 and N = 127 (+), N = 247 (o), and
N =407 ( ).

FIG. 10. The average volume (V) as a function of the
pressure increment p for N = 247 and N = 407, with (a)
A = 0.50 and (b) A = 1.0. The Monte Carlo data are shown
as full lines. The dashed lines indicate the power law behavior
(V) = Vop N + with (a) 3cu = 0.42 and Vs = 0.04748,
and (b) 3w = 0.26 and Vs = 0.084 14.
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20 Gauss-Bonnet theorem, the integral over the Gaussian
curvature is a topological invariant, 4'. However, the
renormalization of the saddle-splay modulus [43,52]

10
5

rcR(() = K+ —1n((/ap)6' (38)

0
0.0 0.05

I

0.10 0.15

10

0
-0.05 0.0

I

0.05 0.10

FIG. 11. The compressibility y as a function of the pressure
increment p for N = 247 (dashed lines) and N = 407 (full
lines), with (a) A = 0.50 and (b) A = 1.0.

VII. THE TRANSITION FROM
STOMATOCYTES TO BRANCHED POLYMERS

Finally, a rough estimate for the location of the line of
transitions &om stomatocytes to crumpled configurations
can be obtained as follows. Assume that the branched-
polymer-like configurations consist of thin cylindrical
arms of radius (. The &ee energy can then be approxi-
mated as

X„-/(k~T) = 8vrKR (R) + 4mKR(R) + f-«~
—p(V)+ c —d

A
(39)

where the first term is the average bending energy of
the inner and the outer shells of the stomatocyte, with
R =A/(8m) and

has to be taken into account. There are additional loga-
rithmic contributions to the &ee energy which are due to
the suppression of translational zero modes [53]. How-
ever, because they are identical in both the branched-
polymer and stomatocyte phases, they can be neglected
when determining the phase transition line. Since the
surface area is held constant, the only variable in T~ is
the arm radius (, which is determined by minimizing the
&ee energy.

For the stomatocyte, the renormalization of the bend-
ing elasticity is a two-step process. For length scales
smaller than the parallel correlation length (~~ ~icd
[54], the two shells of the stomatocyte fluctuate almost
independently so that at length scale (~~ the renormalized
rigidities of the two shells are K"((~~) and r"((~~). Since

(~~ is of the order of the tether length in the simulations,
this renormalization is a small effect which we ignore in
our analysis. For larger length scales, the two shells of
the stomatocyte fluctuate together, as a "double layer, "
with bare bending rigidity 2r" ((~~). A similar argument
can be made for the saddle-splay modulus. However, due
to the presence of the neck, the bare value is now K, so
that one arrives at the usual renormalized value R,R(R)
(if the contribution of length scales less than (~~ is again
neglected). The free energy of a stomatocyte of radius R
is, therefore, estimated to be

~"/(k~T) ™n(z)+ s ln(M) p(V) r„' (R) = 2r R((~~) ——ln(R/(~~), (40)

dA(ci + c2)' + K
A A

(36)

3v"(() = K — 1n((/ap) (37)

is the renormalized bending rigidity [41] at length scale (.
Here, ao is of the order of the tether length Eo. Due to the

where A N is the surface area, cq and c2 are the local
principal curvatures, z is a N-independent constant, and
M = A/2~( is the equivalent number of "monomers" of
a branched polymer. The first two terms in Eq. (36) are
the branched-polymer entropy [51], while the last two
terms are the average bending energy and the average
Gaussian curvature. The average volume is (V) A(/2.
The bending energy is estimated to be v"(()A( 2/2,
where

the second term is the average Gaussian curvature con-
tribution, the third (constant) term the bending energy
of the neck region, and the last term the steric repulsion
[48] between the two shells at distance d, with an ampli-
tude c~. This approximation should be valid for d much
smaller than the vesicle radius R. For small necks, the
energy of the neck region almost vanishes for the curva-
ture Hamiltonian (1), since the neck is almost a minimal
surface. However, in the triangulated surface model, the
angle between neighboring triangles becomes very large
in the neck, so that the neck cannot be described by the
continuum model (1). f „"is thus the contribution of
the nonlinear bending elasticity.

The average volume is estimated to be (V) = Ad. A
self-consistent calculation of the free energy of the lamel-
lar phase gives c = 3~ /128 = 0.231 [48], while Monte
Carlo simulations predict c = 0.106 55,56]. The only
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FIG. 12. The line of phase transitions between stomato-
cytes and the branched-polymer phase calculated using (36)
and(39), withR= —m, c =O.l, z=20, and f „I.=~.

variable in Eq. (39) is the distance d, which is again
calculated by minimizing the &ee energy, so that

d 3 2c~
( P)K— (41)

The resulting estimate for the stomatocyte free energy is

X„~/(k~T) = 2 x 87rlc~(R) + 47r~~(R) + f„„i,
1/3

+-'
2 q K ) (42)

The results for the location of transitions &om stoma-
tocytes to crumpled configurations obtained using these
approximations are shown in Fig. 12. The main features
seen in Fig. 1 are reproduced. The transition line shifts
to lower values of K with increasing ¹ simultaneously
its pressure dependence becomes weaker. The analysis
also indicates that a limiting form of the transition line
is reached rather quickly with increasing system size, so
that our Monte Carlo results for N = 247 can be ex-
pected to be close to the thermodynamic limit.

scaling behavior for all K is determined by a single length
scale, the persistence length („. Our data confirm the
exponential dependence of („ on K which has been cal-
culated using a field-theoretic renormalization group ap-
proach. Phase transitions do occur, however, between
branched-polymer and inHated shapes at small r and
p ) 0, and between stomatocytes and branched-polymer
or prolate shapes for sufticiently large rc and p & 0.

Several open questions remain. First, it would be nice
if the absence of a phase transition at p = 0 could be con-
6.rmed by simulations of larger vesicle sizes. It has been
shown in Ref. [16] that without self-avoidance, vesicles of
size N ( 1000 can be simulated with reasonable accu-
racy. The simulations with self-avoidance are more time
consuming, but should be tractable for N 1000 with
available machines. Second, the line of phase transitions
between branched-polymer and inHated shapes should be
studied in more detail. In particular, the nature of the
critical point, and the scaling behavior, have to be deter-
mined. It would also be interesting to know whether the
scaled critical pressure p N~ stays Rnite or approaches
zero for N ~ oo. Furthermore, it is necessary to under-
stand the behavior near the line of susceptibility maxima
in the region p 0. This should lead to Inore insight into
the excitations that cause the peak in the specific heat
discussed in Sec. IV.

Finally, it would be very useful if these results could
be compared with experiments on low-bending-rigidity
vesicles. It seems that the best possibility for obtaining
large vesicles with bending rigidities of order k~T, which
are stable on experimental time scales, is to use mixtures
of either a lipid with a short-chain amphiphile [57] or of
two lipids with diB'erent spontaneous curvatures [58—60].
Mixtures have the additional advantage that the value of
v can be tuned by changing the composition of the mern-
brane [57—60]. Indeed, the only current experiments with
low-bending-rigidity vesicles have utilized these methods
[21,61].
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VIII. SUMMARY AND CONCLUSIONS

In this paper we have studied the behavior of Quid vesi-
cles as a function of the bending rigidity v and the pres-
sure increment p. We have presented evidence that there
is no phase transition separating distinct large-bending-
rigidity and crumpled phases at p = 0 when the bending
rigidity is varied. Instead, it has been found that the
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