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Phase transitions and modulated phases in lipid bilayers

C.-M. Chen, T.C. Lubensky, and F.C. MacKintosh
Department of Physics, University of Michigan, Ann Arbor, Michigan $8109 11'-O

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 1910$
(Received 20 June 1994)

We develop and analyze a continuum Landau theory for ordered chiral and achiral bilayer mem-
branes. This theory contains couplings between tangent-plane orientational order and curvature
that lead to "rippled" or Ppt phases with one-dimensional height modulations and to phases with
two-dimensional height modulations. We calculate mean-field phase diagrams from this model.

PACS number(s): 61.30.Cz, 64.60.—i, 64.70.Md

I. INTRODU CTION

Lipid molecules have charged or polar heads and one or
two hydrocarbon tails. When dissolved in water at suK-
cient concentration, they self-assemble into bilayer mem-
branes in which their oily tails are shielded &om contact
with the surrounding water. Under appropriate condi-
tions, lamellar phases consisting of periodically spaced
parallel membranes separated by water are the equilib-
rium phases. Membranes in lamellar phases as well as
isolated membranes (e.g. , in closed vesicles) can exhibit
varying degrees of order. It is customary to classify mem-
brane order according to the equilibrium lamellar phase
whose membranes exhibit that order. There is the L
or fluid phase [1] in which the long axes of constituent
molecules, like those of a smectic-A liquid crystal, are
on average parallel to the membrane or layer normal.
There are the Lp phases [1] in which long molecular
axes, like those in a smectic-C liquid crystal, tilt on av-
erage relative to the membrane or layer normal. The
molecular tilt de6nes a two-dimensional tangent-plane
order parameter. The L p phases, of which there are
three, also exhibit hexatic bond-angle order and are dis-
tinguished &om each other by the angle the tilt direc-
tion makes with the direction of hexatic order [2]. Fi-
nally, there is the rippled or Ppi phase [1,2]. This phase,
whose lamellar realization is depicted schematically in

Fig. 1, is characterized by a one-dimensional height mod-
ulation of each membrane [1—6] in addition to nonzero
tilt [1,3]. The height modulations of the lamellar Ppi
phase have two-dimensional crystalline symmetry in the
plane containing the layer normals and the membrane
modulation vector. In the direction perpendicular to this
plane, there is only fluid. like short-range order if the mem-
branes themselves have only orientational order, not crys-
talline order. A schematic representation of the phase
diagram for dimyristoyl phosphatidylcholine (DMPC) in
the temperature —relative-humidity plane is shown in Fig.
2.

In this paper, we present and analyze a phenomenolog-
ical Landau model [7] for tilted bilayer membranes that
includes coupling between tangent-plane order and mem-
brane shape (or curvature) and chiral couplings present
when constituent molecules are chiral. This model pre-
dicts phase transitions from the L phase to the tilted
Lp phases. It also predicts the possible existence of a
number of distinct rippled phases distinguished by height
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FIG. 1. Schematic representation of rippled membranes in
the Ppt phase. The ripples are asymmetric, and there is a
phase shift in the ripple pattern from layer to layer producing
a two-dimensional oblique lattice.

FIG. 2. The phase diagram of DMPC-water as a function
of temperature and relative humidity, showing the I, Lpl,
and Ppt phases. The Ppt phase occurs for relative humidity
greater than 90% and for temperatures between 15 and 30 C.
This range corresponds to water content greater than approxi-
mately 20%%up. Additional tilted hexatic phases (Lp~, LpL„Lpi)
are not shown in this figure [2].
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FIG. 3. Ripple symmetries (G x 8„") with corresponding
membrane shapes undulating in the x direction.

profiles of different symmetry and by different tilt-order-
parameter configurations relative to the ripples. Ripple
configurations with five distinct symmetries, as shown
in Fig. 3, are possible. Our model predicts the shape
(a) in Fig. 3 for achiral systems and shapes (a), (b),
and (c) in Fig. 3 for chiral systems. The asymmetric
shape shown in Fig. 3(b) most closely resembles that ob-
served experimentally, though symmetric shapes such as
that in Fig. 3(a) have also been reported. Finally, the
model predicts the possible existence of phases with two-
dimensional rather than one-dimensional height modula-
tions.

Before describing the present work in detail, we find
it useful to review the experimental evidence for the Pp
phase and previous theoretical models for this phase. The
Pp phase was first observed by Tardieu et al. [1] in x-ray
scattering experiments on lamellar phases of lecithins.
It exists in regions of high water content. Its ripple
structure is a corrugation such as that shown in Fig. 1
rather than a peristaltic modulation of membrane thick-
ness. The evidence for this comes &om the large am-
plitude (45 A.) of the ripples compared to the membrane
thickness (60 A) observed in freeze-&acture scanning tun-
neling microscope (STM) measurements and from x-ray
scattering [5,8]. The ripple wavelength is a function of
both temperature and water content [3,6] and varies be-
tween 140 A. and 200 A. . Both symmetric and asymmetric
ripples such as those depicted schematically in Figs. 3(a)
and 3(b) have been inferred from x-ray difFraction pat-
terns [1,4,6,9] and from &eeze-&acture experiments [10].
In particular, two-dimensional x-ray diffraction patterns
with Bragg peaks on an oblique rather than a rectan-
gular lattice indicate an asymmetric ripple pattern with
a phase shift between layers as shown in Fig. 1. Only
the shape shown in Fig. 3(b) can produce such a diffrac-
tion pattern. In keeping with common usage in the lit-
erature, we shall refer to this shape as the asymmetric
ripple although several ripple structures with lower sym-
metry than the symmetric structure shown in Fig. 3(a)
are possible. The degree of symmetry can depend on
water content. Reference [6] reports that the reciprocal
lattice of Bragg peaks approaches rectangular symmetry

as water content is increased.
Our model for chiral lipids such as DMPC yields asym-

metric ripples consistent with observed structures. In
contrast with the bend stripe patterns in chiral smectic-
C* (Sm-C*) films [11], the ripple structure of the Ppi
phase is not directly caused by the molecular chiral-
ity. In Ref. [12] mixtures of enantiomers of dipalmitoyl
phosphatidylcholine (DPPC) with opposite chirality were
studied in excess water. A ripple phase was observed for
all mixtures, including the achiral racemic mixture. Fur-
thermore, the relative concentration of right- and left-
handed molecules had no significant effect on the ripple
wavelengths or the transition temperatures. Although
Ref. [12] reported asymmetric ripples in the pure sys-
tems, it did not undertake a systematic study of ripple
symmetry. In our model, the degree of ripple asymme-
try is predicted to depend on the chirality. In particular,
symmetric ripples are predicted for an achiral system.

Less is known about the molecular tilt than about the
shapes of the membranes in the ripple phase. While the
existence of molecular tilt in the ripple phase has been
established, in most cases only an average tilt angle has
been inferred from the layer spacing and bilayer thick-
ness. It is apparent, however, that the molecular orien-
tation is not constant in space [13],as has been suggested
by several previous theoretical models. Furthermore, re-
cent experiments suggest that the Pp phase is charac-
terized by nonzero molecular tilt transverse to the ripple
wave vector [9], as predicted by our model.

We now describe briefly previous theoretical models of
the Pp~ phase. The models of Falkovitz et aL [14], and
later of Marder et at. [15] describe the bilayer ripple as
a modulation in layer thickness. Goldstein and Leibler
[16] proposed a siinilar model, to which they added in-
terlayer interactions due to van der Waals and hydra-
tion forces. However, the order parameter in these the-
ories is a scalar: the layer thickness. As noted in Ref.
[16], such a description does not account for the differ-
ent symmetries of the I, Lp, and Pp phases. The
authors of Ref. [16] were concerned primarily with the
role of interlayer interactions. Furthermore, these mod-
els do not provide a mechanism for the instability of flat
membranes. X-ray diffraction data as well as the ob-
served ripple amplitude are inconsistent with a modu-
lation in layer thickness, as proposed by these theories.
Interactions between layers, as introduced in Ref. [16]
may also play an important role. However, ripple struc-
tures in isolated membranes have recently been observed
[10] indicating that intermembrane interactions are not
essential for the production of ripples. In contrast, the
models of Doniach [17] and of Carlson and Sethna [18]
are based on the microscopic packing properties of the
lipid molecules. These models describe the ripple phase
as one in which the membranes (of nearly constant thick-
ness) undulate, while the orientation of the molecules is
constant in space. Although this picture is in better qual-
itative agreement with known structural properties of the
ripple phase, these one-dimensional models only account
for molecular tilt in the direction of the ripple (i.e. , longi-

tudinal tilt). Thus, they describe only the symmetric P&,
phase of our theory. We expect on quite general grounds
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that the transition from the fiat tilted phase (Lp ) to the
rippled phase will involve a modulation of the membrane
perpendicular to the direction of the tilt. In essence, a
modulation transverse to the tilt direction corresponds
to a soft mode of the Lp phase, while a longitudinal
modulation is disfavored.

In a previous paper [7], we introduced a phenomeno-
logical model of Pp~ phases that can account for the ob-
served ripple phases. We showed that, while the ap-
parent ripple structure is essentially one dimensional,
the two-dimensional nature of the molecular tilt in the
membranes can lead to an unexpected variety of mod-
ulated phases of diferent symmetry. In this paper, we
first classify the various possible ripple symmetries that
can occur. We then describe our model for both achiral
and chiral membranes, with particular emphasis on the
Pp phases. Another modulated structure that has been
widely studied is that of the chiral stripe phases of, for
example, Sm-C* films [11].Thus we include a discussion
of the eKects of the coupling of molecular tilt to mem-
brane curvature in these phases. In particular, we show
that these stripe phases are always rippled unless they
are constrained to lie flat or are infinitely rigid. We also
show that they can undergo a curvature-induced period-
doubling transition.

II. RIPPLE SHAPES AND SYMMETRIES

We begin with a discussion of the possible one-
dimensional ripple symmetries without regard for the
molecular tilt within the membrane. For a nearly flat
membrane, the shape can be described by a function
h(x, y), the height of the membrane above a reference x-y
plane. For one-dimensional ripples, such as are observed
in the Pp phase, the membrane shape can be completely
characterized by a function of a single variable, h(x). A
flat membrane is symmetric under arbitrary translations
and rotations of the x-y plane, as well as the discrete sym-
metry group D2h, the group of order-2 rotations about
the three coordinate axes together with space inversion
[19,20]. The full point-group symmetry of the flat mem-
brane is actually D h, since arbitrary rotations preserve
the membrane shape. Any purely one-dimensional ripple
structure is symmetric under cr„(the reflection y + —y).
Thus, apart from discrete translations of the membrane,
the possible symmetry groups are of the form G x S~"~,

where S(") = (1,a„j. There are five possibilities for the

subgroup G: C2„",C2", S('), S( ), (1). The correspond-
ing membrane shapes are shown in Fig. 3. Of these pos-
sible shapes, at least the first two seem to have been
observed. The second shape is what has been referred to
as an asymmetric ripple in the literature. In addition to
the first shape, for chiral lipids, our model predicts the
second and third shapes for certain phases. Experimental
reports of x-ray difFraction, however, do not distinguish
between shapes (a) and (c).

Although the observed ripple structures of the Pp
phase are essentially one dimensional, the existence of
orientational order (in the form of molecular tilt) within
the membrane can lead to additional phases of difFer-

ent symmetry. In particular, the full symmetry group
D2h for one-dimensional modulations of both membrane
shape and. molecular orientation must be considered. A
complete description of all possible symmetries will not
be given here. However, we note that D2h has 16 possible
subgroups. Below, we indicate the symmetry groups for
the various ripple phases predicted by our model.

III. THE MODEL FOR ACHIRAL BILAYERS

In this section, we develop a phenomenological I.an-
dau theory for tilt order and curvature of a single mem-
brane [21]. As shown in Fig. 4, the molecular orienta-
tion determines a vector order parameter, rn, defined in
the plane tangent to the surface. We include the cou-
pling of molecular tilt to membrane curvature that is ul-
timately responsible for the production of ripples in this
model. This coupling results from steric interactions be-
tween neighboring molecules, as illustrated in Fig. 5. A
divergence of ln corresponds to a varying tilt angle of
the molecules relative to the surface, which gives rise to
a spontaneous curvature of the membrane. This coupling
of the tilt to curvature reduces the in-plane tilt elastic
constant. Our model [7] is similar to the Landau theory
of the smectic-A —to—smectic-C transition in liquid crys-
tals. The model &ee energy involves only quadratic and
quartic terms that are allowed by rotational symmetry in
the tangent plane:

f = —
C~~ (V. m) + —Cg (V x m) + D(V' m)—=1 2 1 2 1 2 2

2 2 2
1+-tlml'+ ulml'.
2

This is a Lifshitz [22] free energy that produces equilib-
rium modulated phases if either C~~ or C~ is negative

[in which case the (V'2m) term is needed for stability].
Because of the vector nature of the order parameter, no
cubic term is allowed. The first terms represent the tilt
elasticity in the tilted phase. These correspond to splay
and bend, respectively. To these elastic terms we add the
curvature energy

FIG. 4. Smectic-t order within a Quid membrane arises
from a tilt of the constituent molecules (represented by the
solid oval and unit director n) relative to the unit membrane
normal N. The surface component, m = n —(N n)N, rep-
resents a two-dimensional vector order parameter.
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To determine the mean-field phase diagram, we restrict
our attention to the single-mode approximation, in which
the modulated phases are characterized by a single wave
vector q. This should be valid near the transition to the
L phase. In this limit, all possible stable and metastable
ripple phases can be expressed by the variational order
parameter

(b)
m = m~ cos(qx),
my ——mp + m, sin(qx).

(6a)
(6b)

0 0 0
FIG. 5. An illustration of the microscopic origin of the cou-

pling between tilt and curvature within a membrane. A di-
vergence of the tilt m gives rise to a spontaneous curvature
of the membrane (b).

f, = —~ (V h) —p (V' h) (V m),
2

including the allowed coupling of gradients in tilt to the
mean membrane curvature [23]. Here, h(x, y) is the
height of the membrane relative to some Hat plane with
coordinates (x, y), and V;V'~ h(x, y) is the curvature ten-
sor. (Covariant forms of the terms in Eqs. (1) and (2)
were shown in another context in Ref. [24].)

The equilibrium membrane shape can be determined
by minimization of the free energy in Eqs. (1) and (2).
This shape is determined by

V h= —(V m).

m = mq cos(qx),
m„= mq cos(qy).

(7a)
(7b)

We shall call these phases P&, , P&, , P&, , and the square(~) (2) (3)

lattice vortex phase. The first three phases are charac-
terized by symmetric ripples: i.e. , ignoring molecular tilt,
they are symmetric under reHection through the mid-

plane followed by a translation. The symmetric P&, and(~)

P&, phases both have a sinusoidally varying longitudi-
nal component of the tilt Beld, m; they difI'er, however,
in that the transverse component of the tilt field, m„, is

zero in the P&, phase but nonzero in the P&, phase. The(2) ~ (~)

achiral P&, phase is a spiral phase in which rn makes one

It can be shown, for instance, that no stable phase is pos-
sible with a constant longitudinal component, in contrast
with the one-dimensional models of Refs. [17] and [18].
For simplicity, we have assumed that the one-dimensional
modulated phases are rippled only in the x direction.
Three distinct phases are possible. These are shown
in Figs. 6 and 7. In addition, we find a possible two-
dimensional modulated phase shown in Fig. 7. Within
the single-mode approximation, the tilt field in this phase
can be expressed as

When 6 is replaced by this equilibrium value in the pres-
ence of a nonvanishing V - rn, the result is an efFective
free energy identical to Eq. (1) but with a reduced longi-
tudinal elastic constant

(4)

Thus the efFective &ee energy is given by

1 I 1 2 1 2 2
CII (V m) + |+ (7' x m) + D(V' m)—

2 2 2

1+—t/m/2 + u/m/ .
2

When C~~ ) 0, the equilibrium phases are spatially uni-

form; when C~~ ( 0, modulated phases are possible with a

characteristic wave vector qp ——(2m/A): ~CII ~/2D that

tends to zero at C~~
——0. Thus, as the membrane rigidity

is reduced (say, by increasing hydration), the Ip phase
becomes unstable to a ripple phase (Pp ) with decreasing
wavelength.

FIG. 6. A representation of the vector order parameter rn
(~)with corresponding membrane shape in the symmetric P&,

(a) and P&~, (b) phases.
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FIG. 8. A representation of the vector order parameter xn
of the square lattice phase within one unit cell.

FIG. 7. A representation of the vector order parameter m.
with corresponding membrane shape in the symmetric P&,
phase (a) and the square lattice phase (b).

complete revolution in a spatial period. More precisely,
in the P&, phase mo g 0 and ml g ml ——0; in the

P&, phase mo ——ml ——0 and ml g 0; in the P&, phase

me ——0, ml ——ml g 0. Thus the P&, phase has wind-L T (3)

ing number 1, while the P&, and P&, phases have wind-() ()
ing number 0. The square lattice phase exhibits a two-
dimensional modulated structure. As depicted in Fig.

8, the tilt order parameter exhibits a vortex-antivortex
square lattice, with two strength +1 vortices located at
two corners and two strength —1 vortices located at the
other corners.

Within the mean-6. eld approximation, we calculate the
&ee energy of P&, , P&, , P&, , and the square lattice(~) (2) (3)

phase, denoted by fl, f2, fs, and f4, respectively. Here,
we consider the average density of the &ee energy in Eq.
(5) over one spatial period:

fff. d*d&

ff dxdy

For rn given by Eqs. (6a) and (6b), the &ee energy can
be expressed as

(f,/I) = —Ciiq (ml) + —Czq (ml ) + —Dq [(mz) + (ml ) ]+ t me+ —(m—l) + —(ml )

+u~ mo+mo (ml) +3(ml) + — 3(ml) +3(ml) +2(mlml)

In the P&, phase, the &ee energy minimum occurs for

g

I 2

(io)
In the P&, phase, the &ee energy minimum occurs for(2)

and
q=

2D (S4)

CIi')
m() — t +

4u 2D) ' (i2)
and

( r2$

(m~)
3u 4D (S5)

I I 2
provided that Cii & 0 and t & —

Cii /2D. In this case,

the free energy of the P&, phase is given by
I /2

p o l t t Cil n t CII /'4D. In this case, the
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&ee energy of the P&, phase is given by

24u ( 4D )
In the P&, phase, the &ee energy minimum occurs for

ase

Cll + Ci
(17)

and

r
2

(m, ) 4u

Cll + Cg

16D

I I 2
provided that C & —C~ and t & C + C~ /16D. In

ll Il

this case, the &ee energy of the P&, phase is given by

FIG. 9. The mean-field phase diagram of achiral mem-
branes by varying C['I and t. The modulated P&, and square
lattice phases meet the I and Lpt phases at the Lifshitz
point where order first develops. As the temperature is low-
ered, there is a first-order transition from the P&, phase to

the spiral P&, phase.

16u
Cll + C&

16D

1 ~ 2 2 1 4 2 1 2 5
(J,s) = —CIIq mi + Dq mi + —tm—i + —umi. (20)

2 2 2 4

The &ee energy minimum occurs for

I

ll

g (21)

Bnd

In the square lattice phase, the &ee energy can be ex-
pressed as

brane, the P&, phase may occur. ) By solving f4 ——fi,(2)

we 6nd that the Grst-order transition between P&(, and
t 2

the square lattice phase occurs at t, i = —1.79CII /D.
The stability of the square lattice phase is also deter-
mined by comparing f4 and fs The f.irst-order transi-
tion between P&, and the square lattice phase occurs at

t 2 = —1.53CII /D + 1.18CIIC /D + 0.59C&/D. How-

ever, the square lattice phase is unstable to the uniform
I 2I above t s ——

CII /4D Finally, .the phase boundary

between P, and P&, has also been determined by solv-(~) (3)

ing fr = s. The phase diagram for this model is shown
in Fig. 9.

m] 5u 4D)
' (22)

IV. THE MODEL FOR CHIRAL MEMBRANES

provided that CII & 0 and t & CII /4D. In this case, the
&ee energy of the square lattice phase is given by

C,')
20u ( 4D )

To study the stability of these phases, we compare fi,
f2, fs, and f4 with each other. By comparing f4 with

f2, we find that the free energy of P&, is always higher

than that of the square lattice phase. So P&, is never the
equilibrium for the model in Eqs. (1) and (2). (Since our
model ignores &ee energy contributions due to the Gaus-
sian curvature of the membrane, which are higher order
than the terms included above, the P&, phase is expected
to be stabilized relative to the square lattice phase away
&am the Lifshitz point. Thus, for instance, in the pres-
ence of positional order or hexatic order within the mem-

fHp = AHpei, ;(V;V', h)m, -mi, . (24)

As in the previous sectio~, the effective &ee energy in
terms of the tilt xn can be found by a functional min-

For chiral membranes, additional chiral terms must be
included in Eqs. (1) and (2) because of the absence of
inversion symmetry. These terms may be due to the
chiral nature of the lipid constituents. However, the
packing of lipid molecules in a membrane can result in
spontaneously broken chiral symmetry, even for achiral
molecules or for a racemic mixture [25]. The lowest-order
chiral coupling allowed in Eq. (1) for bilayer membranes
is As~nx~2(V' x rn) [26—29]. To Eq. (2) we must add
the chiral coupling of tilt to membrane shape. As de-
scribed by Helfrich and Prost [30], the tendency of chiral
molecules to twist in three dimensions leads to the follow-
ing &ee energy contribution for two-dimensional mexn-
branes that are allowed to curve in three dimensions:
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imization of the free energy with respect to the shape
profile h(x, y). The result is

f = —C'(V' m) + —Cg(V x m) + —D(V' m)
2

+—tlml + ulml + A~lml (V x m), (25)

where C~'~ is given by Eq. (4) and

HPPA

2K
(26)

Furthermore, the equilibrium membrane shape h(x, y)
satisfies

V' h = —V' (V' m) — eg; [V';V', (m, mk)]. (27)

The shapes of the various one-dimensional ripple
phases (with assumed variation in the x direction) can
be determined from the solutions of Eq. (25) together
with

d2h, p dm A~g+ mQmg o

dX K dX K
(28)

Each of the resulting profiles can be expressed in a
Fourier series:

h(x) = ai sin(qx) + az sin(2qx) + bz cos(2qx)

+as sin(3qx) + bs cos(3qx) + .

For example, we find that az g 0 in the P&, phase, as(3+)

shown in Fig. 3(b). Thus the chiral terms above con-

vert the P&, phase into an asymmetric P&, phase, the(3) ~ ~ (3+)

shape of which is consistent with the asymmetric ripples
observed in numerous experiments. The P&, phase is not
affected by the addition of chiral terms. The symmetry
of the chiral P&,

*
phase is lower than that of the P&,

phase with bs g 0 and az ——0. Its shape is that of (c) in
Fig. 3.

Additional chiral phases, such as the chiral stripe phase
and hexagonal phase of Refs. [27—29], can occur for large
Ag in the region of positive C~~. The appearance of
these modulated phases is due to the fact that the chi-
ral term will effectively reduce the bend elastic constant
C~, leading to an instability of the flat membrane. For
As ) /2uC~, the equilibrium phase is the bend stripe
phase of Ref. [27]. Although it is characterized primarily
by bend, this phase also exhibits a splay modulation
i.e. ,

V' . m g 0. As a result of the coupling between
splay and curvature in Eq. (2) and Fig. 5, this phase
also exhibits a ripple structure. The shape of this P&,

*

phase can be obtained from Eq. (3). It is interesting
to note that the P&, phase and the chiral stripe phase,(3+)

P&, , have the same symmetry but dier by a topological(4+)

winding number of the order parameter rn. This wind-

ing number is 1 for the P&, phase, while it is 0 for the

P&, phase. Thus there may or may not be a first-order(4*)

transition between these structures with diferent wind-
ing number, but the same symmetry. This phenomenon
can occur for small C' even in a model with D = 0 in

II

Eq. (25).

V. CHIRAL STRIPE PHASES AND
LOW- TEMPERATURE THEORY

0+ ——n0s + (1 —n)0i,
0 =0, —0„

permits decoupling of the variables 0+ and 0 when A =
0

f~ = f++f +f., - (32)

where

f = —K (V'0 ) + V(1 —cos 60 ),
2

(33)

In the preceding sections, we have investigated Lan-
dau theory for the formation of Pp phases. This theory
works best in the vicinity of the I ifshitz point where the
tilt order parameter m is small. At low temperature,
where the magnitude of rn is essentially fixed, an alter-
native theory in which only the direction of rn can vary
is more appropriate. For achiral membranes, it can be
shown that in this limit only three phases are possible.
These are the Lp, P&, , and P&, phases described above.(1) (3)

In chiral membranes, other modulated phases have been
observed experimentally or predicted theoretically. In
this section, we will investigate the formation of rippled
structures from bend stripe patterns familiar in chiral
free-standing liquid crystal films [26,28,29,31]. In partic-
ular, we will show that the curvature splay [Eq. (2)] and
the Helfrich-Prost [Eq. (24)] contributions [30] to the free
energy convert bend stripes into asymmetric ripples when
the constraint that the membranes lie flat is relaxed. We
will also show that the curvature splay coupling can lead
to a period-doubling instability of the rippled structure.

There have been a number of models for the formation
of bend stripe phases in smectic-C* films [26,28,29,31].
Here we will use the model employed by Selinger [31] in
which membranes have both hexatic order with an order
parameter gs ——

l gs
l

e ' ' and tilt order with order pa-
rameter gi ——m +im„=

labile'

'. The low-temperature
free energy density for a flat chiral film with this order is
[31,32]

fz = —KslV0sl + —KilV'0il + Kis&0i V0s=1 2 1 2

2 2

+V(0i —0s) —AN (V' x m) cos[6(0i —0s)], (30)

where N is the unit normal to the film and V(0)
V(0+ (2m/6)). The last term proportional to V' x rn is
permitted in chiral but not in achiral films. A term linear
in N (V' x m) is also permitted, but in the present appli-
cation it integrates to the sample boundary and can be ig-
nored. In what follows, we will take V(0) = V(1 —cos 0).
The change of variables
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f+ = —K+(&8+)'
2

f,h ———AN (V x m) cos 68

(34)

(»)

contributions to the &ee energy per unit cell:

dzf = —K +Vm,
(&8)'

2 Q)

where K+ —Ks+ Kg + 2Kgs, K = (K~Ks —K~s)/K+,
and o. = (Ks + K&s)/K+. If Ks )) K&, K&s, then K+--
K6, K Ki (( K6, o. 1, and 0+ 06. We will use
this limit in what follows.

Before investigating height ripples, we will review
briefly how f,~ leads to a modulated bend stripe phase.
If 8 is a constant, then f,h integrates to the sample
boundary and does not contribute extensively to the free
energy. Interior boundaries can be introduced by domain
walls (or solitons) in 8 . Thus stripes will be favored
when the energy gain from f,h at wall boundaries over-
comes the energy cost of creating walls. We will, there-
fore, consider a linear array of walls of width m separated
by stripes of width L depicted in Fig. 10. The energy of
this structure can be estimated using a simple variational
form for ei.

—(vr/6) + (~z/3L) if 0 & x & I
(~/6) —[~(z —L)/3ur] if L & x & L+ m,

(36)

as shown in Fig. 10. In the stripe region (0 & x & L),
Os ——8~ and 8 = 0, whereas in the wall region (L & z &
L+ m), Os ——vr/6, and 8 = (n/3m)(z —L). With these
forms for Oi, 06, and 0, we can estimate the various

(AO)'
dz f+ ———K+

2 L (3S)

+ch = dz f,h

L d L+m
dx " —A dx "cos60

p dx I dx
= —A[m„(L) —m„(0)] = —2A sin(AO/2) = —A, (39)

(4o)

Minimizing this equation over vo, we obtain the wall
width m = b, O(K /2V) /, and wall energy
AO(2K V) / . Then

1 1 (AO)2f = — (e —A) + —K+
2 L

(41)

where b, O = 8(L) —8(0) = vr/3. Note that the contri-
bution to F,h coming &om the wall region vanishes; the
nonzero contribution to this function arises entirely from
the boundary to the stripe region where cos 60 = l.
The free energy per unit area is thus

(b 8)' 1 (aO)'—K + Vm+ —K+L+m 2 2

—(m/6) (n/6}

(a)

when L )) m. Finally, minimizing this expression over L,
weflndL =Ofore —A) OandL = (b, O) K+
A~ for e —A & 0. Thus there is a transition from a spatially
uniform to a modulated structure when the chiral energy
A exceeds the wall energy e.

If the constraint that the membrane be flat is removed,
then the curvature splay energy f, [Eq. (2)] and the
Helfrich-Prost energy [Eq. (24)], which in the present
context can be written as

—(z/6) (z/6)
+ «Ii,

—(~/6)
+ II)0

(z/6) —(n/6) d2h
fHp = —AHp m m„,dx (42)

(b)
L

will immediately lead to height modulations once V' . rn
and/or m m„are spatially modulated, as they are in the
stripe phase just considered. Minimizing f, + fHp over
6, we find

d h pd m~ &Hp d

FIG. 10. (a) Schematic representation of stripes and walls
in a bend stripe phase. The stripes are of width L, and
the walls are of width m. The full line shows Oq(x) as de-
scribed by Eq. (36). The wide dashed line shows 8, and
the finely dashed line shows 86(x)mode/3. At x = 0 and
x = L + m, Oq ———7r/6, and at x = L, Oq

——+vr/6. (b)
Schematic representation of a unit cell of a period-doubled
structure. There are now two stripe regions with respective
lengths L+ ——L(1 + p) and L = L(l —p). The full line
shows Oq(x). The values of Oq at x = 0, x = L+, x = L+ + to,
x = L++L +m, and x = L++L +2m are indicated.

To lowest order in p/K and AHp/r, we can determine h(x)
by integrating Eq. (43) with Oj given by Eq. (36) subject
to the boundary condition h(0) = h(L, + m). The result,
depicted in Fig. 11 is

h(x) = — Ig(z) — Ig(L+ m)
x

K L+m

J2(z) — J2(L + m)2r I +au

where
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FIG. 11. The height profile h(x) for a chiral bend stripe
phase. The stripes are of width I and the waOs are of width

The stripe and wall energies can now be calculated as
before. E [Eq. (37)] has contributions only from the
wall and is identical for both walls. F+ has the same
form as Eq. (38) but with I replaced by L+ or L . I',~
in the 6 stripe regions is —2A sin[(ir/6)+go]. In addition,
F,h, now has contributions &om the two walls, which are
equal and opposite in sign and therefore cancel. Thus
the &ee energy per unit area is

Ii (x) = dx cos 8i (x),
0

J2(x) = Cxi dxz sin[28&(x2)].
0 0

(45)

L~

=L(leap),

(46)

and two wall regions, whose width we will for simplicity
take to be the same and equal to m. The curvature energy
for a region xL, & z ( xR with constant curvature is

dxf,
~L

1= —(x —x )R ' —pR '[m (xn) —m (xL,)]. (47)
2

In the striped regions of Fig. 10, m (xR) = m (xl, ), and
a nonzero curvature is not favored. In the wall regions,
on the other hand, m (xn) —m (xL, ) = cos[—(m/6) +
Po] —cos[(ir/6) + Po] = + sin Po. Thus, in a wall,

p sin Qo

KtU
(48)

and

1 p sin 00

2 K tU
(49)

This height ripple has the same symmetry as the asyIn-
metric ripples of Fig. 3(b) (i.e. , the symmetry of the P&,

'
phase).

The splay bend term is in many ways similar to the
chiral coupling, which is responsible for the formation of
the bend stripe phase. If the curvature d2h/dx2 is con-
stant, then V - m. will integrate to the boundary of the
sample and not contribute extensively to the energy. Ar-
tiGcial boundaries, analogous to the domain walls of the
bend stripe phase, allowing f, to contribute extensively
to the energy can be produced by a regular array of walls
with constant curvature separated by regions of zero cur-
vature. We will now show how this effect can lead to a
period doubling of the bend stripe structure. For sim-
plicity, we will consider only configurations in which the
curvature d h/dx2 = R is either a constant or zero
and ignore modulations described by Eq. (44). Inclusion
of the latter will not affect our general'conclusions but
would considerable complicate our algebra.

Consider a period-doubled array of stripes and walls,
one unit cell of which is shown in Fig. 10. Here there are
two striped regions with respective widths

(
1

K ——sin Po 1

—+ 2Vio —2Acosgo

1 K+ (Ag + 2go) 1 K+ (A8 —2$o)+- +—
2 L 1+p 2 L 1 —p

(50)

where we used sin[(m/6) + Po] + sin[(ir/6) —Po] = cos Po.
This equation can be expanded in a power series in Po
and p. The resulting expression when minimized over p
yields

p = 6$o/7r,

and an effective &ee energy in terms of Po,

(f.a = f (4o = o p = o) +
2L

414o+u4'o .
KQJ P

(»)
The coeKcient u is a function of K, m, A, and K+ and
is positive. Thus, there will be a second-order transi-
tion to a period-doubled state with Po and p nonzero for
p'/Kio ) A.

VI. RESULTS AND DISCUSSION

In the previous sections, we have presented a phe-
nomenological model for modulated phases in both achi-
ral and chiral membranes. For achiral membranes we
expect that there can be more than one thermodynam-
ically Ckstinct ripple phase. These phases are expected
to exhibit the same ripple shape or, more precisely, the
same symmetry with respect to membrane shape. These
phases are distinguished by their diferent symmetry with
respect to the tilt m. . For chiral membranes, these phases
become distinguishable both in their shape and tilt zn. In
particular, the P&,

'
phase is predicted to have the same

symmetry as the "asymmetric" ripple structure observed
both by x-ray diffraction and freeze-ft. acture images in
numerous experiments.

The mean-Geld phase diagram for achiral membranes
is shown in Fig. 9. This phase diagram is obtained within
the variational approximation in Eqs. (6a) and (6b). The
critical point with C~'~

——0 at which order first develops is
a I ifshitz point. The high-temperature disordered phase
with m. = 0 is the L phase. The uniform phase with
rn g 0 is the Lp phase. The modulated P&, and square(~)

lattice phases meet the L and Lp phases at the Lif-

shitz point. The "spiral" P&, phase is stable in a region
below the Lifshitz point as shown in Fig. 9. The tran-
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sition between it and the P&~, phase is first order. At

low temperature, the spiral P, phase is further stabi-
lized because the direction of tIie tilt rn can vary, but the
magnitude of the tilt becomes fixed. Due to the symme-
try between splay and bend in the &ee energy in Eq. (I),
the phase diagram of varying C~ and t is similar to Fig.
9 but with rn rotated by ir/2.

In addition to one-dimensional ripple phases, our
model predicts the possible existence of a two-
dimensional, square lattice modulated phase. Since
only one-dimensional modulations have been observed in
lipid-water mixtures, we have focused on these structures
in this work. Stability considerations for two-dimensional
modulated structures in lipid-water and related systems
are more subtle than for one-dimensional ripples. In par-
ticular, we describe in Sec. III how positional order or
hexatic order can destabilize two-dimensional modulated
structures. We note, however, that our model is also

applicable to thermotropic Alms, for which one or more
square lattice modulated phases have been reported [33].
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