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Ground state of the Frenkel-Kontorova model with a transverse degree of freedom
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We study the ground state of a generalized Frenkel-Kontorova model with a transverse degree
of freedom. The model describes a lattice of atoms with a fixed concentration, interacting by
long-range repulsive forces, which is submitted to a two-dimensional substrate potential periodic
(sinusoidal) in one direction and symmetric (parabolic) or asymmetric (Toda-like) in the transverse
direction. When the magnitude of the interatomic repulsion increases, the ground state of the
model undergoes a series of bifurcations. In particular, the first bifurcation leads to a zigzag ground
state and results in drastic change of system properties, including a cusp in the average elastic
constant. For incommensurate cases, the bifurcation can interplay with the Aubry transition from
a pinned to a sliding state. A reentrant pinned state has, for instance, been found. The nature
(continuous or discontinuous) of the next bifurcations depends on the symmetry of the substrate
potential in the transverse direction. Finally, we discuss brie6y the applicability of the model to
describe conductivity of superionic conductors, surface difFusion, and crystal growth.

PACS number(s): 46.10.+z, 63.20.Ry, 03.40.Kf

I. INTRODUCTION

Various nonlinear phenomena in solid state physics can
be described by a model where a chain of interacting par-
ticles is placed in a "channel. " The atomic chain is sub-
jected to a two- or three-dimensional external potential,
which is periodic in one direction and unbounded (for
example, parabolic) in transverse directions so that the
atoms are con6ned transversally. Such a model arises
when we can pick out a one-dimensional subsystem &om
the whole system and consider the rest of the system as
the source of an external (substrate) potential and, at the
same time, as a thermal bath supporting an energy ex-
change with the subsystem of interest. Typical examples
are (i) superionic conductors [1], where an anisotropic
crystalline structure forms channels along which ions
can easily move, (ii) crowdions [2], which describe extra
atoms or vacancies inserted into a closely packed atomic
row in a metal with an ideal crystal lattice (in many cases
the crystalline potential is such that the atoms can move
easily only along the direction of the row); (iii) submono
layer films [3] of atoms adsorbed on furrowed or stepped
crystal surfaces, where the adsorbed atoms (adatoms) in
a given furrow or at a step move easily along the direction
of the furrow or step and form a quasi-one-dimensional
system, while the surface atoms and other adatoms pro-
duce an effective external potential (such a model may be
also used to describe surface reconstruction and crystal
growth); and (iv) hydrogen bonded systems alo-ng chan-
nels in biomembranes [4], where protons are the mobile
particles, while a heavy-ion lattice of oxygen atoms pro-
duces an external potential.

If we ignore atomic displacements in transverse di-

rections and. allow the atoms to move only along the
direction of the chain, the model reduces to a vari-
ant of the well-known Frenkel-Kontorova (FK) model.
Introduced first to describe the structure of a crystal
lattice near a core of a dislocation [5], the FK model
was then successfully used to describe, besides the ex-
amples mentioned above, nonlinear phenomena such as
dislocatioD dynamics, charge-density waves, ferroelec-
tric domain walls, magnetically ordered structures, and
commensurate-incommensurate transitions. The stan-
dard FK model, where the substrate potential is assumed
to be sinusoidal and the interatomic interaction is re-
stricted to the interaction of nearest neighbors by har-
monic forces only, was then generalized for a nonsinu-
soidal substrate and a nonharmonic interaction (see the
review paper [6] for other generalizations and applica-
tions of the FK model). All these studies, however, have
been restricted to one spatial dimension.

There are few papers devoted to two-dimensional (2D)
generalizations of the FK model. The standard FK model
can be extended to two dimensions in two ways. The sim-
plest approach assumes that the atoms form a 2D lattice
but the 6eld variable has still a scalar nature, i.e., the
atoms can move in a single direction only. This is the
scalar 2D FK model [7]. An infinite system of paral-
lel FK chains when an interaction between the chains is
taken into account is a physical realization of this model.
The second approach leads to the vector 2D FK model,
which describes a 2D array of interacting atoms mobile
in both directions and subjected to a 2D external poten-
tial that is periodic in both directions [8]. The analysis of
vector models is difBcult and results can only be obtained
by computer simulation. Moreover, the studies [8] gener-
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ally take into account the interaction of a small number
of neighbors only and. assume that the interaction is har-
monic, as in the standard FK model. But these "ball and
spring" models are only rigorous if mutual displ@cements
of neighboring atoms are small compared with the lat-
tice constant. In other words, within the ball and spring
model we Inust artificially neglect configurations where
atomic displacements &om the ideal lattice are too large.

When we consider a more realistic vector 2D FK
model, we lose the main advantage of the one-
dimensional model in which atoms are always strictly
ordered and therefore can be labeled in such a way that
atom i always has atoms i + 1 nearest neighbors. In
a realistic 2D model the sequential order of the atoms
can be changed by going through the second dimension.
Therefore, a rigorous 2D model must take into account
the interaction between all the atoms in the system. As
a result, the system behavior becomes very rich and com-
plicated even for a single atomic row picked out &om the
whole 2D lattice and subjected to the 2D substrate po-
tential. We consider such a model in the present work.
This model may be considered as the simplest approx-
imation for an anisotropic vector 2D FK model where
we could expect that a small interaction between the
nearest-neighboring rows does not modify significantly
the properties of the system. On the other hand, the
mod. el may be considered as a erst step in studying the
isotropic 2D FK model. The main difference with the
standard FK model in which particles move along the x
direction is that here they are allowed to move along x
and y. A single-well substrate potential is imposed along
the y direction and a repulsive particle-particle interac-
tion is used. .

The FK model with a transverse degree of &eedom
was proposed in [9]. It was shown that the trivial ground
state (TGS) Fig. 1(a) becomes unstable and evolves into
a zigzag ground state (ZGS) Fig. 1(b) when the repul-
sion between atoms increases above a certain threshold
value. Close to the transition point, as well as above this
point, properties of the FK model are deeply changed. . In
particular, the kink-antikink symmetry is violated even
for a harmonic interaction between the atoms. However,
this previous work [9] considers only the simplest case,
when the number of atoms N coincides with the number
of minixna of the external potential M so that the dimen-
sionless conceiitration 0 = N/M (the so-called coverage
in surface physics) is equal to one. Moreover, . the in-
teratomic interaction was restricted to the interaction of
nearest and next nearest neighbors, so that only the TGS
and the ZGS could be studied. .

The present work generalizes the previous studies [9]
in two directions. First, we investigate the behavior of
the model for arbitrary concentration 8 g 1 (but 8 & 1)
including incommensurate cases when 0 is an irrational
number and the standard FK model exhibits the Aubry
transition. We show in particular how the zigzag ground
state found previously can compete with the Aubry tran-
sition or even cause multiple Aubry transitions.

Another different aspect of the present work is that
we take into account the interaction of all atoms in the
chain. This is not only of qualitative importance because

the extended model can have a full sequence of bifurca-
tion that was not possible with short-range interactions.
The origin of these bifurcation can be understood eas-
ily &om qualitative arguments. The zigzag configuration
can be treated as consisting of two subchains, the up-
per subchain and the lower subchain. When the cou-
pling between the subchains is small, for example, when
transverse substrate potential is weak so that the dis-
tance between the subchains is large, the subchains can
be considered as ind. ependent. So the same arguments
that explained the first bifurcation to a zigzag state can
be repeated and we can expect that each subchain can
become unstable to a new zigzag instability splitting the
system in new quasi-independent chains. We show, how-
ever, that the real scenario is more subtle than this simple
picture, which seems to predict an infinite sequence of bi-
furcation. In particular, the symmetry of the transverse
potential is very important. For a symmetric potential
the instabilities of the two fjrst subchains occur simulta-
neously. And because near an unstable point a system is
very sensitive to perturbations, the weak interaction be-
tween the subchain has in fact a strong infIuence. This
phenomenon would not occur for an asymmetric poten-
tial. This is why we consider here the two cases of a sym-
metric (parabolic) and a nonsymmetric (Toda) transverse
potential.

The model that we study can have a very rich behavior
and, as we discuss in Sec. VII, its study is not only of
academic interest. We expect that some of these behav-
iors could be relevant for real systems, particularly for
surface diffusion and crystal growth.

The paper is organized as follows. In Sec. II we intro-
duce the model and describe the algorithm used in the
numerical analysis. Section III is devoted to the TGS-
ZGS transition for a rational concentration 0 including
situations corresponding to kink and antikink configura-
tions. In Sec. IV we analyze an irrational 0 case and
show how the transverse degree of freedom modiGes the
Aubry transition. The second and further bifurcations
are investigated in Sec.V for the symmetric model and
in Sec. VI for the asymmetric Toda-like case. Finally,
Sec. VII concludes the paper by a discussion of the pos-
sible application of the model to describe conductivity
of superionic conductors, surface diffusion, and crystal
growth.

II. MODEL

Let us consider a chain of interacting atoms subjected
to a 2D external substrate potential V, (r) with r = (T, y).
We assume that V, (r) is the sum of two terms

V, (r) = V (z) + V„(y),

where V (x) is a periodic potential along the chain, which
is assumed to be sinusoidal,

(2)

and V„(y) is a confining potential in the transverse di-
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rection, which is taken to be parabolic for the symmetric
case

1 2 2
Vy(y) = —m~(up y .

Here e, is the amplitude and a, is the period of the sub-
strate potential, m~ is the atomic mass, and wo„ is the
&equency of a single-atom vibration in the transverse di-
rection. The limit ~0„~ oo corresponds to the standard
FK model. It is convenient to use units such that m = 1,
e, = 2, and a, = 2a so that the frequency of longitudinal
vibrations wp ——(e, /2m ) 2 (2vr/a, ) is equal to 1.

For noninteracting atoms, the x and the y degrees of
&eedom are decoupled due to the simple form chosen for
the substrate potential in Eq. (1). However, the inter-
atomic interaction couples the degrees of freedom. As
long as the atoms use only an at tractive branch of the
interaction potential, static properties of the model are
equivalent to those of the standard FK model (but the
dynamics is modified). In a number of physical systems,
however, the interatomic interaction is repulsive or has at
least a repulsive branch. It can be due to Coulomb repul-
sion between ious in superionic conductors [1] or between
protons in hydrogen-bonded molecules [4], or to Coulomb
or dipole-dipole repulsion of atoms adsorbed on semicon-
ductor or metal surfaces [10]. The aim of the present
work is to find the ground-state (GS) atomic configura-
tion and to study its properties for the case of a repulsion
between the atoms. We assume a Coulomb repulsion

02V, (r;) ) . 82V(I r; —r, I)
g&cr g+n & /+ex g+n

2'(2'gi) 2' 2' all u=o

gal'( 8')
O'V(I r; —r, I)

g'&a /&a'
all u=o

where the greek indices correspond to Cartesian coordi-
nates (n, n' = x or y), and the vector u; = r; —r,.(o)

describes the displacement of the ith atom from its equi-
librium position. In particular, for the sinusoidal poten-
tial (2) and the Coulomb repulsion (4) we have

A;; =cosxI i+ ) A, ;, ,
i'(i'gi)

(7a)

A,"," = ~p'„+ ) A,","„
e(il gi)

(7b)

absolute minimum of U. So to find the GS atomic co-
ordinates (r, }= (x, , y, },we look for static config-
urations by solving the set of equations BU/Bx; = 0,
BU/Oy; = 0, i = 1, . . . , N, and then select the GS con-
figuration that gives the absolute minimum of U.

When the GS coordinates are known, we can calcu-
late the GS phonon spectrum. The spectrum is deter-
mined by the eigenfrequencies of the elastic matrix A
introduced as [11]

V(r) = Vp/r, (4)
(7c)

where Vo characterizes the amplitude of repulsion. Note
that qualitative results do not depend on the specific form
of V(r) provided that the repulsion is concave, i.e., if
V(r) decreases monotonically with increasing distance r
between the atoms.

For repulsive interactions the boundary conditions are
essential to determine the properties of the system be-
cause, with free boundaries, the system would tend to
decrease its energy by expanding indefinitely. In a physi-
cal system, this is generally not possible and, for instance,
for atoms adsorbed on a surface, the average density of
atoms is imposed by the experimental conditions. We
represent this situation by imposing a fixed density of
atoms. The chain consists of N atoms distributed on the
length L = Ma, = Na~, where M is the number of min-
ima of V (x) and aA is the mean interatomic distance
along the chain. Therefore the system is characterized
by the dimensionless concentration 0 = N/M = a, /aA,
which is kept fixed in the limit N, M —+ oo. The total
potential energy of the system is

with

A,*,*, (,~,,
l

———Vp(2x,', , —y,', , )/r,'.. . (7d)

AIIv V (2y2 2
)/

5 (7e)

Xg g&,,, (i~, , )
———3Vox, i yi,'y'~i (7f)

D, (k) = ) Ap . , exp(ikla).

(o) (o)where 2;,;I = x,. —z.. . yii = yi —y,-, , and rii
(2:... + y2, , ) ~2. If the dimensionless concentration 0 is
rational and the GS configuration is commensurate, the
atomic structure is periodic so that it is convenient to
take the Fourier transform

N N

U =).V.(r')+
2 ).[V(lr* —r'+' I)

+V(I r' —r*--' I)]

where the index i labels the atoms and the limit N, ¹ ~
oo is assumed. The GS configuration corresponds to the

Here a is the period of the GS structure and the atomic
index i is split into two subindices i = (l, m), where the
index l labels the elementary cells while m = 1, . . . , s
denote the atoms within the cell. For each momentum
k (I k I& m/a), D(k) is a 2s x 2s square matrix and the
phonon spectrum consists of 2s branches labeled by an
index j. The frequencies u~(k) are determined by the
eigenequation



O. M. BRAUN AND M. PEYRARD

det '(u2(k)1 —D(k)] = 0.

For a stable configuration all eigen&equencies must be
positive. When, for some model parameters, one of the
frequencies vanishes w~(k*) = 0, the corresponding con-
figuration becomes unstable and evolves into a new con-
figuration with the period a* = vr/k*. The eigenvec-
tor associated with the vanishing frequency helps to find
the new GS. This scenario corresponds to a continuous
{second-order) phase transition. Moreover, the model
may also exhibit discontinuous (first-order) phase tran-
sitions when a model parameter (e.g. , Vo) is changed.
They occur when the energy of a metastable configura-
tion becomes equal to the energy of the GS configuration
at a transition point Vo ——Vb,.&

', beyond this point the
metastable and the GS configurations are exchanged.

Investigations of the standard FK model show
[6] that the dimensionless elastic constant gpK
(a, /2' e, )V"(a~) plays a central role. For instance, the
elastic constant determines the width of the topological
defect (kink), which can be created by moving one-half
of the FK chain by one lattice spacing. This defect cor-
responds to a dislocation in the lattice. When the elastic
constant is large, it spreads over many sites, while it be-
comes narrow for smaH elastic coupling. For the standard
FK model, the limit gFK ~ oo corresponds to the ex-
actly integrable sine-Gordon model. The parameter gFK
characterizes discreteness efFects. In our 2D model, the
average elastic constant g, defined by

d x; dx, BU
dt2 dt 0x; (12a)

yi rlyi BU
+'Qd +~ y ) (12b)

where rI is the viscous &iction coefficient and 6I' „(t) is a
random force that corresponds to a fictitious temperature
T. During the simulation T is decreased and it is set to
zero after a time t 20vr, i.e., ten periods of oscillations
in the potential V . This procedure helps to avoiding
the trapping of the system in metastable configurations.

=~~1~~

of the concentration 0, we have to choose the constant of
the hexagonal lattice appropriately. This choice of ini-
tial configurations is motivated by the fact that, in the
absence of external corrugation, i.e., for the case ~, = 0,
these configurations define the sequence of the GS config-
urations when the amplitude Vo of interatomic repulsion
increases.

The relaxation procedure uses Langevin equations

N

(10)

with (c)

+V(I r' —r'-' I)]
all u=0

plays a similar role. For the standard FK model g, de-
fined by Eqs. (10) and (ll), coincides with gFK.

Most of the results of the present work have been ob-
tained &om a numerical analysis using the methods de-
scribed in [12,13]. Nainely, we consider a finite system of
N atoms and fix the concentration 0 by imposing periodic
boundary conditions. To avoid artificially introduced
topological defects, the value of N must be adapted to
the structure of the GS, i.e., N has to be a multiple of
the number of atoms in the GS elementary cell. For ex-
ample, for the ZGS 2V must be even. Then we choose
an appropriate initial atomic configuration and allow the
system to relax to a nearest minimum of U. Starting
from difFerent initial configurations, we Inay converge to
difI'erent final configurations and then we have to select
the configuration that gives the absolute minimum of U.
For the initiaj, con6gurations we take uniform symmetric
configurations obtained by cutting out stripes of difFerent
width &om a hexagonal lattice as shown in Fig. 1. In or-
der to generate an initial configuration with a given value

(~) '

FIG. 1. Sequence of stripes cut out from a 2D hexagonal
lattice showing the possible configurations of the atoms in
the generalized FK model with a transverse degree of free-
dom. The horizontal axis is along the x direction. The verti-
cal lines indicate the positions of the minima of the substrate
potential. (a) Trivial ground state, where all atoms are situ-
ated on the line y = 0; (b) zigzag ground state; (c) rhomboid
configurations, where two atoms are in the same valley of
the periodic potential with difFerent y coordinates; (d) double
zigzag; and (e) hexagonal configurations.
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The Langevin equations (12a) are solved for the time t
needed for the system to approach suKciently close to the
final equilibrium state. The value of t is determined so
that, at t ) t, the atomic displacements Lx,. and Lyi
during an interval Lt = 6' are bounded according to

) i/2

) (b,z;) + (Ay, )

10

6
3

0

10

6
3

4

where s determines the calculation accuracy (we use s =
10 ). The time t depends on the friction coefficient q;
the shortest computation time is achieved with g 1.

Clearly in numerical calculations we can take into ac-
count only a finite number ¹ of interacting neighbors.
These neighbors cannot be simply chosen at the start-
ing of the calculation because, in the 2D system, the
sequence of the atoms can change. Therefore we have
to use a standard procedure of molecular dynamics, i.e. ,
select a cutofF distance L* (I' )) a~) and include in the
calculation only atoms for which r;i & I*. This condi-
tion determines the upper bound ¹ of the summations
in Eqs. (5) and (11).

In order to select the configuration with the lowest
energy, we calculate the potential energy per atom E.
Unfortunately, for the Coulomb interatomic repulsion the
total energy of interaction depends on the cutofF distance
I* and diverges as ln I* in the limit I* -+ oo. To avoid
this problem, we subtract &om the total potential energy
a constant equal to the repulsion energy in the uniform
configuration with the atomic coordinates x; = iaA, y, =
0. Thus each configuration is characterized by an energy

1/4 1/14 3/14 5/14
k

3. 3:

3
)C

0
1/8
k

1/4
0

1/14 3/14 5/14
k

and the second branch to motion along the y direction

wz (k) = wo„+ 2 ) [V'(la~)/(la~)] [1 —cos(kla~)], (15)
/=1

FIG. 2. Phonon spectrum of the commensurate trivial
ground state for uo„——2 at Vo ——Vb;f. (a) 8 = 1/2 (¹= 64)
and Vbjf —1886; (b) 0 = 5/7 (¹= 60) and Vb;f = 644.7. In
(b) we use the scheme of extended Brillouin zones.

;I (L'
+— ) V(r;;; ) —S(N )Vo/a~,

where S(N ) = 1+ z+ s+. . + ~ and N
int(L'/a~).

where
~

k ~( 1/2q. Notice that the motions along the 2:

and the y directions are decoupled.
For repulsive interatomic interactions, V'(la~) ( 0 so

that, when the magnitude of the interatomic interaction
increases, the frequency uz(k) decreases and reaches zero
at some critical value Vo ——Vb;g. If the interatomic re-
pulsion decreases monotonically with increasing r (i.e. , if
V' is always negative), the first instability arises at the
momentum k = +1/2q. The corresponding bifurcation
value Vb;g can be determined &om the equation

III. THE FIRST BIFURCATION IN
COMMENSURATE STATES

~i (k) = (uo + 2 ) V"(la~) [1 —cos(klo~)]
l=1

(14)

Let us start &om the simplest case of the commensu-
rate concentration 0 = N/M = a, /a~ ——1/q with an
integer q, so that the average interatomic distance aA is
a multiple of the lattice constant a„aA ——qa, . In this
case, at small amplitude of interatomic repulsion, the GS
is trivial (TGS) and all atoms are situated at the bottoms
of the corresponding wells x, = iaA and yi = 0. The(O) (0)

elementary cell of the system contains one atom only and
the phonon spectrum consists of two branches [see Fig.
2(a)]. The first branch corresponds to motion along the
x direction

~ + 4) - V'[(2S'+1)&~]
(2@+1)a„

In particular, for the Coulomb repulsion (4) Vb;i is equal
to

Vb'& = mo„a&/4C, (17)

where C = P„o(2@+1) s = 1.05179. . . .

Thus, for any monotonically decreasing interatomic re-
pulsion the first bifurcation always leads to a continuous
transition &om the trivial ground state of Fig. 1(a) to
the zigzag ground state of Fig. 1(b) with atomic coordi-

nates x,. = ia» y, = (—1)'b. The amplitude b of the
transverse atomic shifts is determined by the equation
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~pv+4) V'(ri)/ri ——0, ri = [4b + a~(1+ 2l) j'
l=o

of the ZGS so that only p = 0 has to be considered. Prom
Eqs. (16)—(18) we get

In the ZGS the value of the transverse splitting b in-
creases with Vp, as shown in Fig. 3(a).

It will be convenient to use henceforth a dimensionless
amplitude of interatomic repulsion defined as v = d/a~,
where d = (4b +a2&) I' is the distance between the near-
est neighbors in the ZGS, so that vb;f ——1. To obtain an-
alytical estimates, let us consider the case of a Coulomb
repulsion restricted to nearest and next nearest neighbors
only. In this case the interaction is limited inside one cell

. =12 3
Vb;g ———(uo a~,4 u

] 2/3
- 1/2

(4Vp/urp„) —a~

d = (4Vp/(up„)

v = (4Vp/(up„a~)
X/3

(19)

(20)

(21)

(22)

(a) X/M = 16/aZ Cdp The average elastic constant (10) for the TGS is equal to
I I

15—

10—

I I I I I

9 Vo
g{TGS) 4~ (23)

while for the ZGS it is determined by the expression

5—
g{zcs) = —wp„(v + 12/v —4) . (24)

0
0

—10

—15
r« I

10 10 10
Vo

I I I I I I III

1O4 1O'

(b)
ri I

I
I I

2.5—
N/M = 16/32 up

I I I I I I I II I I I I I III
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« I I
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FIG. 3. (a) Transverse displacements y; of the atoms and
(b) average elastic constant g versus the amplitude of inter-
atomic repulsion Vp fol' 8 = 1/2 (N = 16, M = 32, and
N' = 64) and cup„= 2.

According to Eqs. (23) and (24), the elastic constant g
far the TGS increases linearly with Vo up to the value
gb;f = 9urp„/16. But after the bifurcation g decreases, it
reaches the local minimum g;„=4.7O5~p„/16 O.5gb;i.

at e = 8 / and then rises again.
Figure 3 shows the numerical results for 0 =

2 and
&p„——2 (N = 16 and M = 32), taking into account
the interaction of a large number of neighbors (¹
64). The results are in agreement with the predictions
of the simple approach described above. Note that the
cusp of the elastic constant g at the bifurcation point
Vb;~ explains many remarkable properties of the model,
as discussed in the following sections.

The properties of the system with a complex, but com-
mensurate, elementary cell are similar to the properties
found above for a simple unit cell with only one atom.
Let us consider a rational atomic concentration 0 = s/q,
where s and q are relatively prime integers, and s ( q so
that there is no mare than one atom in one well of the
longitudinal substrate potential. The ground state of the
system is still periodic, with period sa~ ——qa„and for Vo
below the bifurcation point, the ground state is again a
trivial ground state with y = 0 for all atoms. Their x po-
sitions along the chain are now shifted &om the minima
of the potential wells and these shifts increase with Vo,
as shown in Fig. 4(a). The elementary cell of the TGS
consists now of s atoms. Therefore, the phonon spectrum
has to have 2s branches, as shown in Fig. 2(b), where
for clarity we use the scheme of extended Brillouin zones
so that the momentum k varies in the range

~

k ~( kg,
ks = sk~ = 8/2 with k~ = vr/sa~ = 1/2q being the
boundary of the erst Brillouin zone in our units where
a, = 2m. As shown in Fig. 2(b), the first instability arises
again at k = +kg and it corresponds to a continuous tran-
sition Rom the TGS to the ZGS. The ZGS has the period
2sa~ and a typical ZGS configuration is shown in Fig. 5
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for the case 8 = 5/7. The qualitative behavior of the
model can still be described by Eqs. (19)—(24). For odd
8 there is one atom at the bottom of a minimum of the
substrate potential (i.e. , with b,z; = 0) due to the sym-
metry of the model. The displacements Lx; of the atoms
from the bottoms of the substrate potential vary versus
Vo, as shown in Fig. 4(a). They have a maximum at the
bifurcation point owing to the cusp of the average elas-
tic constant g(Vo), shown in Fig. 4(c), which is similar
to the one discussed above for a simpler case. After the
bifurcation the longitudinal displacements Lx; decrease
because the average elastic constant is reduced in the
zigzag structure with respect to the linear structure. The
displaceinents y in the transverse direction [see Fig. 4(b)]

stay on the line y,. = 0 before the bifurcation, while after
the bifurcation they are split into 2Int[(s + 1)/2] curves
forming two symmetric groups, where Int designates the
integer part. The mean displacement b of the atoms in
the transverse direction can be estimated from Eq. (20),
while the dispersion of the transverse displacements is
given approximately by Ab 2

~
(Ob/Ba~)

~
Aa~, where

La~ is the maximum deviation of interatomic distances
along the chain &om the average value a~ due to the
presence of the substrate potential. Because Aa~ g
we obtain approximately Ab a~/b g, in agreement with
the numerical results of Fig. 4(b).

In addition to the commensurate cases 0 = 1/q and
0 = s/q, Figs. 6 and 7 show the numerical results for
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(c) N/M = 20/28 uo„= 2.0
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FIG. 4. (a) Longitudinal displacements Ax of the atoms with respect to the
lines indicate the values Ax = +m corresponding to maxima of the substrate
average elastic constant of the chain as functions of Vo for 8 = 5/7 ( N = 20,
shows two bifurcations of the atomic structure.

10

nearest minimum of V (x) (the dashed horizontal
potential); (b) transverse displacements; and (c)
M = 28, and 1V" = 60 ) and uo„= 2. The figure
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the cases where the number M of minima of the sub-
strate potential and the number N of atoms are such
that M = N/2 ~ 1 (N = 64 in the calculation). These
cases can be interpreted respectively as kink and an-
t k k configurations constructed on the backgroun o
the leo ——1/2 GS (more precisely, these configurations
correspond to "inassive" kinks in terms of [9]). Com-

of Fig. 3, we see that the critical values of Vo corre-
sponding to the bifurcation to the ZGS are such that( V. ( V,. " ' '", in agreement with Eq.
(19), which connects the bifurcation value with eth the av-

ZGS transition begins in the kink core region, ~i.e., in
the region of local compression of thf he chain, and then (a) N/M = 18/31

I I I I I I I

4—
Gdo = 20

I I I III I I I I I I I I

the zigzag structure extends to the whole system. On the
contrary, in the antikink case this transition ends in the
antikink core region, which is the region where the chain
is stretched locally. In previous works on a generalized
FK model similar to this one, some specific properties of
the topological excitations for the 2D model with respect
to the one-dimensional model have been found [9]. They
can be understood in terms of the cusp of the average
elastic constant g(Vo). In particular, at o = b'f= V ~ the
kink core region is already transformed to the zigzag state

h t g( '" ( g( . Qn the other hand, the transi-
tion to the zigzag shape within the antikink core region
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FIG. 5. Typical zigzag GS configuration .orfor 8 = 5, 7 and
cue„——2 at (a) Vo ——710, after the first bifurcation, and (b)
Vo ——8545, after the second bifurcation.

FIG. 6. (a) Longitudinal displacements Ax of the atoms
with respect to the nearest minimum o

~ ~ x the dashed
horizontal lines indicate the values Ax = +sr corresponding
to maxima of the substrate potential); (b) transverse dis-

graund af 80 = 1/2 far ceo„= 2 (8 = N/M = 16/31 and N'
= 64).
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occurs at larger Vo, so that g, & g, Because(antikink) (GS)

the value of the elastic constant g determines the param-
eters of the topological excitations such as the effective
kink mass I and the height of the Peierls-Nabarro po-
tential epN (e.g. , see [6]), it follows that, at and above the
bifurcation fA(kink) ) ~(antikink) an I 6 ) 6PN PN
The analysis in terms of effective elastic constant explains
the absence of symmetry between a kink and an antikink,
which was studied in detail in [9]. Moreover, in the next
section we show that the cusp singularity of g(Vo) has
also a strong efFect on the Aubry transition in the in-
commensurate case.

IV. AUBRY TRANSITIONS

The GS of the standard FK model with an irrational
atomic concentration 0 corresponds to an incommensu-
rate structure [12,14]. When the elastic constant gFK
is increased, this structure exhibits the so-called Aubry
transition, which can be understood in terms of the po-
sitions of the atoms with respect to the maxima of the
substrate potential. For small interactions (g ( gA„b,„),
the on-site potential dominates. The atoms tend to sit
near the bottom of the wells and there is a forbidden re-
gion near the maxima [Fig. 8(a)]. As a result, the atomic
chain is pinned to the substrate because its translation
requires moving the atoms up in the substrate potential,
over the maxima. On the contrary, for g ) gA b y the
configuration is dominated by the interaction and all the
values of the substrate potential are occupied by atoms,
some of them being on top of the barrier [Fig. 8(a)].
When the atomic chain is translated over the substrate,
some atoms go down in the potential while others go up
and there is no barrier to translation. Consequently, be-
low the transition (g ( g~„b,~) the phonon spectrum has
a gap corresponding to the frequency of oscillation of the
atomic chain in the pinning potential, while above the
transition (g ) g~„b,„), the gap vanishes. The critical
value gQ„bury depends on 0; for example, for the "golden
mean" concentration es ——(1 + ~5)/2 the critical elas-
tic constant g~„b,y take its maximum value gA b y 1.
The one-dimensional FK model with long-range (but con-
cave) interatomic interactions exhibits qualitatively the
same behavior as the standard FK model with nearest-
neighbor interactions. The question that arises naturally
is to what extent the introduction of a transverse degree
of freedom in our model can affect the Aubry transition.
The answer can be derived from the variation of the elas-
tic constant g versus Vo obtained in Sec. III. Because the
bifurcation point Vb;f is determined by the curvature of

10—
(b) N/M = 16/33 ~0 = 2.0

I 1 I 1 I I I 1 I I I 1 I

$0
Po

Vp

$0
80

—10—

10
I I I I I I I I
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FIG. 7. Same as Fig. 6, but for the antikink configuration
(8 = N/M = 16/33).

FIG. 8. (a) Schematic diagram of the positions of the atoms
with respect to the substrate potential on the two sides of the
Aubry transition. The heavy line shows the occupied regions
of the potential. For g ( gA„b,~ (lower figure), the top part
of the xnaxima are not occupied. For g ) gA~bpy (top figure),
all regions, including the top of the barrier, are occupied.
(b) Schematic diagraxn illustrating the possible coxnpetition
between the zigzag and the Aubry transitions. The three
horizontal lines correspond to the three possible positions of
QA b y with respect to the cusp in the elastic constant due to
the transition to a zigzag state: case 1, QA b y ) crab f case

QAubry ( Qbif and QAubry ( /min& CaSe 3~ gAubry + Qbif

QAubry ) gmin-
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the transverse substrate potential Vb;g oc uo„according to
Eq. (19) while the Aubry transition concerns essentially
the longitudinal displacements, the relative positions of
the two transitions can change depending on model pa-
rameters. Depending on the value of uo„, we can predict
three diferent scenarios for the behavior of the system
with increasing Vp as shown schematically in Fig. 8(b) .

(a) For the case of up„below a first threshold u*,( or*, such that Vb;f ( V~„b,y (case 1 in Fig. 8),
the Aubry transition will not occur because the first
bifurcation, to a zig-zag state, which reduces the efFec-
tive interatomic coupling, occurs before g can reach the
magnitude gQ b y required for the Aubry transition, i.e.,

gbif ( gAubry. Taking g&ubry 1 for the golden mean
0AM and gb;f 9 up„/16, the value ~* can be estimated
as ~* = 4/3.

(b) For the case of large wp„, wp„) w** (where w** is
a second characteristic value), for which Vb'f )) VA b y,
g+ubpy ( gbjf and gAubry ( grnin —ming(Vp) for all Vp
within the ZGS (case 2 in Fig. 8), the Aubry transition
is observed when Vo reaches VA„bury and the bifurcation
that occurs later does not bring any qualitative change
in the system behavior because the minimum of g after
the bifurcation is above gA„bury Only a higher-order bi-
furcation (see Sec. V) could bring a qualitative change.
Taking g;„0.5gb;g, the value u** can be estimated as
(u** -- 4~2/3 = 1.9 for 0 = 0~M.

(c) For intermediate ~p„, ~* ( (up„( su** (case 3 in
Fig. 8), such that g+ubpy ( gbIf but g~„b,y ) g~;„I when
Vo is increased, the system undergoes first an Aubry tran-
sition in which the pinned GS is transformed to a sliding
GS. But then the bifurcation to a zigzag state can reduce
the average elastic constant below gA b y The system
undergoes a reverse Aubry transition and the lattice gets
pinned to the substrate again. The further increase of g
that occurs after the minimum can cause again a direct
Aubry transition restoring the sliding state, at least up
to the second bifurcation.

In order to check numerically these predictions, we
should in principle choose N/M irrational, which is not
possible for a finite system because M and N must be in-
tegers in our calculations. There are, however, sequences
of rational numbers that approach closely an irrational
number. They can be obtained &om the continuous &ac-
tion expansion of the irrational number. An example is
provided by the Fibbonacci sequence

(~) N/M = a4/4V ~,„= 1.O
I I I I I III I

10 100
Vo

1000 10000

(b) N/M =- 34/47 ~p 1.0

10

1569, where the second bifurcation takes place. However,
for all values of Vo the elastic constant does not reach
the threshold value gA„bzy —1 and the Aubry transition
cannot occur. Indeed, Fig. 9(a) shows that longitudinal
atomic displacements &om the bottoms of the wells are
always smaller that a, /2 = m. This corresponds to the
case below the Aubry transition for which longitudinal
displacements that bring the atoms near the maxima of
the potential are forbidden. Therefore, for this case the
GS is pinned for all Vo.

Second, we take wp&
——2 in order to simulate case (b).

For this transverse &equency we obtain gb;g ——2.274 at

2 3 5 8 13 21 34
1 ~ —-+ — + —-+ —-+ —+ —-+ —-+ . , (25)3 4 7 11 18 29 47 —10

which tends to 0&NI
——(3 + ~5)/(5 + ~5), equivalent

to the golden mean for the Aubry transition. We chose
N = 34, M = 47, and ¹

= 34 in our study. The results
of the numerical calculations are presented in Figs. 9—11.
I et us consider first the case of the transverse &equency
wp„——1 (Fig. 9), which is expected to correspond to case
(a). In this case, for the trivial GS, the elastic constant g
increases with Vo and reaches the maximum gb;g

——0.533
at Vb;f ——137. After the TGS-ZGS transition, g begins to
decrease, reaches the minimum g;„=0.330 a,t Vo ——397,
and then rises again to reach gb,-& ——0.734 at Vb,.&

I II I

1 10 100 1000 10000
Vo

FIG. 9. (a) Longitudinal displacements &2: of the atoms
with respect to the nearest minimum of V (x) (the dashed
horizontal lines indicate the values Ax = +7t correspond-
ing to maxima of the substrate potential); (b) transverse
displacements y versus Vo for the incommensurate structure
(8 = 34/47 and ¹

= 34) for ~p„= 1.
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Vbjf —624, g;„= 1.379 at Vq
——1802, and gb f 3.09

(Vb,.&
——6681). Now gb;r )& g~„b,„and the Aubry tran-

sition is expected to occur before the bifurcation to a
zigzag state. Moreover, the sliding state can survive up
to the second bifurcation because g;„) gA b y In-
deed, the numerical results of Fig. 10(a) show that the
Aubry transition takes place at

V&&bury:

260 when for
the erst time at least one atom reaches the longitudinal

displace ment 4x; vr . Remember that the presence of
an atom on a maximum of the substrate potential V (x)
usually indicates that this state is &ee to slide on the
substrate. The average elastic constant determined nu-
merically is gA~b y 1 as expected. After the bifurca-
tion the atomic displacements decrease slightly; however,

up to the second bifurcation, the figure still shows atoms
close to potential maxima. One should notice that, be-
cause we perform the calculation with a finite number of
atoms, the value corresponding exactly to the potential
maximum may not always be occupied in our results,
even if we have a sliding phase. The results suggest,
however, that the sliding phase persists up to the second
bifurcation point. A Inore sensitive test is provided by
the calculation of the linear response of the atomic chain
to an external force E applied to all the atoms, along
the direction of the x axis. We calculate the mean shift
of the atoms Axghjft ——(1/N) P,. z(x; —x, ) with re-

spect to their positions without the force x,. and define
a susceptibility as

(a) N/M = 34/47 ~o = 2.0
I I I I I I I

f
I I 1111/

(b) N/M = 34/47 ~o = 20
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I I I I I IIII
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0.8 00
00
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FIG. 10. (a) Longitudinal displacements Ex of the atoms with respect to the nearest minimum of V (x) (the dashed horizontal
lines indicate the values b.z = +z corresponding to maxima of the substrate potential); (b) transverse displacements y; and

(c) inverse susceptibility y versus Vo for the incommensurate structure (19 = 34/47 and ¹
= 34) for uoy 2.
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%'e expect y -+ coo in the limit Vo —+ 0 and y —+ oo
in the sliding state. Note, however, that in a numerical
simulation the value 0 is always rational, so the GS will
stay slightly pinned. The results of the simulation [see
Fig. 10(c) where we took I" = 0.001] show a sharp drop
of y when the Aubry transition is reached and then

stays practically equal to zero (y ~ = 0.0005) for

the whole range VA„bury ( Vo ( Vb;f ) so that the GS in(2)

this case is really very close to the sliding state in spite
of the finiteness of our system.

Last, to simulate the intermediate case (c), we take
wo& ——1.5. The results are presented in Fig. 11. As in
the previous case, the Aubry transition that occurs at

Vo = 231 (g = 0.86) takes place before the bifurcation
and then g continues to rise to the value gb;g ——1s268
[see Fig. 11(b)]. But after the bifurcation that takes
place at Vb;f ——381, the elastic constant g decreases and
reaches the minimum g;„=0.766, which is lower than
gA~bx y at Vo ——993. Figure 11 shows that, in the vicin-
ity of the minimum of the function g(VO), the atomic
displacements decrease strongly and there is no longer
an atom on top of the maxima of V (x). Thus, in the
region near the minimum of g(Vo), the GS again seems
pinned. This is con6rmed by the behavior of the suscep-
tibility [Fig. 11(c)],which attests that we have observed
the predicted reverse Aubry transition &om the sliding
to the pinned state at Vo ——414 when g = 1.11. With
a further increase of Vo, after reaching the minimum the

(a) N/M = 34/47 ~, = 1.5
s I I I I s s I I I I s s sssslI s s II

2.0—
(b) N/M = 34/47 uo„= 1.5
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FIG. 11. Same as Fig. 10, but for uo„——1.5. The inverse susceptibility shows the existence of a reverse Aubry transition
followed again by a direct transition for which y drops again to 0.
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elastic constant increases again and at Vp = 1445 when

g = 0.840 the system undergoes a second direct Aubry
transition before the second bifurcation. The two transi-
tions from the pinned to the sliding state (direct Aubry
transitions) have been found in our calculations for an
average elastic constant g 0.85, while the transition
from the sliding to the pinned state (reverse Aubry tran-
sition) is obtained for g = 1.11. Although these values
are close to the expected value g 1, they suggest a small
hysteresis effect at the transition. However, it could be
due to the finiteness of the system (M/N is not truly ir-
rational) or to the limited accuracy of our susceptibility
measurements [in order to determine the susceptibility of
Fig. 11(c) we have measured the response of the system
to a force E = 0.0001; although it is very small, in the
immediate vicinity of the transition the system may not
be in the linear response regime].

Its Fourier transform (8) is

Dii (k):Mp& + (dp& 2 + (dp&v [1 —cos(2ka, )],
1 2 3 —v 1
2 " v2 8

(28)

2v —3
Di,"(k) = cup„+ —~p„——~p„v [1 —cos(2ka, )],2 " v2 16

1 3 —v

2v —3

V. HIGHER-ORDER BIFURCATIONS

1
A11 ——cup + 2Vpd 2a, —46 + —Vpa, (27)

1
A11 ——~p„+ 2Vpd 86 —a, ——Vpa,

A]1 0)

A12 = —Vpd-5 2a2 462s

A"" = —Vd 86 —a,

As mentioned in the Introduction, taking into account
long-range forces and not only nearest-neighbor interac-
tions allows further bifurcations beyond the first insta-
bility leading to the ZGS. Figure 4 shows, for instance,
the existence of a second bifurcation at Vp ——7111 for
0 = 5/7. This bifurcation induces a second cusp in the
elastic constant, as shown in Fig. 4(c), and leads to the
atomic configuration shown in Fig. 5. Figure 10 shows
another example of a second bifurcation observed in an
"incommensurate" case 9 = 34/47. Contrary to the case
shown in Fig. 4, this bifurcation is a first-order (discon-
tinuous) transition that leads to an abrupt drop in the
average elastic constant. To investigate the stability of
the zigzag configuration and detect the possible existence
of other bifurcations, we must calculate its phonon spec-
trum. In order to obtain analytical estimates we restrict
ourselves to the simplest case of 0 = 1 and the interaction
of nearest and next nearest neighbors only. Substituting
the atomic coordinates x, = ia, and y,. = (—1)'b into
Eq. (7a), we obtain for the elastic matrix A the expres-
sions

3 v2 —1

where
~

k ~( 4 and we have used the dimensioiiless vari-
able v instead of Vp according to Eq. (22).

The phonon spectrum is determined by the roots of
Eq. (9), which now takes the form

(~' —~ —~)(~' —~ + ~)(~' —& —b)(~' —& + ~)

—2e'[(~' —n) ((u' —P) + ph] y e4 = 0, (29)

where n = Dii (k) P = Dii (k), p =~ Di2 (k) ~,

~Di2(k) ~, and e = ~Dig(k) ~

depend on k. Because
the zigzag configuration for 0 = 1 has two atoms in the
elementary cell, the phonon spectrum consists of four
branches u~ (k), j=l—4. Contrary to the case of the TGS,
in the ZGS x and y modes are coupled. In order to find
an instability point v„;&, we have to take the lowest root

;„(k) = min~ tv~(k) of Eq. (29) and then look for the
point where w;„(k) reaches zero for the first time at
some k = k*.

An investigation of Eq. (29) shows that the value
k* depends on the ratio 0„= ~p„/up . Namely, at
high 0„, 0„)0„;t (the critical value 0„;t is about
1.52; note that 0„;t ) 1), the instability occurs for mo-
mentum k* = 0. But for k = 0 we have ~ = 0 in
Eq. (29) so that the motions along the x and the y
directions are decoupled and their eigen&equencies are
equal (ui(0) = ~p + (up„(3 —v )/v, (u2(0)
(usz(0) = (up2„+ (up„(2v2 —3)/v2, and ~42(0) = (up2„. Thus
ui (0) corresponds to the lowest frequency and it becomes
equal to zero at the critical amplitude of repulsion

A12 = —A1p
———6V d, b,

2 2Vcrit = & ~~py/ ~p& p~ ~ (3o)

1A*„=——V,a-',
4 s

Ave 1 -3
13 8 P s

A13 —0.

The mode wi (0) corresponds to motion of the upper and
the lower subchains of the zigzag configuration in oppo-
site directions along the chain.

On the other hand, at low transverse frequency, 0„&
0„;t, the instability condition w;„(k ) = 0 is satisfied
for the first time at a nonzero momentum k*, where
the value k* is close to the Brillouin zone boundary
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FIG. 12. Rhomboid configuration for 0 = 3/4 (% = 18,
M = 24, and 1V* = 36) and cup„——2 at Vp = 6660.

k~ ——4. In particular, near the critical point we find
that k* = 0.852k~ for Ay ——1.5 and the corresponding
critical repulsion is v„;q ——2.305. For lower values of
spy the critical momentum k* and the repulsion ampli-
tude v „.q increase slightly. For example, we find that
k* = 0.854kgy and v„;t ——2.315 for Oy —1, k —0 858k+
and v,»t ——2.337 for Ay = 0.5, and k* = 0.858k~ and
v„;t ——2.364 in the limit By —+ 0. Because k* is now close
to k~, the zigzag configuration is unstable with respect
to creation of an incommensurate configuration, which
is close to the subzigzag configuration where the atoms
in both (upper and lower) subchains are predominantly
shifted in opposite y directions.

However, before the critical point v„;t where the zigzag
configuration becomes unstable, it becomes metastable
at a point vb, f . The rhomboid configuration of Fig.
l(c) which was metastable for v ( vb, &, becomes the(2)

minimum-energy configuration above the second bifur-
cation point. The rhomboid configuration remains the
GS configuration up to the next bifurcation vb,.&, when it
is substituted by the double zigzag configuration of Fig.
1(d), then at v = vb, & by the hexagonal configuration of
Fig. 1(e), and so on. Thus, beginning from the ZGS, the
ground state of the system undergoes a series of first-
order transitions with increasing interatomic repulsion.

When the longitudinal substrate potential is negligible
(e.g. , when Ivo„)) Ivo ), the sequence of the ground-state
configurations may be viewed as broader and broader
stripes cut out &om the 2D hexagonal lattice (see Fig.
1), where the longitudinal lattice constant a„ii is deter-
mined by the atomic concentration 0 [a„ii = (a, /0)s',
8' = 2, 3, 4, 5, . . . for the zigzag, rhomboid, double zigzag,
hexagonal, etc. , configurations, respectively], while the
transverse atomic displacements evolve to adjust to the
transverse potential V„(y). When the amplitude of the
longitudinal potential V (x) increases, the atoms tend to

move to the nearest minima of V (z). Therefore the posi-
tions of the bifurcation points Vb,-& should depend on spy
as well as on the atomic concentration 9 = s/q, because
a configuration is expected to be more stable when the
integers s and s' match (for example, see the rhomboid
configuration for 0 = 3/4 in Fig. 12).

These predictions are based on analytical expressions
in the case 0 = 1 with only nearest and next nearest
interactions. They should be checked by numerical cal-
culations as done in the previous sections. However, the
calculations become very difFicult because, for compli-
cated structures, it is very difFicult to make sure that
we have obtained the true ground state after relaxation.
Therefore we have limited our investigations to a few par-
ticular situations such as the one shown in Fig. 12 or the
second bifurcations shown in Figs. 4 and 10 without at-
tempting an exhaustive study, which would have been of
limited physical interest because the perfectly symmetric
potential is an idealized case. As discussed in the next
section, as soon as some asymmetry is introduced, the
picture changes qualitatively.

VI. ASYMMETRIC MODEL

In many physical systems such as adsorbed films, the
external potential in the transverse direction is not sym-
metric. Let us discuss a possible modification of the be-
havior of the system when V„(y) is asymmetric. As an
example we take an anharmonic Toda-like potential

Vw(y) = Ivo&y „h [exp( —y/ya„h) + (y/y „h) —1], (31)

where P = y „h is the anharmonic constant; in the limit
P ~ 0 this function reduces to the harmonic form (3)
studied above. Numerical calculations show that the
behavior of the system before the second bifurcation
Vp ( Vb,.&

is practically the same as for the symmet-
ric model. The only difI'erences are that now the zigzag
GS is asymmetric and the y displacements for the up-
per subchain (y & 0) b„~ are larger than those for the
lower subchain (y ( 0) bg „. As a result, the figure
showing the bifurcation in y is asymmetric, as shown in
Fig. 13(a). Above the second bifurcation, however, the
scenario is diIII'erent from that of the symmetric model.

We can analyze the zigzag configuration as a system
of two subchains. Let us neglect temporarily the interac-
tion between the subchains. In analogy with the mech-
anism of the first bifurcation, if Vp increases, the atoms
in a given subchain tend to increase their interatomic
distances and at a certain threshold value of Vp the sub-
chain may evolve into a zigzag shape as the original chain
does for the first bifurcation. In the symmetric model
such a mechanism of the second bifurcation is inefFective
because the instabilities of both (upper and lower) sub-
chains occur simultaneously. At this point, even a very
small interaction between the subchains destroys this sce-
nario. This is why we had to treat the two subchains
simultaneously, leading to the fourth order Eq. (29) for
u . For an asymmetric model, however, the instabilities
in the upper and the lower subchains occur sequentially.
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V(~) 1( (~))2(2~—x )s (32)

where we have introduced ~ = V(d g =
~ g sub(T) 1n-

potential (31), we see that the upper and the lower sub-
chains are now characterized by different effective fre-
quenc] es ~ and (4Je &0& ( (d ff

So the instability arises first at V = V jf h0bjf ln t he upper

The bfhe bifurcation points are determined by the curvature
o „(y) for y equal to atomic coordinates in one sub-
chain. To And the bifurcation points, we can deduce,
similarly to Eq. (19), an equation

subchain and leads to creation of b 'o a su zigzag con6g-
uration in the upper subchain only [Fig. 13(c)j. Then,

V(down) V(up)
{) b f Q b 'f, the lower subchain becomes

unstable, creating a subzigzag con6guration in the lower

three-s
ea s to sp itting of the two-subchain stru t

ree-subchain configuration, then into a four-subchain
con guration. As we consider an interaction between all
the atoms of the s system, when a subchain is created, the
atoms belonging to this chain do interact with each other.
This is why we can treat it, at least approximately, as we
have done for the chain of the TGS. We could thus ex-

could start on the top subchain leading to the creation
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of the next subzigzag structure (i.e. , the next splitting of
the top subchain) and then this splitting would spread
sequentially to subchains with smaller y values. This sce-
nario reminds one of the well-known Feigenbaum picture
for the transition from a regular to the chaotic behav-
ior, so it should end at some accumulation point by the
of an incommensurate structure for a rational 0 (as for
the Aubry transition, the resulting configuration did not
need to be a chaotic configuration, but a regular con-
figuration belonging to the Cantor set embedded into a
chaotic set of configurations). In our model, however, the
accumulation point lies at infinity according to Eq. (32).

Thus, in the asymmetric model, not only the first bi-
furcation, but also a few additional bifurcations corre-
spond to second-ord. er transitions. The picture discussed
above is, however, oversimplified because the distance be-
tween the central subchains (i.e. , the subchains with the
smallest transverse displacements) does not increase fast
enough and the interaction between them increases with
Vo. Therefore they cannot be treated as independent and
the coupling, which generates a first-order transition in
the symmetric case, could well do the same for the asym-
metric transverse potential. The high-order bifurcations
predicted by this discussion are very difIicult to observe
numerically and, as shown in Fig. 13, we have seen only
three bifurcations (leading to the splitting of the system
into four subchains) in our calculations.

VII. DISCUSSION

In the present paper we have investigated a general-
ized FK model with a transverse degree of &eedom for
an arbitrary atomic concentration 0. We have shown
that with increasing interatomic repulsion the trivial GS
of the system, where all atoms are aligned on the line

y = 0, undergoes a series of bifurcations producing first
a zigzag GS and then configurations with a more compli-
cated structure. The bifurcations generate cusps in the
variation of the elastic constant g versus the magnitude
of the interatomic interaction Vo. These singularities of
g(Vo) result in significant modifications of the properties
of the system and in particular they change the scenario
of the Aubry transition for incommensurate phases.

I et us try to determine whether the bifurcations could
take place in a real physical systems such as atoms in
the channel of a superionic conductors or protons in
hydrogen-bonded chains (for instance, in the ion chan-
nels of biomembranes). To estimate the value of the
transverse &equency uo» we may assume that, in a crys-
tal, V„(y) results also from a periodic potential V„(y) =
—e,„[1—cos(2my/a, &)], where e,„ is the characteristic
amplitude and a,& is the characteristic distance for the
transverse potential. For this shape of Vz(y) we obtain

V„"(0) = 2m e,„/a,„. For ions with a unit ele-

mentary charge e, Vo ——e2 in Eq. (4). Then, setting
a~ = a, /9, in Eq. (19), we find that the TGS-ZGS bi-
furcation takes place when 0 reaches a threshold value

- 1/3

(33)

Taking a, a,„3A and e,„0.1 eV, we obtain

6 b' f 0.5. This is a value that can easily be achieved in
a real system. Thus it seems likely that the usual pic-
ture of ions staying in line in a channel is oversimplified.
According to our results, the possibility of ionic motion
in transverse directions could modify significantly some
conclusions obtained earlier within the &amework of the
standard FK model.

It is clear that accounting for transverse degrees of free-
dom is very important in modeling the adsorbed layers as
well as in studies of the crowdion problem. In particular,
the TGS-ZGS transition occurring with an increase of
the atomic concentration drastically decreases the mo-
bility of topological excitations in this systems [9]. To
study these efFects numerically we should, however, use a
more realistic model with, e.g. , a Morse-type interatomic
potential. Moreover, in adsorbed systems the transverse
potential is nonconvex, so the realistic model should use
the Morse potential for the Vz(y) too. A sequence of the
GS configurations with 0 increasing for a model gener-
alized in this way can simulate crystal growth process

In the present work we restricted ourselves to investi-
gation of the ground-state configurations only. However,
another aspect of the model is that it has a large num-
ber of metastable states for all values of Vo, contrary to
the standard FK model, where the number of metastable
states goes to zero with increasing Vo [15]. To investi-
gate the metastable configurations, we first have to study
topological excitations, i.e. , to determine the character-
istics of kinklike excitations. Note that the more com-
plicated the structure of the GS, the larger the number
of difFerent types of kinks. For example, the TGS ad.—

mits two kink configurations only (kinks and antikinks),
while the ZGS admits already four types of kinks ("inas-
sive" and "nonmassive" kinks and antikinks; see [9]). The
knowledge of kink parameters is necessary for develop-
ing the phenomenological theory of low-t;emperature sys-
tem dynamics. For example, in the one-dimensional FK
model the phenomenological theory [16]predicts an irreg-
ular shape for the dependence of the system conductivity
on atomic concentration and a devil's staircase shape for
the same dependence of the chemical difFusion coefricient.
The investigation of a modification of these dependences
in a more realistic model with a transverse degree of free-
dom would have a great interest. The first step in this
direction has been done in [9], where kink parameters
were found for the simplest case of 0 = 1.

Of course, the model with a single atomic chain is over-
simplified; real physical objects have to be modeled by
a system of parallel chains [7]. So the generalization of
the model with transverse degrees of freedom in this way
is very desirable too. Such an investigation would be
one step toward the understanding of the vector 2D FK
model.

Finally, in this work we have discussed only the static
properties of the model. The dynamics of a model with
a transverse degree of &eedom is certainly very difFer-
ent &orri the dynamics of the standard FK model even
for the TGS. For example, it is possible that statically
unstable configurations become dynamically stable. An
investigation of these questions would also be interesting.
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