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An open question in computational molecular biology is whether long-range correlations are
present in both coding and noncoding DNA or only in the latter. To answer this question, we
consider all 33301 coding and all 29453 noncoding eukaryotic sequences —each of length larger
than 512 base pairs (bp)—in the present release of the GenBank to determine whether there is any
statistically significant distinction in their long-range correlation properties. Standard fast Fourier
transform (FFT) analysis indicates that coding sequences have practically no correlations in the
range from 10 bp to 100 bp (spectral exponent P = 0.00+0.04, where the uncertainty is two standard
deviations). In contrast, for noncoding sequences, the average value of the spectral exponent P is
positive (0.16 + 0.05) which unambiguously shows the presence of long-range correlations. We also
separately analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp
and find. a larger region of power-law behavior. We calculate the probability that these two data
sets (coding and noncoding) were drawn from the same distribution and we find that it is less
than 10 . We obtain independent confirmation of these findings using the method of detrended
fluctuation analysis (DFA), which is designed to treat sequences with statistical heterogeneity, such
as DNA's known mosaic structure ("patchiness" ) arising from the nonstationarity of nucleotide
concentration. The near-perfect agreement between the two independent analysis methods, FFT
and. DFA, increases the confidence in the reliability of our conclusion.

PACS number(s): 87.10.+e

I. INTB.ODU CTION II. METHODS

Recently, Peng et al. [1] observed long-range power-law
correlations of nucleotides in DNA sequences. Apply-
ing to 24 different sequences the technique of mapping
DNA onto a random walk, they found that the noncod-
ing sequences (introns and intergenic sequences) display
long-range correlations while coding sequences do not.
Similar observations were reported. independently by Li
and Kaneko [2], who applied standard Fourier analysis
to a sample consisting of seven genes. Subsequently, the
observation of long-range power-law correlations was con-
firmed by Voss [3], who studied all coding and noncod-
ing sequences longer than 512 base pairs (bp) from the
entire GenBank using power spectral analysis with sub-
traction of the white noise level. However, Voss failed
to detect any statistically significant difference between
long-range correlation properties of coding and noncod-
ing sequences. The goal of the present article is to resolve
this discrepancy between the results of Refs. [1,2] and
Ref [3] by ans. wering the the question: Are the long-range
correlation properties of coding and noncoding sequences
different. This question is important because of its im-
plications for understanding the structure and evolution
of DNA [4—9,15], as well as for practical considerations in
distinguishing coding and noncoding sequences [10,11].

To resolve this fundamental issue, we systematically
applied two difFerent scaling methods to all coding and
noncoding sequences larger than 512 bp in the GenBank
relea'se of 15 August 1994. The first method is a stan-
dard power spectrum analysis used by Voss [3], but with-
out the ambiguous procedure of subtracting the "white
noise" level. The second method is the detrended Huc-
tuation analysis (DFA) method developed by Peng et al.
[12], which is a modification of a standard rms analysis
of a random walk. The advantage of the DFA method
over the original analysis method of Peng et al. [1] is that
without eliminating true power-law correlations, it sys-
tematically corrects the results for nonstationarity of nu-
cleotide concentration (so-called DNA patchiness), which
may cause spurious correlations [12].

A. Mapping rules

A nucleotide sequence (n; j (i = 1, 2, ..., L) of length I
is comprised of the base pairs A (adenine), C (cytosine),
T (thymine), and G (guanine). In order to apply numer-
ical methods to a nucleotide sequence, we first prepare
seven numerical sequences tu;), corresponding to seven
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ways of mapping the original nucleotide sequence onto a
one-dimensional numerical sequence.

(i) Purine-pyrimidine (RY) rule. If n; is a purine (A
or G) then u; = 1; if n, is a pyrimidine (C or T) then
i =

(ii) AA rule. If n; = A then u; = 1; in all other cases
ui= 1

(iii) TT rule. If n; = T then u; = 1; in all other cases
ui= 1

(iv) GG rule. If n; = G then u, = 1; in all other cases
'lLi = —l.

(v) CC rule. If n; = C then u; = 1; in all other cases
i =

(vi) Hydrogen bond energy rule (called the SW rule,
j18j). u, = 1 for "strongly bonded" pairs (G or C);
u; = —1 for "weakly bonded" pairs (A or T).

(vii) Hybrid rule (called the KM rute, j19J). u, = 1 for
A or C; u, = —1 for G or T.

The BY rule has been perhaps the mostly widely used
rule, but the other rules have also been applied [1,3,11].
We have also considered other rules: e.g. , each base pair
can be weighted by any characteristic of that base pair,
so u; can be any number, e.g. , molecular mass, hydropho-
bicity, etc. (see also [2,14,15]).

B. Past Fourier transformation method

For a fast Fourier transformation (FFT) analysis, we
divide each sequence of L nucleotides into K = [L/N]
nonoverlapping subsequences of size N = 512 starting
&om the beginning and K nonoverlapping subsequences
starting &om the end of the sequence. For each subse-
quence we compute the Fourier transform

10 bp). We exclude such low frequencies in our analy-
sis (see the discussion of our procedure below) since the
average protein coding sequence is only several hundred
bp in length. Also, the procedure used by Voss involves
several unknown parameters (including the white noise
level as well as the fitting range), which strongly affect
the resulting value of P and thereby render problematic
any systematic comparison of correlation properties of
coding and noncoding sequences.

An alternative approach that we have developed is to
identify the physical and biological factors that cause the
changes of the slope of the power spectra and then to
select a fitting region where the slope of the data is less
afFected by these factors. It is important that this region
should be the same for coding and noncoding sequences
and for all groups of organisms. For reasons described
below, we select a fitting region from f = 0.012 bp
to f = 0.097 bp and compute P as the slope of the
least-squares linear fit in this region.

We analyze all coding and noncoding sequences of
the current GenBank release, subdividing them into
large groups of organisms including plants, invertebrates,
mammals, rodents, and primates. We restrict our analy-
sis to studies of eukaryotic DNA sequences. In prokary-
otes such as bacteria or phages, almost all of the genome
is coding and the noncoding regions are often ambigu-
ously identified. For the same reason we exclude &om
our analysis the sequences of chloroplasts and mitochon-
dria [16].

For each group we compute the weighted average

(3a)

and the variance

qy = ) ui, exp(iA:f2~/N)

M

) I„,

and the power spectrum

s(f) = lqtl'+ lq~-tl'. (1b)

where P; is the value of P for each sequence, M the num-
ber of sequences in each group, and I, the length of each
sequence.

Then we average S(f) over the K subsequences of a given
sequence, obtained &om starting at one end, and K sub-
sequences starting Rom the other end.

If a sequence has long-range power-law correlations,
then

(2)

and consequently a log-log plot of S(f) versus f is a
straight line with slope —P. This analysis was performed
by Voss [3]. Voss found that for almost all sequences this
line is not straight but has a changing slope. In order to
make it straighter he applied the procedure called white
noise level subtraction. Then he computed P as a slope
of a linear fit to an arbitrarily selected part of the result-
ing data. Voss selected a variable fitting range including
in some cases the lowest possible &equencies (as low as

C. Detrended Buctuation analysis

In Ref. [1], a "min-max" method was proposed to
take into account "nucleotide heterogeneity. " A poten-
tial drawback of this method is that it requires the in-
vestigator to judge how many local maxima and min-
ima of a landscape to utilize in the analysis. In [12] we

presented another method detrended fluctuation analy
sis that is independent of investigator input and per-
mits the detection of long-range correlations embedded
in a patchy landscape and also avoids the spurious de-
tection of apparent long-range correlations that are an
artifact of patchiness.

The original DFA method comprises the following
steps.

(i) For each numerical sequence fu;) compute a run-
ning sum
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y(n)—:? ui„
k=1

which can be presented graphically as a one-dimensional
landscape or DNA walk [1].

(ii) Divide the entire sequence of length L into I/E
nonoverlapping boxes, each containing E nucleotides, and
define tl.e "local trend" in each box (proportional to the
compositional bias in the box) to be the ordinate of a
linear least-squares Gt for the DNA walk displacexnent in
that box.

(iii) Define the "detrended walk, " denoted by yg(n),
as the difFerence between the origiiial walk y(n) and the
local trend. Calculate the variance about the local trend
for each box and calculate the average of these variances
over all the boxes of size Z.

In this work we use the original DFA method, but with
a sliding box, in order to obtain better statistics. Specif-
ically, we define a sliding observation box of size 8 that
starts at base pair i and ends at base pair i +Z. Then we
compute the least-squares linear fit y, g(n) = na+ b such
that the sum of f+ 1 squares for this box

spectra for all 33301 coding and for all 29453 noncod-
ing sequences of the GenBank larger than 512 bp. We
6nd that various large subgroups such as plants, inver-
tebrates, and primates have similar qualitative pictures,
but have slightly diferent slopes. We note in Fig. 1 the
presence of three spectral regimes denoted H, L, and M,
corresponding, respectively, to relatively high-frequency,
low-&equency, and mid-&equency scaling regions.

2.4

O

2.2

'+e

is a minimum.
Finally, we average E;, ;„(E) over all positions of the

observation box &om i = 0 to i = I —E and define the
"detrended Huctuation function" as

2.0

5.0

(b)

logio f [1/bP

1
L—E

'=(i e+I)(e I)?-
For sequences with power-law long-range correlations for
E ) 10 the detrended Buctuation can be weH approxi-
mated by a power law [17]

V)

O

4.0

where, for an infinite sequence o. is related to P through

n = (P+1)/2.
For each nucleotide sequence and for each of the seven

mapping rules, we compute o. by fitting the double log-
arithmic plot of Pii(E) in the range / = 10 —100, which
approximately corresponds to the range of &equencies
for identifying P. According to the theoretical relation-
ship (8) between n and P, we calculate for each sequence
an exponent P':—2n —1, which we compare with the
spectral exponent P, obtained by the FFT method. We
compute the average P' and the standard deviation o&,
using Eq. (3), for the same groups of organisms as above.

III. KESU'I TS

A. FFT analysis

We analyze sequences for all seven mapping rules. We
show in Fig. 1(a) a log-log plot of the averaged power

3.5
-4 -2

log&0 f [1/bp

FIG. 1. (a) Power spectra averaged over all eukaryotic se-
quences longer than 512 bp, obtained by a FFT with a win-
dow size of 512. The upper curve is the average over 29453
coding sequences; the lower curve is the average over 33301
noncoding sequences. The straight lines are least-squares fits
for the second decade (region M). The values of P measured
as the slopes of the fits are 0.03 and 0.21, respectively. (b)
Same data for all sequences larger than 4096 bp, obtained by
a FFT with a window size of 4096. The average is computed
over 874 coding and 1157 noncoding sequences. Note that
for high frequencies, the power spectra for both window sizes
practically coincide. In the region of frequencies f ( 1/100
bp [region H of (a)], the power spectra in (a) bend upward
from the apparent straight line. For (b) (larger windows) the
S(f) spectra have a constant slope over more than one decade
(region M). The fits are the same for both (a) and (b): for
coding, P = 0.04, while for noncoding, P = 0.21.
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Rig'h fp-equency r ange: Regime H g. Lour-frequency range: Regime L

In the region of high &equencies, there are two major
peaks, corresponding to the frequencies I/O bp i and
I/O bp [3]. These peaks are much more pronounced
in coding than in noncoding sequences and are probably
related to the codon structure, which consists of three
nucleotides [18]. It is interesting to note that in the non-
coding sequences the peaks are still present, but are much
weaker than in the coding sequences. This may support
the hypothesis (see [19,20] and references therein) that
many noncoding sequences are the result of the insertion
of formerly coding sequences that later mutate.

Since the high-f'requency region (f ) I/10 bp ) is
strongly afFected by short-range correlations related to
the codon structure, it cannot be used for investigat-
ing long-range correlations. In an attempt to obviate
this problem, Voss subtracted a "white noise level" &om
power spectra, which he had to estimate subjectively [21].

At the lowest &equencies, the signal is distorted by
artifacts of the Fourier transformation method. Specifi-
cally, at frequencies smaller than roughly 5/N, there is
a spurious contribution arising &om the fact that in the
FFT method data that are not periodic are treated as
periodic with period ¹ As a result, there is a contri-
bution to S(f) that varies as I/f2 Fo.r this reason, we
show in Fig. 1(b) our FFT results for the same data set
but using a larger window (N = 4096). We note that
the spurious behavior is shifted to even lower &equencies
[Fig. 1(b)].

8. Mid fveq-uency range: Regime M

The only region for which a log-log plot of S(f) vs

f is consistently straight for both coding and noncod-
ing sequences is the intermediate region; for N = 512,

TABLE I. The top line gives the average value of P, measured by a FFT for all eukaryotic DNA noncoding segments larger
than 512 bp for all seven mapping rules defined in Sec. II of the text. The fitting range for P is from f = 0.012 bp to
f = 0.097 bp . The bottoxn line gives the value of P'—:2a —I, where a is computed by the DFA method (the fitting range
is from 8 = 10 to E = 100). The standard errors of P and P' are all less than 0.01. The asterisk denotes all other mammals
except primates and rodents.

Group
I. Plants

1. Fungi

2. Embryophytes

II. Invertebrates

1. Insects

(a) Drosophila

2. Nematodes

3. Protozoa

III. Vertebrates

1. Fishes and amphibians

2. Birds

3. Mammals

(a) Rodents

(b) Primates

(b) Others'

Total

Segments
6843

3222

5691

2573

1363

1144

1046

1060

7073

9801

33301

length (kbp)
8155

3459

8893

3994

2602

1553

1299

1418

9837

14646

46449

BY
0.14
0.13
0.14
0.15
0.15
0.13
0.09
0.11
0.08
0.09
0.10
0.11
0.04
0.13
0.15
0.14
0.20
0.18
0.17
0.15
0.21
0.20
0.20
0.18
0.19
0.18
0.21
0.18
0.18
0.17
0.16
0.16

AA
0.13
0.12
0.13
0.13
0.13
0.11
0.10
0.12
0.13
0.13
0.13
0.13
0.04
0.11
0.14
0.13
0.15
0.13
0.13
0.11
0.16
0.14
0.15
0.13
0.16
0.14
0.14
0.13
0.14
0.11
0.14
0.12

Seven
TT
0.12
0.11
0.12
0.12
0.12
0.10
0.09
0.11
0.10
0.11
0.11
0.13
0.03
0.11
0.14
0.13
0.14
0.12
0.12
0.12
0.14
0.13
0.14
0.12
0.16
0.12
0.13
0.12
0.14
0.12
0.13
0.12

rules of
QQ
0.05
0.05
0.02
0.03
0.08
0.06
0.08
0.08
0.09
0.08
0.09
0.08
0.05
0.07
0.14
0.08
0.13
0.12
0.08
0.08
0.11
0.09
0.13
0.12
0.12
0.11
0.15
0.13
0.09
0.09
0.11
0.10

mapping
t C
0.06
0.06
0.03
0.04
0.08
0.07
0.06
0.07
0.06
0.06
0.08
0.08
0.04
0.07
0.09
0.09
0.14
0.12
0.08
0.09
0.12
0.10
0.14
0.12
0.13
0.12
0.15
0.13
0.10
0.10
0.11
0.10

SlV
0.03
0.03
0.01
0.02
0.04
0.03
0.08
0.08
0.11
0.11
0.10
0.10
0.05
0.07
0.05
0.06
0.12
0.07
0.05
0.05
0.05
0.03
0.13
0.07
0.12
0.06
0.14
0.08
0.10
0.05
0.10
0.06

KM
0.11
0.09
0.08
0.08
0.12
0.10
0.09
0.10
0.11
0.11
0.12
0.12
0.03
0.08
0.14
0.13
0.10
0.11
0.10
0.09
0.12
0.10
0.10
0.11
0.12
0.12
0.09
0.11
0.09
0.08
0.10
0.10
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this regime is roughly the decade 1/100 bp ( f
1/10 bp . Therefore, for this region, the slopes can
be used reliably to test for power-law correlations. We
also note that the size of a protein is usually limited to
a few hundred amino acids, so the coding region rarely
exceeds —jkO bp. Consequently, comparison of the cor-
relation properties of coding and noncoding sequences is
valid only for length scales below = 10 bp. In fact, a
majority of the coding sequences are smaller than 10 bp.
In order to obtain good statistics and a consistent proce-
dure for all sequences analyzed, we choose N = 512 bp
and compare long-range correlation properties of coding
and noncoding sequences only on the second decade of
the power spectra, fitting the data from f = 0.012 bp
to f = 0.097 bp

We find that for the eukaryotic sequences for each of
the mapping rules the average value of P is significantly
smaller for coding sequences than for noncoding. The
value of P is very close to zero for coding sequences, in-

dicating almost no correlations in the region of 1/10—
1/100 bp. The results are summarized in Tables I and
II and in Fig. 2. The histograms of distributions of P
for coding and noncoding sequences for several groups of
organisms are presented in Fig. 3. The width of these
histograms is equal to ap. The size of O.p relates both to
intrinsic biological variability and to inherent errors in
estimating scaling exponents &om finite size sequences
as discussed in Ref. [22].

The probability distribution function of P for coding is
very different from noncoding (see Fig. 2). We perform a
quantitative calculation using the Kolmogorov-Smirnov
D test to reject the null hypothesis that these two distri-
butions are drawn &om the same population distribution
[23]. The Kolmogorov-Smirnov D value is defined as the
maximal deviation between two cumulative probability
distributions and ranges &om 0 to 1. A large D value
suggests that we can reject the null hypothesis. For our
data, D = 0.35. Finally, we calculate the significance (p

TABLE II. The top line gives the average value of P, measured by a FFT for all eukaryotic DNA coding segments larger
than 512 bp for all seven rules of mapping defined in the text. The fitting range for P is from f = 0.012 bp to f = 0.097
bp . The bottom line gives the value of P':—2o. —1, where n is computed by the DFA method (the fitting range is from
E = 10 to / = 100). The standard errors of P and P' are all less than 0.01. The asterisk denotes all other mammals except
primates and rodents.

Group
I. Plants

1. Fungi

2. Embryophytes

II. Invertebrates

1. Insects

(a) Drosophila

2. Nematodes

3. Protozoa

III. Vertebrates

1. Fishes and amphibians

2. Birds

3. Mammals

(a) Rodents

(b) Primates

(c) Others*

Total

Segments
8625

3222

2632

4681

1887

1187

866

1253

15985

796

14187

6006

6319

1862

29453

length (kbp)
12256

3459

3418

7439

3004

2171

1587

1909

23283

1475

1244

20773

8694

9545

2532

43185

RY
-0.02
0.03
-0.04
0.02
0.00
0.05
-0.02
0.01
-0.03
-0.02
-0.02
-0.01
-0.05
0.04
0.01
0.03
0.02
0.07
0.03
0.07
0.06
0.09
0.02
0.06
0.02
0.07
0.06
0.02
0.03
0.06
0.00
0.04

AA
-0.02
0.01
-0.04
0.01
0.00
0.02
-G.03
-0.01
0.02
-0.02
-0.01
-0.01
-O.G6

-0.01
-0.01
0.00
0.04
0.04
0.01
0.03
0.01
0.04
0.04
0.04
0.03
0.04
0.04
0.04
0.05
0.05
0.01
0.04

-0.06
-0.01
-0.08
-0.01
-0.04
-0.01
-0.06
-0.02
-0.06
-0.04
-0.07
-0.03
-0.05
0.00
-0.05
-0.01
-0.01
0.01
-0.02
0.00
0.00
0.01
-0.01
0.01
-0.01
0.01
0.01
-0.01
-0.00
0.01
-0.03
0.00

-0.05
-0.03
-0.04
-0.03
-0.07
-0.03
-0.03
-0.03
-0.04
-0.03
-0.03
-0.03
-0.02
-0.03
-0.02
-0.03
0.02
0.01
0.01
0.00
0.04
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.04
0.01
-0.01
0.00

-0.03
-0.02
-0.04
-0.02
-0.03
-0.01
-0.02
-0.03
-0.07
0.06
-0.07
-0.06
-0.01
-0.01
0.02
O.OO

0.03
0.02
0.05
0.03
0.05
0.04
0.03
0.02
0.03
0.02
0.02
0.02
0.03
0.01
-0.00
0.00

Seven rules of mapping
TT GG CC

-0.11
-0.10
-0.10
-0.09
-0.14
-0.13
-0.08
-0.09
-0.09
-0.09
-0.10
-0.09
-0.06
-0.10
-0.06
-0.08
0.01
-0.05
-0.04
-0.08
0.00
-0.06
0.02
-0.04
0.01
-0.05
-0.04
0.02
0.05
-0.03
-0.04
-0.08

KM
-0.02
0.01
-0.03
0.02
-0.01
0.02
-0.02
0.00
-0.02
-0.01
-0.02
-0.01
-0.01
0.00
-0.03
0.00
0.02
0.02
0.03
0.03
0.02
0.02
0.01
0.02
0.01
0.02
0.02
0.01
0.00
0.01
-0.00
0.02
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3.00

(a)

2.00

—all eukaryotes

value), which gives the probability that these two data
sets were drawn &om the same distribution, and 6nd that
it is less than 10

B. DFA analysis

1.00

0.00
-0.5

3.00

0.0
Spectral exponent (i

0.5

2.00

1.00

0.00
-0.5 0.0

Spectral exponent P

0.5

4.00

—all eukaryotes

FIG. 2. Histograms of the values of P obtained for all cod-
ing and noncoding eukaryotic sequences ) 512 bp of the Gen-
Bank by the FFT method. The probability density of find-
ing a value of P between P and P + dP is plotted against P
(purine-pyrimidine rule of mapping). (a) Coding and noncod-
ing sequences combined together, (b) coding and noncoding
sequences analyzed separately.

In order to obtain a completely independent check on
the Fourier analysis presented above, we treat the same
set of coding and noncoding sequences using the DFA
method [12]. The results of both methods are presented
in Tables I and II. We found that the values of P and
P'—:2n —1 are remarkably close to each other. For coding
sequences the values of P' are usually slightly larger than
the corresponding values of P. This difference emerges
&om slight differences in the position of the 6tting range
in real space and in &equency space. The standard de-
viation op is also slightly smaller than corresponding
values of op. Hence the accuracy of both methods is al-
most the same. The numerical values obtained by the
two methods, FFT and DFA, are remarkably close, as is
clear upon examination of the bottom two lines of Tables
I and II. Moreover, the histogram P(P') of Fig. 3 closely
resembles the histogram P(P) of Fig. 2.

In order to estimate the standard error of the mean
for coding and noncoding sequences (using both FFT
and DFA methods), we compare the results for difFer-
ent groups of organisms and difFerent rules of mapping
given in Tables I and II and compute their mean and
standard deviation. We conclude that for all coding se-
quences P = 0.00+ 0.04 and for all noncoding sequences
P = 0.16 + 0.05 where the error bars represent 95% con-
fidence intervals [24].

The data in Tables I and II indicate that the value of P
(or P') computed by the BYrule for none'oding sequences
for any species of vertebrates is significantly larger than
the value of P (or P') for any species of invertebrates and
plants and is largest for mammals and birds.

2.00 IV. DISCUSSION

0.00
-0.5

6.00

(b)

4.00

0.0
P'=2u-1

0.5

—coding
noncodlng

2.00

0.00
-0.5 0.0

P'=2u-1
0.5

FIG. 3. This figure is the analog of Fig. 2, exceptP'—:2a. —1 is calculated by the DFA method of Ref. [12].

The results of the present systematic and inclusive
analysis of GenBank DNA sequences are notable for two
major reasons. First, we unambiguously demonstrate
that noncoding DNA, but not coding DNA, possesses
long-range correlations [25]. This finding is made us-
ing two independent, complementary techniques: Fourier
analysis and DFA, a modification of root-mean-square
analysis of random walks. Indeed, as shown in Tables I
and II, the spectral exponent P computed by both tech-
niques for the same sequence is nearly identical. Second,
we demonstrate an increase in the complexity of the non-
coding DNA sequences with evolution. The value of P for
vertebrates is significantly greater than that for inverte-
brates. This ending based on the full GenBank data set
supports the suggestion based upon a systematic study
of the myosin heavy gene family that there is an apparent
increase in the complexity of noncoding DNA for more
highly evolved species compared to less evolved ones [19].
Both of these results contradict the report of Voss, who
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failed to observe any difFerence in the long-range correla-
tion properties of coding and noncoding DNA and who
reported a decrease in the value of the spectral exponent
P with evolution.

From a practical viewpoint, the statistically significant
difFerence in long-range power-law correlations between
coding and noncoding DNA regions that we observe sup-
ports the d.evelopment of gene ending algorithms based.
on these distinct scaling properties. A recently reported
algorithm of this kind [ll] is especially useful in the anal-
ysis of DNA sequences with relatively long coding re-
gions, such as those in yeast chromosome III.

Finally, we note that although the scaling exponents
n and P have potential use in quantifying changes in
genome complexity with evolution (see [19]), the cur-
rent GenBank database does not allow us to address the
important question of whether unique values of these ex-

ponents can be assigned to diferent species or to related
groups of organisms. At present, the GenBank data have
been collected such that particular organisms tend to be
represented more frequently than others. For example,
about 80% of the sequences &om birds are &om Gal-
lus gallus (the chicken) and about 2/3 of the insect se-
quences are &om Drosophila meL'anogaster. The results
of the present analysis and other recent studies [19] indi-
cate the importance of sequencing not only coding, but
also noncoding DNA &om a wider variety of species.

ACKNOWLEDGMENTS

We wish to thank F. Sciortino and E. N. Trifonov
for discussions, and. NSF, NIH, the Mathers Charita-
ble Foundation, and the Israel —USA Binational Science
Foundation for support.

[1] C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin,
F. Sciortino, M. Simons, and H. E. Stanley, Nature 356,
168 (1992).

[2] W. Li and K. Kaneko, Europhys. Lett. 17, 655 (1992).
[3] R. Voss, Phys. Rev. Lett. 68, 3805 (1992).
[4] J. D. Watson, M. Gilman, J. Witkowski, and M. Zoller,

Recombinant DNA (Scientific American, New York,
1992).

[5] W.-H. Li and D. Graur, Fundamentals of Molecular Evo
lution (Sinauer, Sunderland, MA, 1991).

[6] S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng,
and H. E. Stanley, in Fractals in Science, edited by A.
Bunde and S. Havlin (Springer, Berlin, 1994), Chap. 2.

[7] A. Yu. Grosberg, Y. Rabin, S. Havlin, and A. Nir, Euro-
phys. Lett. 23, 373 (1993).

[8] E. I. Shakhnovich and A. M. Gutin, Nature 346, 773
(1990).

[9] R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S.
Havlin, C.-K. Peng, M. Simons, and H. E. Stanley, Phys.
Rev. Lett. 73, 3169 (1994), and unpublished. Recent
work suggests that the conclusions of this article may
hold for the entire GenBank for plants and invertebrates,
but not for higher forms of life. See H. E. Stanley et al. ,
Nuovo Cimento (to be published); S. Havlin et al. , Frac-
tals (to be published).

[10] J. W. Fickett and C.-S.Tung, Nucleic Acids Res. 20, 6441
(1992).

[11] S. M. Ossadnik, S. V. Buldyrev, A. L. Goldberger, S.
Havtin, R. N. Mantegna, C.-K. Peng, M. Simons, and H.
E. Stanley, Biophys. J. 67, 64 (1994).

[12] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simous, H. E.
Stanley, and A. I. Goldberger, Phys. Rev. E 49, 1685
(1994).

[13] M. Y'a Azbel, Phys. Rev. Lett. 81, 589 (1973); Biopoly-
mers 21, 1687 (1982).See also E. N. Trifonov, Bull. Math.
Bio. 51, 417 (1989).

[14] C. L. Berthelsen, J. A. Glazier, and M. H. Skolnick, Phys.
Rev. A 45, 8902 (1992).

[15] A. S. Borovik, A. Yu. Grosberg, and M. D. Frank
Kamenezki, J. Biomol. Struct. Dyn. 12, 655 (1994).

[].6] We do not tabulate our findings for prokaryotic sequences

since these have a remarkably small fraction of noncod-
ing regions (many of which inay actually contain uniden-
tified coding regions). However, our analysis of the entire
prokaryotic sequence data shows P = 0.00+ 0.05, as ex-
pected for primarily coding regions.

[17] It can be proven that for a sequence of uncorrelated ran-
dom variables (u, ) with finite mean u and variance V,
the detrended fiuctuation function, defined by Eq. (6),
obeys the exact relation E~(E) = (I+3)V/15 for any value
of 8 & 2. I'or an artificial sequence with built-in long-
range correlations [12], F~(E) can be well approximated
by C(E+ 3), where u is the exponent of long-range cor-
relations and C is some proportionality coefBcient. Thus
the exponent n can be accurately measured as the slope
of a double logarithmic plot of F~(E) vs E + 3 even for
very small values of E. We found that this procedure was
more reliable for calculating n.

[18] It is well known that there are some preferences for the
usage of a purine as the first nucleotide in the codon (32%
G and 28% A) and for a weakly bonded base pair as the
secon. d (31% A and 27'%%uo T) that are quite robust across
the entire phylogenetic spectrum. These preferences may
create the three base-pair periodicity in the coding nu-
cleotide sequence, which is responsible for the peak at
1/3 bp

[19] S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng,
H. E. Stanley, M. H. R. Stanley, and M. Simons, Biophys.
J. 65, 2673 (1993).

[20] S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng,
M. Simons, and H. E. Stanley, Phys. Rev. E 47, 4514
(1993).

[21] The white-noise subtraction procedure employed by Voss
is commonly used to separate a useful signal from thermal
high frequency fiuctuations (e.g. , in a radio device) when
the white noise arises from known causes. However, for
DNA sequences, there is no reason to expect white noise
from such sources; indeed, the high frequencies carry bi-
ological information —such as the triplet codon (f = 1/3
bp )—so their subtraction is of questionable validity.

[22] C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin,
M. Simons, and H. E. Stanley, Phys. Rev. E 47, 3730



LONG-RANGE CORRELATION PROPERTIES OF CODING AND. . . 5091

(1993).
[23] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W.

T. Vetterling, Numerical Recipes (Cambridge University
Press, Cambridge, 1989).

[24] For any given species and for any given rule of mapping,
the difFerence between the value of P for noncoding se-
quences and the value of P for coding sequences is always
signi6cantly larger than zero. The largest value of this

difference usually corresponds to the purine-pyrimidine
(RY) mapping rule.

[25] Small correlations or anticorrelations observed in coding
sequences are in quantitative agreement with recent re-
sults of V. Pande, A. Yu. Grosberg, and T. Tanaka [Proc.
Natl. Acad. Sci. U.S.A. 91, 12972 (1994)], who study
amino acid sequences of proteins by a similar method.


