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We analyze a transverse instability of plane (quasi-one-dimensional) dark solitons in the frame-
work of the two-dimensional nonlinear Schrodinger (NLS) equation for beam propagation in a defo-
cusing nonlinear medium. We show that in the vicinity of the instability threshold the exponential
growth of transverse perturbations is stabilized by nonlinearity and also by the radiation emitted
from the plane dark soliton to the right and left. Dynamics of the transverse instability of the
plane dark soliton of arbitrary amplitude is investigated analytically by means of the asymptotic
technique, and also numerically by direct integration of the two-dimensional NI. S equation. In
particular we show that there exist generally three different scenarios of the instability dynamics,
namely, (i) generation of a chain of two-dimensional "gray" solitons (anisotropic solitons of the
Kadomtsev-Petviashvili, or KP1, equation) from the small-amplitude plane dark soliton, (ii) long-
lived large-amplitude transverse oscillations of the plane dark soliton near the instability threshold,
and finally, (iii) decay of the plane dark soliton into a chain of circular symmetric "black" solitons
(optical vortices) of alternative topological charges. We estimate the region of the instability domain
for the parameters of the soliton and perturbation where the instability of the plane dark soliton
ends up in the formation of pairs of vortex and antivortex solitons.

PACS number(s): 03.40.Kf, 42.5G.Rh, 42.65.—k

I. INTRGDVCTION

Dark spatial solitons are known to exist as low-
intensity stationary dips on a background field that do
not diffract as the hearn propagates [1] (see also the re-
view paper [2], and references therein). In the case of
two transverse coordinates such solitons have been ob-
served experimentally as dark stripes or grids with prop-
erties similar to those of one-dimensional dark solitons
[3]. Dark solitons of circular symmetry (optical vortex
solitons) have been predicted and shown to be stable [4,5]
(see also [6,7] where a similar kind of vortex solitons was
predicted in the theory of superfluidity), and they have
also been observed experimentally in self-defocusing ma-
terials [8,9]. On the other hand, the linear analysis shows
that a plane dark soliton is unstable to transverse long-
wavelength modulations [10,11]. Numerical calculations
show that due to that instability a dark stripe may decay
into a sequence of optical vortex solitons of alternative
polarities [12,13].

Prom a mathematical point of view all the problems
mentioned above are described by the scalar wave equa-
tion in the so-called paraxial approximation. Let us
consider propagation of the monochromatic (transverse)
electric field E in a nonlinear self-defocusing medium
with the intensity-dependent refractive index n = no +
n2~E~ (nz ( 0). Looking for solutions of Maxwell's equa-
tions in the form of a slowly varying envelope of a carrier

wave with the propagation constant Po and frequency w,
we derive the nonlinear Schrodinger (NLS) equation

2iPoD, E+ (8 + B„)E+Po ~

—
~ ~F~ 8 = 0,' (no)

we can reduce Eq. (1) to the canonical form

2iO, @+ (0' + cj„')@ —2(~ 0 ~' —1)il = 0 (2)

usually used in nonlinear dynamics in a difI'erent context
(see, e.g. , [14]).

As is well known, bright solitons do not exist in a defo-
cusing nonlinear medium, so the pulse dynamics in. this
case is rather trivial: the pulse spreads due to dispersion

where the symbol 8 with a subindex is used for simplic-
ity throughout this paper to denote the differentiation
with respect to the corresponding variable, E(x, y, z) is
the slowly varying field envelope, z is the longitudinal
coordinate, and x and. y are two transverse coordinates.
For the defocusing nonlinearity (n2 ( 0) the nonlinear
continuous wave (cw) described by Eq. (1) is modula-
tionally stable, so that w'e consider nonlinear waves on
the stable cw background. Making the transformations

(' 2no l Z/2 —itz~ p, t and Z(*, y, z) ~ ~, ~

~(~, y, t)e *

& ln2 l'-lo)
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and develops a frequency chirp (see, e.g. , [15]). However,
more nontrivial dynamics may appear if we are interested
in waves propagating on a modulationally stable cw back-
ground when the slowly varying field amplitude 4 has
nonzero asymptotics, ~4'~ —+ 1 for x, y + +oo. Such a
situation corresponds to the case of dark solitons, local-
ized waves of lower intensity (see, e.g. , Ref. [2]). Equation
(2) has exact solutions describing such one-dimensional
dark solitons,

@o ——k tanh(k() +iv, k + v = 1, ( = x —vt —xo,

The instability domain in the parameter plane (p, k) is
shown in Fig. 1(a). This domain is bounded by the curve

1.0
C B B'

0.5—
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where k (0 & k & 1) and xo are arbitrary constants, and
the parameter v (v & 1) is defined through k.

According to [10], the plane dark solitons (3) are unsta-
ble against transverse perturbation with the wave num-
bers p ( p where

p = p, (k) (solid line). The existence of the instability
domain for the transverse perturbations means that, if
we apply a periodic perturbation with the wave numbers
p & p(k), the amplitude of a plane dark soliton, i.e. , a
dark-soliton stripe, will grow in the transverse direction
according to the linear stability analysis. Then a natural
question arises: What is the result of such an instability?
Particularly, this question was answered in Refs. [12,13]
where it was demonstrated, experimentally and numeri-
cally, that a plane dark soliton may decay into a chain of
optical vortices. The purpose of the present paper is to
develop the theory of the soliton instabilities to describe
qualitatively and quantitatively possible scenarios of the
instability-induced long-time evolution of plane dark soli-
tons of various amplitudes. In particular, we propose an
asymptotic theory which allows us to describe a nonlin-
ear regime of the instability and we show that there exist,
generally speaking, three different scenarios of the insta-
bility dynamics, which include the creation of a chain of
optical vortex solitons as a particular case.

The paper is organized as follows. In Sec. II we dis-
cuss the small-amplitude limit of the two-dimensional
Schrodinger equation and derive the two-dimensional
Boussinesq equation which allows for a reduction to two
Kadomtsev-Petviashvili equations with positive disper-
sion for the waves propagating to the right and left. In
this limit the problem becomes much simpler because
the effect of the soliton instability and self-focusing can
be described by an exact solution of the Kadomtsev-
Petviashvili equation. For a more general case, in Sec. III
we develop an asymptotic approach which can be applied
for analysis of the dynamics of dark-soliton stripes of non-
small amplitudes and it allows us to describe modulations
of the front of the dark soliton taking into account non-
linear and radiation effects. The amplitude equation is
analyzed in Sec. IV where different scenarios of the soli-
ton instability are predicted. Numerical results which
verify our analytical approach are presented in Sec. V.
Finally, Sec. VI concludes the paper.

II. SELF-FQCUSINC
OF SMALL-AMPLITUDE DARK SOLITONS

0.0 0.0

FIG. 1. (a) Instability domain in the parameter plane (k, p)
for the plane dark soliton (3) with respect to transverse per-
turbations with the wave number p. The dotted line is given
by the small-amplitude approximation (k « 1) described
by the Kadomtsev-Petviashvili equation with positive disper-
sion (10). The dashed line depicts the approximate boundary
between two qualitatively different regimes of soliton decay,
and the points A, B, B', and C correspond to a particu-
lar selection of the initial data (see discussions in the text).
(b) Schematic structure of the transverse perturbations of the
plane dark soliton at ( = 0 for the initial stage of the instabil-
ity dynamics at two different moments of time, t2 ) t&. The
parameters correspond to the point A in (a). (c) The same
as in (b) but for the point B'.

For slowly varying modulations of a small amplitude,
when transverse variations are much longer than the
longitudinal ones, the basic nonlinear equation (2) may
be simplified to derive the Kadomtsev-Petviashvili equa-
tion with positive dispersion (the so-called KPl equa-
tion) [10]. In this section we make a generalization of
the results of Ref. [10] and derive the two-wave Boussi-
nesq equation for two-dimensional small-amplitude waves
propagating along the modulationally stable background

Let us look for solutions of Eq. (2) in the form of the
following asymptotic expansions:

@ = Q exp[ieB(X', Y, T)],
(5)
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where e is a small parameter (e (( 1) and R, Q, and
u are real functions of "slow" variables: the coordinate
X = ex, Y = ey, and time T = et. Substituting the
expansions (5) into Eq. (2) and equating the terms which
have the same order in e, we obtain the relations for the
coefficients u

(6)

1 2 1 2 1 2u2 ————BT V' R — (OT R—) — (VR—),8 8 4

and so on, where V' = (Ox, gy. ) is a vector operator.
Additionally to Eqs. (6) and (7) from the imaginary
part of Eq. (2) we derive the Boussinesq equation for the
phase function R:

BTR —V R+ e 7' R+—OT(V'R) + BTRV' R = 0.
4

(8)

Here we neglect terms of order of O(c4). Nevertheless,
the linear part of Eq. (8) corresponds exactly to the dis-
persion relation for the small-amplitude linear waves of
the model (2) propagating on the background i@

i

= 1. It
is interesting to note that Eq. (8) coincides with the corre-
sponding Boussinesq equation for surface waves in hydro-
dynamics [15]. In the framework of this small-amplitude
approximation the soliton (3) transforms into the soli-
tary sech2-type wave [15], so that the Boussinesq equa-
tion (8) may be considered as a model to analyze the
transverse instability of one-dimensional solitons. Re-
cently this problem has been solved in Ref. [16]. As
has been shown in Ref. [16], the transverse instability
of one-dimensional solitons in the model (8) may be ex-
plained by the decaying type of the dispersive surface for
nonlinear solitary waves so that the resonant (decaying)
interaction between plane (one-dimensional) and weakly
transverse modulated nonlinear waves becomes available.
It was also shown in Ref. [16] that instability may appear
only for rather long two-dimensional perturbations with
large modulations in the transverse direction, so that for
such perturbations t9~ et9~. To describe the dynamics
of such a transverse instability, it is useful to introduce
a new, slowly varying transverse coordinate Y = e y in-
stead of the former one. Then, in the main order in e the
corresponding equation for the phase B takes the form of
the standard one-dimensional wave equation which has
a solution in the form of a superposition of the waves
propagating to the right and left,

R = R„(X—T, Y; ~) + RI(X + T, Y; r) + O(e ), (9)

where w = e t. After separation of slow and fast variables
in the framework of the standard technique of multiscale
asymptotic expansions and splitting the initial perturba-
tions into two w'aves propagating into the opposite di-
rections along x, we can consider each wave separately.
The dynamics of weakly nonlinear dispersive waves on
the modulationally stable background can be described

where u„~ = (uq)„~ = +28xR~ ~ .It is very im-
portant to point out here that in nonlinear defocusing
media the evolution of small-amplitude waves on the
Gnite-amplitude stable background is described by the
Kadomtsev-Petviashvili equations with positive disper-
sion, and this equation is known to display the eKect of
self-focusing of quasiplane waves which have been inves-
tigated by means of the exact solutions [17,18] as well
as of numerical simulations [19] and asymptotic analysis
[20].

The exact solution of the KP1 equation found in Ref.
[18] by the inverse scattering method allows us to de-
scribe the plane dark-soliton instability in the case of
small amplitudes, when Eqs. (10) are valid in the frame-
work of the asymptotic technique, i.e. , for k2 « 1. For
the function u„which describes the waves propagating to
the right with the velocity close to the limiting velocity
of linear waves, the corresponding exact solution has the
form

W = 1 + exp(2k() + exp(2k ( + 2Ar)

4&kk
exp[(k + k')(+ Ar] cos(pY), (12)

where

2k'
p = (k' —k"), ( = X —T + —k'r.

Simple analysis of the solution (ll) —(13) shows that in
the region of instability bounded by the curve p
~3k /2 [dotted line in Fig. 1(a)] the self-focusing of
a plane soliton results in the generation of the two-
dimensional wave which is periodic in the Y direction
and localized in the X direction. Such a localized wave
is given by the exact solution

u„(g, Y;k, k')

1+ 2pcos(pY) cosh[(k —k')rI]

(cosh[(k —k')g] + 2p, cos(pY))

where

y,=, q = X —T+ —(k + k' + kk')7. . (15)
Qkk' 1

(k+ k') '

Additionally to the two-dimensional wave (14) there ap-
pears a plane soliton with smaller intensity and larger
velocity in comparison with the former plane soliton. Its
amplitude and velocity are de6ned by the value of the
parameter k', ik'i ( ski. According to Ref. [18], this

by two uncoupled KP1 equations [10], which straightfor-
wardly follow from the Boussinesq equation (8):

ox (+8~1 ur, l 24 ur, l~x uT, l + ~xur, l) 4~yuT', l 1 (10)
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"secondary" plane soliton completely absorbs the energy
which is released as the result of the self-focusing process
so that the effect of the wave self-focusing in the exactly
integrable KP1 equation is purely elastic in the sense that
it takes place without radiation of linear waves. However,
the secondary plane soliton, which formally goes to in-
finity, makes the process of the modulated soliton decay
effectively irreversible and Anally it looks dissipative.

Solution (14) describes a chain of two-dimensional soli-
tons of the KP1 equation (see Refs. [17,18] for more de-
tails) which for the primary model (2) corresponds to the
two-dimensional analog of the so-callpd "gray" solitons of
the one-dimensional NLS equation [2]. In region 1 of the
instability domain shown in Fig. 1(a) [the boundary of
which is shown as a dashed line and it may be found ap-
proximately from Eq. (14)], such two-dimensional gray
solitons are created at minimum points of the perturbed
plane dark soliton [see Fig. 1(b)]. However, for the small-
amplitude dark solitons the minimum intensity is stabi-
lized at a nonzero level approximately corresponding to
the values given by the exact solution (14). At the same
time, the instability dynamics is quite different in region
2 [Fig. 1(a)]. In this region the approximation leading to
the KP1 equation is no longer valid and the intensity of
a perturbation can reach the minimal (zero) value. This
Anally leads to the creation of the zero-intensity points
[see Fig. 1(c)] which give birth to pairs of optical vortices
of different polarities on each period of the perturbation,
i.e., a pair of vortex and antivortex solitons. Every vortex
has the total phase jump 2' whereas an antivortex has
the opposite value, —2'. Exactly this regime has been
previously reported in Refs. [12,13].

Here we would like to note that in the one-dimensional
NLS equation both types of dark solitons, "gray" and
"black" ones, are similar and they exist as two limit-
ing cases of the same localized solution. In the two-
dimensional case these solutions are very different. A
small-amplitude KP-type soliton is highly anisotropic
with the width much larger in the transverse direction
than in the longitudinal one. On the other hand, a large-
amplitude dark soliton can be regarded as a composite
pair of vortex and antivortex solitons propagating with
a small velocity as a whole and oriented transversally
to the motion [7]. At last, the two-dimensional analog
of the black soliton is an individual, immobile, radially
symmetrical vortex with nontrivial phase structure [4—6].
Below we show that this difI'erence in the soliton struc-
ture does define the difI'erence in their evolution as well
as their generation in the corresponding regions 1 and 2
of the instability domain shown in Fig. 1(a).

III. ASYMPTOTIC ANALYSIS
OF THE SELF-FOCUSING

Let us consider the evolution of small-amplitude per-
turbations along the plane dark solitons in the vicinity of
the instability threshold curve [solid line in Fig. 1(a)] by
means of the multiscale asymptotic expansion method.
Such an approach has been shown to be useful for many
problems (see, e.g. , Refs. [20—22]) to describe the long-

scale dynamics of the unstable quasiplane solitons and
generation of two-dimensional solitonic structures.

To apply this technique, we introduce again the slowly
varying coordinates X = ex, Y = e y, T = et, and

Now we choose the reference frame where the
plane soliton is at rest and the coordinate of its cen-
ter xo is considered as a small, slowly varying function,
zp ——es(Y, T). Solution of Eq. (2) may be presented in
the form of the asymptotic expansions in powers of e,

4 = 4'p(() + ) ~"4„((,y; X, Y, T, ~) .
n=1

(16)

Here the main term of the expansion @p(() has a form
of the one-dimensional dark soliton described by Eq. (3).
The first-order correction is given by a general solution
of the linear equation which is just a linearized form of
Eq. (2) around the soliton @p,

L41 ——0,
L = B~ +8„—2ivB(+ 2 1 —2l@pl —42o (*) (i7)

where (*) is the operator of complex conjugation. The
higher-order corrections 4„are subsequently found as
solutions of the linearized equations,

L4„=H„(C„C„.. . , C„,),
where the right-hand side operators H can be calcu-
lated with the help of the corrections of lower orders, for
example,

H2 ——2 (@z@o+ 2@ol@zl ) 2i&T@q + 2i&T sog@o,

(i9)

Hs = 2 (l@y l

4'y + 2@o@y@~+ 2@p4'~@2 + 2@o@y4'2)

2iBT@2+ 2iBTsBg@—z
—28gOx@2 —28„0y C z.

(20)

4q ——[a(Y, T)e'" " + c.c. 4((),

where

3v sinh(k() . p2 + 3k2+i
2k cosh (k() 4k2 cosh(k()

(22)

Here the function a(Y, T) describes the amplitude of the
transverse perturbations along the plane dark soliton,
and c.c. stands for the complex conjugate. To derive
equations for the function a(Y; T) and also for s(Y, T)
we use the orthogonality conditions which mean that the
corrections @3 and 4'4 have no terms exponentially grow-
ing in ( (i.e., secular terms). However, before this proce-
dure we should consider powerlike divergent terms in the

Solutions of the linear equation (17) have been found in
Ref. [10]. From general solutions we take the one which
is localized in ( and periodic in y. Such a solution cor-
responds to an eigenfunction of the discrete spectrum of
the operator L at the boundary of the instability domain
(4),
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asymptotic series (16) which appear as a result of solving
Eqs. (18).

First of all, we write a formal solution for 42 in the
form

4'2 ——ir 4o + BTa B„@p+ ~a~ @2O

BTa e'" "+C.C. e2$ + a e '" "+C.C. 422.

Here r(A, Y, T, w) is an arbitrary function of slow vari-
ables and the function @zo(() may be found in an ex-
plicit form. To find other functions 4'2i(() and ilizz(()
we have used a numerical technique of solving linear in-
homogeneous equations based on the matrix expansion
approach.

It is obvious that the coefficients of zero-order har-
monics, which are proportional to imp and t9„@p, do not
vanish for ( -+ +oo. A similar problem also appears in
the linear analysis of the plane dark-soliton stability by
means of the asymptotic expansions in the perturbation
wave number p (see Ref. [10]). As was shown in [10],weak
decay of the eigenfunction of the corresponding linearized

I

problem may be achieved in the asymptotic region (i.e. ,
far f'rom the soliton) by taking into account finite values
of p. However, this method to remove singularities in
the asymptotic expansions does not work for analysis of
nonlinear nonstationary problems.

Let us consider this problem from the other point of
view. Indeed, we note that, in spite of the fact that the
second-order terms of the asymptotic expansion are non-
localized functions, the asymptotic series (16) may be
reordered to make it localized with the same boundary
conditions (~4'~ m 1 for $ ~ Woo) which are satisfied
up to the first terms of the expansion. To do this, we
should remove the terms imp by changing the phase of
the complex function 4' similarly to Eq. (5). The terms

8 4p are excluded by a change of v and the corre-
sponding renormalization of k, see Eq. (3). After such a
simple procedure the corresponding correction (23) be-
comes a localized function of ( which does not make
the expansion (16) divergeiit. ln this way the correc-
tions which may change the asymptotic value of ~i'~ for

( —+ +oo appear only for the terms of order of e, e and
they have the form

l1 f
=—u+(X, Y, T, ~)

= —(vq —BT r + 2vD)
2v

e'( (k' + 2v2) 1 1+ —,(BT q +-vBxq) — Bxq +—, (BT' i" —Bxr) + BT F + O(~'),2vk2 2 2k2 (24)

where q(A, Y, T, v) is an arbitrary function which must
be taken into account in solving Eq. (18) at n = 3, and
the functions D and E have the form

D = — BTa + v(k) BT~a~,
(v2 —k2) 2

2vk3

(25)

(k' + 2v')
xu x x —

2 2 k2 (BTgo + vBxgo)

1——x T&p
2v

+ (BT Pp —Bxrp) + BT'F
1 2 2

2k2 (27)

2

F = ——BTs+ p(k) BT ~a~

Here parameters v(k) and p(k) are introduced to des-
ignate the coefficients which are found from numerical
solution of Eq. (18) for n = 3, 4.

As follows &om Sec. II, the radiation Gelds u+ far
from the soliton satisfy the Boussinesq equation (8) and
are given by a superposition of two waves propagat-
ing to the left and right similarly to Eq. (9). To com-
plete the corresponding mathematical formulation of the
problem for Eq. (8), we should formulate the boundary
conditions at the soliton which is assumed to have the
coordinate A, (T), i.e. , we should determine the func-
tions u+~x —x and Bxu ~x x . These functions may
be found considering the corresponding expansions of the
first terms of Eq. (24) into the Taylor series in the pa-
rameter e( = X' —X„

—(vgo —B~Tp + 2vD),X=Xs

wh~~~ go =—g~x=x. &o = &~x=x. .
In addition to the boundary condition at the moving

soliton (26) and (27) for the radiation field we should also
use two conditions at inGnity, i.e. , a boundary condition
for the Geld u+ at X -+ +oo and for the Geld u at X ~
—oo. Let us assume that initially there is no radiation
far away from the soliton. Then, every component of the
radiation field consists only of one wave moving in one
direction, in other words u+ = u„i(X ~ T, Y, w). From
Sec. II it follows that in such a case the evolution of the
radiation far from the soliton center as a function of the
slow time w is described by the KP1 equation (10).

To exclude the parameters qp and pp we use the relation

1
X=X, (v p 1) X=X

where dT = (BT + vBx)~x x is the operator of the full
derivative in the reference f'rame moving with the soliton.
As a result, from the conditions (26) and (27) we obtain
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the system of two coupled equations for two parameters
qo and ro which after integration may be written in the
following simple form:

D = E+ 2 [vgo —~rro W (go+ cia''ro)]. (28)v~1 2vk2

+- Rea„"
d( = 0,

cosh (k()
(29)

System (28) has the unique solution which allows us to
exclude ro and qo from the subsequent equation.

Additionally to the power singularities, at the zero and
first harmonics of the wave number p the general so-
lution of Eq. (18) also displays exponentially growing
terms. Such terms appear as a result of the existence
of the localized eigenfunctions of the complex conjugated
operator L'. To exclude the exponentially growing terms
in the asymptotic series (16) we select the parameters a
and s to make the right-hand sides H orthogonal to the
corresponding eigenfunctions of the operator L* for zero

(H ) and the first (H ) harmonics [14]. This leaCh to
the relations

bility analyzed here and that known for bright solitons
in optical fibers.

Using Eqs. (28) and (31) it is possible to calculate the
functions (26) for the radiation fields propagating to the
right and left from the quasiplane soliton at the mean
velocity close to the limiting velocity of linear waves. On
the scales defined by the slow time 7 the radiation evo-
lution is described by two KPl equations (10) with the
"initial" profiles as functions of the spatial variables X
and Y:

u+(X, Y;~ = 0) = —g+(k)clT faf' + O(e'), (34)
T=T.

where T, (X) is a function inverse to the function X', (T).
In the leading order of' our asymptotic approach, the
plane soliton moves straight forward so that we have the
expressions X,(T) = vT and T, (X) = X/v. As to coef-
ficients of the radiation waves (+, they have been found
numerically and are shown in Fig. 2(c).

Thus Eqs. (33) and (34) describe, in the main order of
the asymptotic expansion, the dynamics of the transverse
perturbations of the plane dark soliton and the radiation
fields it generates. We would like to mention again that

(3o)

With accuracy up to the terms of the order of O(ss) the
orthogonality conditions (29) and (30) for n = 3, 4 lead
to the system of two coupled equations for a and s,

k'OT2s+ n(k)BT faf'+ —,bi(k)&z faf' = 0 (31)

and

—jk p, gyu+ P(k)cl G+ k pi(k)aaT s+ k p2(k)afaf 8.0 0.5

+—b, (k)ua fnf'=o, (32)
k

where n, P, pi, p2, bi, and b2 are numerical coefficients
which depend in a nontrivial way on the parameter k.
Equations (31) and (32) give rise to the final equation
for the amplitude a of the transverse perturbation of the
plane soliton,

(b) 2-

0.5

—ik'p, Oy a + P (k) cl' a + k'p(k) a
f
a f'

8.0 0.5

+ —b(k)aBz faf = 0, (33)

where p = p2 —npi, b = b2 —alibi. Parameters n, P,
p, and b as functions of k have been found numerically
and are presented in Figs. 2(a) and 2(b). It is interesting
to mention that Eq. (33) describing the nonlinear regime
of the instability of the plane soliton is exactly the same,
up to the notation, as the well-known equation govern-
ing dynamics of solitons in a nonlinear optical fiber in the
presence of the intrapulse Raman effect (see, e.g. , Refs.
[23]), and this establishes a similarity between the insta-

FIG. 2. The coefficients in Eq. (33) [(a) and (b)] and
Eq. (34) (c) versus the soliton parameter k. The case k « 1
corresponds to small-amplitude (gray) solitons, whereas the
limiting point A: = 1 corresponds to a black soliton.
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such an asymptotic analysis is valid, provided the param-
eters are selected near the instability threshold, i.e., p is
close to p (k). Such equations are very useful to describe
different scenarios of the soliton instability in a nonlin-
ear regime and we discuss these scenarios in detail in the
next section.

IV. DIFFERENT SCENARIOS
OF THE SOLITON SELF-FOCUSING

Let us consider now the dynamics of the dark-soliton
instability for the case of a periodic transverse pertur-
bation of the form o,(Y;T) = A(T) exp(iApY), where
Ap = p —p, . For this case the relation (33) transforms
into a second-order ordinary differential equation

A. Self-focusing of "gray" solitons

For gray solitons we have k & 0.5 so that the nonlinear
dissipation is much stronger than the cubic nonlinear-
ity [see the dependence of p(k) and b'(k) presented in
Figs. 2(a) and 2(b)]. Therefore because of the small co-
efBcient p the applicability region of Eq. (35) in this case
is rather narrow, and we should take into account the
nonlinear terms of a higher order, in fact, the fifth-order
terms. This may be done by changing the asymptotic
expansion scales to X —+ eX, Y -+ ~ Y, T ~ eT, and

Then the conservative and dissipative nonlin-
ear terms will appear in the same order of e and instead
of Eq. (35) we obtain the equation

PA+ k'p. d pA+, A'+ —,A'+ —A'A = 0. (36)

PA+ k'p. ApA+ k'qA'+ A'A = 0,
k

(35)

which may be easily investigated. Note that, according to
Figs. 2(a) and 2(b), the parameters P and b' are positive,
and p is not negative.

Equation (35) may be analyzed on the phase plane of
the parameters A and A. The critical point A = 0, which
corresponds to the unperturbed plane dark soliton, is sta-
ble, provided b,p ) 0 (the corresponding critical point is
a center) and it is unstable otherwise, i.e. , for Ap ( 0
when the corresponding critical point is a saddle type.
The instability growth rate is given by A = kg —p Ap/P.
However, the nonlinear terms ( A and A A) in Eq.
(35) lead to a stabilization of the growing amplitude of
perturbation and also to dissipation which describes the
energy losses by the plane dark soliton for the radiation
emitted to the right and left.

In the instability region (i.e. , for Ap ( 0) there al-
ways exist two symmetric nonzero equilibrium states
A = +Ao ——+g—p, Ap/p which correspond to a dark
soliton periodically modulated in the transverse direc-
tion. Far from the threshold instability curve p, (k) this
steady-state periodic structure is nothing but a chain of
two-dimensional solitons. In the small-amplitude limit,
it is given by the exact solution (14) of the KP1 equation.
Note also that, because the coefBcient o; is not negative
[see Fig. 2(a)], it follows &om Eq. (31) that the modu-
lated plane soliton moves slower than the nonmodulated
one, i.e., such a modulation decreases the soliton velocity.

It is easy to verify that in the framework of Eq. (35)
the stationary states A = +AD are stable in a linear ap-
proximation. tA'e may expect that an arbitrary periodic
perturbation of the plane dark soliton tends to saturation
and formation of a two-dimensional modulated structure.
However, the relative contribution of conservative and
dissipative nonlinear terms of Eq. (35) is different in re-
gion 1 or 2 of the instability domain shown in Fig. 1(a).
As a result, the qualitative picture of the soliton insta-
bility strongly depends on the initial value of the soli-
ton amplitude. .Therefore below we consider the cases of
small- and large-amplitude solitons (gray and black ones)
separately.

In the small-amplitude approximation (k « 1) the
coefBcients in Eq. (36) may be calculated in an explicit
form: P = 3, p = 0, y = 243/16, and b = 27/4. In this
case it is possible to obtain a general solution of Eq. (36)
[20] which describes the evolution of almost all phase tra-
jectories on the plane (A. , A) to the states A = +As which
are characterized by degenerate stable critical points
of the node type. The corresponding phase plane for
Eq. (36) in the limit k « 1 is shown in Fig. 3(a). The
soliton instability in this picture is described by separa-
trix trajectories A(T) which have the asymptotic values
A(T m —oo) = 0 and A(T —+ +oo) = +Ao.

For small but finite values of A:, when the cubic nonlin-
earity is also included, the critical points A = +AD be-
come focuses. This simply means that for gray solitons

FIG. 3. Qualitative picture of the phase plane of Eq. (36)
at k « 1 (a) and of Eq. (35) at k = 1 (b). Separatrix
trajectories correspond to the transition from the plane dark
soliton to the nonlinear y-periodic wave.
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which are far from the limit given by the KP1 approx-
imation the dissipative effects are weaker than the con-
servative nonlinear ones. Such a difference between the
solitons with k —+ 0 and small but finite values of k may
also be noted in analyzing the amplitude of the radiation
emitted due to the soliton instability [which are defined
by Eq. (34) and are shown in Fig. 2(c)]. For a gray soliton
the instability generates a small-amplitude wave which
propagates in the same direction as the plane soliton. In
the KP1 limit such a wave is simply the other plane soli-
ton and the whole process is elastic in the sense that the
linear dispersive waves are not excited while the soliton
instability develops [18,20]. The increase of the soliton
amplitude makes radiation of the linear waves possible
and part of the energy of the primary plane soliton is
lost due to wave dispersion.

B. Self-focusing of "black" solitons

For larger k the difference between the soliton insta-
bility described by the NLS and KP1 equations becomes
even more obvious. From Eq. (35) it follows that for
rather large values of k the nonlinear dissipation is rather
small. As a result, the transverse oscillations of the soli-
ton profile, which are described by the oscillating trajec-
tories around the points A = +Ao, do not decay rapidly.
The corresponding phase plane for Eq. (35) is shown in
Fig. 3(b) (k = 1, P = 1 88, p = 1 59, b = 0 5, and e = 1).

If we neglect the last small dissipative term in Eq. (35)
(which is proportional to the small parameter e), such
oscillations become periodic and describe periodic modu-
lations of the plane dark soliton. A small but important
dissipative contribution in Eq. (35) makes such oscilla-
tions quasiperiodic and irreversible due to the portion of
the soliton energy lost for small radiation. Thus, as a
result, we may expect tha' in the limit T ~ +oo some
two-dimensional structure will be formed.

As follows &om Fig. 2(c), for the values of k close to
its limiting value, k = 1, the soliton oscillations gen-
erate waves propagating both to the right and to the
left and at the point k = 1 the amplitudes of these two
radiation waves coincide. Additionally, the presence of
the small parameter e in the initial profile of radiation
fields (34) means that the nonlinear effects in Eqs. (10)
become weaker than the dispersive ones. Therefore the
emitted energy becomes more and more homogeneously
distributed between linear dispersive waves emitted to
the right and left'.

In the limiting case k = 1, the primary soliton is at rest
(i.e. , v = 0 and sT = 0) and the radiation amplitudes are
equal to each other, (+ = ( = 0.5. Because in this case
the radiation emitted consists of regions of higher and
lower intensities, we may expect that the plane black soli-
ton also generates small-amplitude dark solitons of very
small intensity. However, such solitons, if they are cre-
ated, are very wide and the greatest part of the radiation
is carried by linear dispersive waves.

In concluding of this section we briefIy discuss a more
general nonperiodical perturbation a(Y, T). According
to the well-known Lighthill criterion [14,15] the positive

relative sign of the coefficients P and p in Eq. (33) leads
to modulational instability of the two-dimensional trans-
verse perturbation of the form ao(Y) = Ao exp(imp Y)
and two satellite waves a+ and a are excited with the
wave numbers lying to the right and left of the wave
number of the modulated wave, po ——p + Ap. Such
an instability is well known in the theory of the KP1
equation (see Ref. [18]) and it has been already discussed
in Ref. [20] in the framework of an effective amplitude
equation similar to Eq. (33). For gray solitons such an
instability transforms the primary wave ao into a two-
dimensionally modulated wave a with the transverse
wave number p ( po. However, for the black soliton
the nonlinear dissipation is weak and modulational in-
stability can be saturated by purely conservative effects,
so that long-lived quasiperiodic oscillations may be ob-
served near a new, two-dimensional wave a

Thus the analytical results we presented above may
be summarized as follows. First, in the small-amplitude
limit the primary two-dimensional NLS equation is shown
to reduce to the two-dimensional Boussinesq equation
which allows for the subsequent reduction to the KP1
equation for which an exact solution describing the soli-
ton self-focusing may be found in an explicit form. Sec-
ond, in the case when the small-amplitude approxima-
tion is not valid, the asymptotic analysis developed above
allows us to describe the nonlinear regime of the self-
focusing when the exponential growth due to the insta-
bility is saturated by nonlinearity and radiation-induced
effective damping.

V. NUMERICAL SIMULATION RESULTS

To verify the results of the analytical approach we nu-
merically integrate Eq. (2) with periodic boundary con-
ditions in x and y by means of the known method of the
operator exponent [24]. The soliton (3) was selected as
the initial condition to Eq. (2) but in a perturbed form
with a transverse modulation of the soliton coordinate:
ill(x —xo) = @o+eO 40 cos(py), where e = 0.1. Since the
complex phase of the solute»=-. '. 4'".- gets a finite phase jump
across the dark soliton the; . ;:-:.'"~die boundary conditions
in T were satisfied by placing the other (symmetric) dark
soliton at the point x = —xo with the opposite phase
jump, i.e. , iI"(z+ zo).

For the gray solitons in region 1 we have selected the
values of the parameters to be II. = 0.6 and p = 0.3 [the
point A in Fig. 1(a)]. Results of the corresponding nu-
merical simulations are presented in Figs. 4(a)—4(c). As
may be clearly seen from these figures, the soliton in-
stability ends up in the formation of two-dimensional lo-
calized structures with smaller intensities and velocities
than that of the primary plane dark soliton. Such a pro-
cess is accompanied by the creation of the other small-
amplitude plane dark soliton which moves in the same di-
rection as the primary plane dark soliton and has greater
velocity. We would like to note that this type of soliton
instability is very close to the type which is described
by the exact solution (11)—(13) obtained in the frame-
work of the KP1 equation. Additionally, in Figs. 4(b)



PEI.INQVSK. Y, STEPANYAN AND KIVSHAR

of&lerl observe a highly anisotropic profi
0- p

of the wo- ih t -d mensional "antilump so i ons

4'1't doniain shown in Fig. l(a)
e

'
bl k lane soliton when

of the insta i aty orna'
we invest&gate yd namics of a ac p a

t be k = 1. For short-the soliton parameeter is selecte to e
0.8) we observe(~the oint 8 at p =

suit in strong p ase
d

' tex solitons of cir-f vortex and antsvor exthis case, a parr o
l t the intermediate stagey y pp

k-soliton insta i aty w ic

radiation-induced amp e li I e or
a result, the large-amp itu e os

'I- ~damped. In Ig. wserved are weakly p . I
ics displaying thea uasiperiodic dynamics i

l fth lito i t tdepeno. ence od f the minimum va ue o e

(a)

(b) ~(CCcc

0.00
l

0 34

0.73

"»&gg)%~((qccII
II

((') (((((ea II\Sig((»II »»&))Qg) ((((C(CIII

0.79

0.84

(a)

0.66 (d)
0.40

0.87 nt of the transverse insta i yilit for theFIG. 5. Development o
e dark soliton at k = 1.0, p = . plarge-amplitude ar s ' — = . p

p p
of the plane ar -sothe intermediate stage o

0.92

0 .3—

(d)
0.89

0.60

ent of the transverse instability for aFIG. 4. Development o e r
= 0.3 [the pointark soliton at A: = 0.6, p =

t = 18, (ii) t = 24)t =a3, (b) t = 9, c
ci

' t 1). C tio d( e function !4'! are ciepic e
vro-dimensiona so x on istable propagation of tvro- i

observed.

I I II I I II I I IO Q I I I I I I

t0

e of the local field intensity ~4'! vsFIG. 6. Minimum value of e oc ' 't 4 vs
= 0. Parameters are k = 1.0 an p =t at the line y =

a modulated state are ob-Large-amp z u e o1 t de oscillations near a mo u a
served.



SELF-FOCUSING OF PLANE DARK SOLITONS IN. . . 5025

~ill~ at the line y = 0 vs time for the transverse pertur-
bations at p = 0.9. At the same time, we reveal a small
radiation escaping quasiplane dark soliton [see Fig. 5(d)].
Such energy losses must lead to formation of a chain of
vortex and antivortex solitons at the long-time asymp-
totics t ~ +oo. Note that this picture fits well with the
analytical results described in Sec, IV.

For the long-wave instability in region 2 [the point C
at p = 0.4 in Fig. 1(a)], where our asymptotic theory
is no longer valid, we observe a qualitatively different
scenario of the instability dynamics. In this case, the
large-amplitude modulations of the plane dark soliton
result in strong phase modulation [see Figs. 7(a)—7(d)].
Such an irreversible phase dynamics results, eventually,
in a change of the constant-phase lines and creation of
pairs of vortex and antivortex solitons already at the first
stage of the dark-soliton instability. This diBerence &om
the short-wave instability dynamics is accounted for by
a strong radiation in the form of two quasiplane dark-
soliton structures which remove a considerable portion
of the energy of the original dark soliton. As a matter of
fact, this regime of the soliton decay was earlier observed
numerically [12,13].

Thus Figs. 4, 5, and 7 present three qualitatively difer-
ent scenarios of the soliton instability, namely, creation
of two-dimensional gray solitons similar to the KPl "an-
tilump" solitons and emission of a quasiplane dark soli-
ton of smaller intensity (Fig. 4), long-lived quasiperiodic
oscillation of the plane soliton without nontrivial phase
dynamics (Figs. 5 and 6), and finally the decay of the
plane solitons into a chain of vortex and antivortex pairs
(Fig. 7).
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VI. CONCLUSION

We have investigated analytically and numerically the
transverse instabilities of the plane dark soliton in a non-
linear (cubic) defocusing medium. As follows from our
analysis, the main features of such an instability have
very much in common with those of the transverse insta-
bility of the plane solitons in the Kadomtsev-Petviashvili
equation with positive dispersion, but there are also sev-
eral qualitatively di6'erent features. First, the growth
of the transverse perturbations in the vicinity of the in-
stability threshold is replaced by their damping so that
a chain of two-dimensional dark solitons is periodically
formed at the intermediate stage of the plane dark-soliton
instability. Second, the radiation energy is distributed
between secondary small-amplitude dark solitons and lin-
ear dispersive waves emitted in both directions, so that
a decay of a plane dark soliton of finite amplitude has no
elastic character. Finally, as a result of radiation losses,
we expect formation of a chain of two-dimensionally lo-
calized solitons at a final stage of the dark-soliton insta-
bility. It is important to emphasize that, the greater the
radiation energy which escapes the unstable quasiplane
dark soliton, the faster a chain of two-dimensional dark
solitons can be formed.

FIG. 7. Development of the transverse instability for the
large-amplitude dark soliton at k = 1.0, p = 0.4 [point C in
Fig. 1(a)]: (a) t = 3, (b) t = 6, (c) t = 9, and (d) t = 13.
Creation of pairs of optical vortex and antivortex solitons is
observed.

ACKNOWLEDGMENTS

We are indebted to A.W. Snyder and V. V. Afanasjev
for fruitful discussions, K.A. Gorshkov for useful sugges-
tions for the asymptotic procedure, E.M. Sher for help
with numerical simulations, and to G. Soros for finan-
cial support of the Russian Science. One of the au-
thors (Yu.A.S.) is indebted to Optical Sciences Centre
(Canberra) for warm hospitality during his short stays
there. This work was supported by the International
Science Foundation (Grant No. R8TOOO), by Goskomvuz
RF within the &amework of the Australian-Russian Co-
operation Program, and also by the Australian Photonics
Cooperative Research Centre. The work has been com-
pleted during the Summer School on Nonlinear Optics
and Guided Waves (Edinburgh, August, 1994) which was
arranged by Professor D.F. Parker.



PELINOVSKY, STEPANYANTS, AND KIVSHAR

[1] V.E. Zakharov and A.B. Shabat, Zh. Eksp. Teor. Fiz. 64,
1627 (1973) [Sov. Phys. JETP 37, 823 (1973)].

[2] Yu.S. Kivshar, IEEE J. Quantum Electron. 28, 250
(1993).

[3] G.A. Swartzlander, Jr. , D.R. Andersen, J.J. Regan, H.
Yin, and A.E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).

[4] R.Y. Chiao, I.H. Deutsch, J.C. Garrison, and E.M.
Wright, in Serge Akhmanoe: A Memorial Volume, edited
by H. Walther (Hilger, Bristol, 1992).

[5] A.W. Snyder, L. Poladian, and D.J. Mitchell, Opt. Lett.
17, 789 (1992).

[6] L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov.
Phys. JETP 13, 451 (1961)].

[7] C.A. Jones and P.H. Roberts, J. Phys. A 15, 2599 (1982).
[8] G.A. Swartzlander, Jr. and C.T. Law, Phys. Rev. Lett.

69, 2503 (1992).
[9] B. Luther-Davies, R. Powles, and V. Tikhonenko, Opt.

Lett. 19, 1816 (1994).
[10] E.A. Kuznetsov and S.K. Turitsyn, Zh. Eksp. Teor. Fiz.

94, 119 (1988) [Sov. Phys. JETP 67, 1583 (1988)].
[11 K. Rypdal and J.J.Rasmussen, Phys. Scr. 40, 192 (1989).
[12 G.S. McDonald, K.S. Syed, and W.J. Firth, Opt. Com-

mun. 95, 281 (1993).
[13] C.T. Law and G.A. Swartzlander, Jr. , Opt. Lett. 18, 586

(1993).
[14] M.J. Ablowitz and H. Segur, Solitons and the Inverse

Scattering Transform (SIAM, Philadelphia, 1981).
[15] V.I. Karpman, Nonlinear Waves in Dispersive Media

(Nauka, Moscow, 1973) (English translation: Pergamon
Press, New York, 1975).

[16] D.E. Pelinovsky and Yu.A. Stepanyants, Zh. Eksp. Teor.
Fiz. 106, 192 (1994) [JETP 79, 105 (1994)].

[17] Y. Murakami and M. Tajiri, J. Phys. Soc. Jpn. 61, 791
(1992).

[18] D.E. Pelinovsky and Y'u. A. Stepanyants, Zh. Eksp. Teor.
Fiz. 104, 3387 (1993) [JETP 77, 602 (1993)].

[19] E. Infeld, A. Senatorski, and A.A. Skorupski, Phys. Rev.
Lett. 72, 1345 (1994).

[20] K.A. Gorshkov and D.E. Pelinovsky, Institute of Applied
Physics, Russian Academy of Sciences Report No. 356,
1994 (unpublished).

[21] P.A.E.M. Janssen and J.J. Rasmussen, Phys. Fluids 26,
1279 (1983).

[22] E.W. Laedke, K.H. Spatschek, and K.B. Zocha, Phys.
Fluids 29, 1127 (1986).

[23] See, e.g. , J.P. Gordon, Opt. Lett. 11, 662 (1986); Yu.S.
Kivshar and V.V. Afanasjev, ibid. 16, 285 (1991);Y'u. S.
Kivshar and B.A. Malomed, ibid. 18, 485 (1993).

[24] A.D. Y'unakovskii (unpublished); Y'u.L. Bogomolov, E.N.
Pelinovsky, and A.D. Yunakovsky, Institute of Applied
Physics, Russian Academy of Sciences Report No. 275,
1990 (unpublished).


