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Molecular dynamics simulations of polymer droplets
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We have simulated droplets of chain molecules of length 4 and 16 adsorbed on a van der Waals
substrate using molecular dynamics. We investigate the behavior of individual chains in equilibrium
droplets and in spreading droplets, and roughly characterize the macroscopic dynamics of spreading
droplets.

PACS number(s): 61.20.Ja, 61.41.+e, 68.10.Gw, 68.45.Gd

A number of recent experimental studies have investi-
gated the spreading of nonvolatile polymer droplets. Var-
ious phenomena associated with the existence of atomic
monolayers in such droplets are among the most novel
features of these studies [1—4]. Previous theoretical work
on both static and dynamic properties of droplets has
largely treated droplets as continuous objects ([5], and
references therein). A notable exception is the theory of
de Gennes and Cazabat [6], which treats the spreading
of a droplet of simple liquid made of discrete atomic lay-
ers. This work presents various results fram simulations
of mesoscopic nonvolatile droplets, including evidence of
layering and a test of the predictions of the theory of [6]
for such droplets.

The atoms in our simulations exert two types of forces
on each other: (1) the forces due to a truncated, shifted
Lennard-Jones (LJ) potential,

for r ( rc and V(r) = 0 for r ) r~ = 2(r, and (2) forces
of constraint which maintain a fixed distance between
neighbors on a chain of given length N . Modeling a
carbon chain, appropriate length and time scales for our
simulations are cr 4.1 A. and r = gmo2/e 3 x
10 i2 s

We implement the LJ forces in standard fashion, by
using a linked-list-based program for three-dimentional
(3D) short-ranged potential molecular dynamics [7,8].
We implement the constraint forces using the method of
Ryckaert et al. [9] to impose rigid bonds of length 1 125(r.
between atoms. BrieHy, the idea is to calculate the un-
constrained motion of all the atoms, and then to find and
impose forces of constraint just sufhcient to keep the sep-
aration between neighbors in a chain constant, a method
we found to be easy to implement and quite efBcient as
no fast vibrational time scale is introduced. We impose
no bond-bending forces. We use the "Verlet method" to
integrate the equations of motion, with a time step of
h = r/141 As a gauge of. the numerical accuracy of our
simulations, in the microcanonical ensemble we find en-
ergy fluctuations with a standard deviation of 10 times
the difference between kinetic and potential energies. For
simulations in which a droplet spreads on a substrate, we
impose constant mean kinetic energy by rescaling veloc-
ities. For equilibrium simulations, we find no differences

between droplets simulated in the microcanonical ensem-
ble and droplets simulated with velocity rescaling, which
is not too surprising in light of a similar observation by
Thompson et a/. for droplets of simple liquid [10].

The surface with which these chains interact is a uni-.
form, semi-infinite slab of LJ material. The potential
which such a material produces, again truncated and
shifted, is

for z & zc, and V(z) = 0 for z ) z~ = 2cr For .all
simulations discussed here, a* = a /rr = 1.2. Note
that the force due to this potential is purely in the z
direction so that there are no &ictional effects arising
from motion parallel to the surface.

We prepared the initial condition for our simulations
as follows. One hundred chains with %, = 16 were cre-
ated in an arbitrary initial low-density configuration in a
container with repulsive walls. The chains attracted each
other, and coalesced to form a droplet. This coalescing
took place with periodic velocity rescaling to keep the
mean kinetic energy constant. Once the chains formed a
single cluster, an equilibration period of 3500& followed.
The equilibrated polymer droplet was then brought into
contact with a surface whose attractive potential is weak
enough that the droplet does not wet it, and is again al-
lowed to equilibrate for 3500&. This equilibrated droplet
on a surface is our initial state. Independent but macro-
scopically equivalent initial states may be obtained by
storing the microstate at later times in the equilibrium
simulation. To generate initial conditions for a differ-
ent substrate or different temperature &om this state, or
for droplets made of shorter chains (as long as the new
length divides the old one), requires only an equilibration
period for the new configuration.

A typical equilibrated droplet configuration with N
16, T* = kT/e = 0.75, and e* = e /e = 0.625 is de-

picted in Fig. 1. Note that while the droplet surface is
not very smooth, there is no evaporation. For chains with
%, = 4, a lower temperature (T* = 0.57) is required to
keep droplets nonvolatile during spreading. An examina-
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TABLE I ~ Characterization of chains in the droplet
by their moments. During an equilibrium simula-
tion with parameters as for Figs. 1 and 2, time se-
ries were extracted of the radii of gyration of individ-
ual chains parallel and perpendicular to the substrate
(D r=[(x —z, , ) +(y —y, ) ]/2andA z=(z —z, )
respectively) and also the skewness perpendicular to the sub-
strate [S = (z —z, ) ] for 16 chains with their centers of
mass in the lowest two atomic layers, for 16 chains with their
centers of mass in a region above the third layer, and for 8
chains near the top of the droplet. The mean and standard
deviation (from time and ensemble averages) of each of these
quantities are tabulated below.

Location
bottom
center
top

A r
1.675
1.134
1.323

1.218
0.903
0.937

A z
0.650
1.690
0.821

O~ S
0.442 0.199
1.073 0.205
0.407 -0.185

~s
0.456
1.106
0.523

FIG. 1. A droplet with N = 16 in equilibrium at tempera-
ture T* = 0.75 on a substrate of e* = 0.625 viewed normally
to the substrate and parallel to it.

tion of the diffusion of individual particles suggests that
the core of the droplet is still liquid even at this lower
temperature.

Figure 2 demonstrates that droplets are atomically lay-
ered, much as films [11] and droplets [12] of a simple LJ
liquid and confined films of chain molecules [13] are lay-

ered. This figure presents a profile of the average density
as a function of height. The inset shows the radial extent
of the layers, and the region of low density near the edge
of the droplet. The spacing in the z direction between
density peaks is equal to the distance between atoms in a
chain, suggesting that near the substrate, bonds between
atoms in a chain tend to align at angles either near 0 or
near vr/2 to the surface normal.

The configurations of individual chains in a droplet in
equilibrium are further characterized by the quantities
in Table I. Broadly speaking, chains near the top and
bottom of the droplet are Aattened in the sense that a
con6guration which is extended in the z direction is much
less likely than a configuration which is extended parallel
to the substrate. Note that this flattening is not due to
any shearing effect imposed by a mean How.

The overall shape of an equilibrium droplet is con-
trolled by the spreading parameter S = ps~ —pl.s —pL, ~,
where the p's are surface tensions between liquid, va-

por, and solid. S is controlled by adjusting e*. For a

0.8

0.6

0.4

0.2

0.0

FIG. 2. Dimensionless den-
sity plotted versus distance per-
pendicular to substrate for a
droplet with the same param-
eters as that shown in Fig. 1.
Three distinct layers are dis-
cernible. The inset is a con-
tour plot of the density in the
same droplet, with contours
per = 1/3, 2/3, and 1.
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more strongly attractive interface, the droplets are flat-
tened, as may be seen in Fig. 3. While it is easy to
extract a contact angle from the profiles in Fig. 3, it
is not obvious that a contact angle so de6ned (that is,
the contact angle for three or four atomic layers) is the
same as the analogous macroscopic quantity. For ~' large
enough (i.e. , large solid-liquid interfacial attraction), the
fluid wets the substrate. At the temperatures and wall
strengths used in our simulations, the wetting film is not
an atomic monolayer —though molecules are constrained
by the substrate, they still flop around through three-
dimensional configurations.

We now turn to the dynamics of spreading droplets.
To make a droplet spread, we take a droplet equilibrated
for ~* = 0.625 (Figs. 1 and 2 show such droplets) and
simply increase e* to 1.25. The liquid does not wet the
substrate at e* = 1.04, while it does wet the substrate at

= 1.25. Figure 4 shows a droplet of chains of length 16
in the process of wetting the substrate. While there are
regions at the edge of the droplet where it is but a single
atom thick, there is no well-defined precursor layer, even
though chains at the edge of the droplet throughout the
spreading period are flattened.

Figure 5 shows a tetramer droplet in an earlier phase
of spreading than Fig. 4. Here, there is a layer entirely
surrounding the droplet with a coverage only one atom
thick. However, this layer is undergoing essentially two-
dimensional evaporation as can be seen from Fig. 5. The
chains which evaporate at the contact line are confined to
the substrate, but not so strongly that they are restricted
to two-dimensional configurations.

These results appear to be at least partially in agree-
ment with the study of Nieminen and Ala-Nissila [14];
they also observe flattened chains in their simulations,
but the droplets they show have a clear distinction be-
tween precursor film and core. They appear, however,
to be working in a difFerent regime. For them, the sub-
strate potential strength which produces flattened chains
in a well-defined precursor layer during spreading is much
larger than for us le* (0*) is 125 or 7.8 instead of our
1.8]. We are unable, however, to reconcile their charac-
terization of all their droplets as nonvolatile at reduced

FIG. 4. A spreading droplet with N = 16 at temperature
T* = 0.75 on a substrate of ~* = 1.25 t = 24827 after spread-
ing began.
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FIG. 3. Contours of po = 0.5 for equilibrium droplets
with N, = 16 on substrates with e' = 0.625 and 1.04.

FIG. 5. A spreading droplet of tetramers at temperature
T' = 0.57 on a substrate of e* = 1.25 t = 7077 after spreading
began.
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temperatures of 0.8 and 1.2 with either our simulations
(we find some three-dimensional evaporation for tetramer
droplets during spreading at T* = 0.68), the simulations
of Thompson et al. [10] on liquid drops in &ee space (who
find a vapor phase for monomer droplets at T* = 0.76), or
the simulations of Yang et al. [12], who find evaporation
for spreading monomer droplets at T* = 0.7. Regardless
of the strength of the substrate, it seems likely that some
chains with N & 4 should break free, and certain that
some monomers should do so, during a reasonable equili-
bration period before the droplet is brought into contact
with the substrate.

A characterization of the motion of individual chains,
both in static and spreading droplets, is uniquely acces-
sible to molecular dynamics simulations. Figures 6(a)
and 6(b) depict the motion of centers of mass of individ-
ual chains during the initial phase of the spreading. Each
set of points represents an average of several runs, started
&om distinct initial conditions (an equilibrated droplet at

= 0.625 sampled at widely separated times) and al-
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FIG. 6. Displacement of individual chains during spread-
ing for 1V, = 4 (full circles; average of six runs; T' = 0.57;

= 1.25) and with N, = 16 (open circles; average of eight
runs T* = 0.57; e' = 1.25). (a) Displacement perpendicu-
lar to the substrate over an interval bt = 85&, averaged over
the t ( 7007 part of the spreading. Note that since even for
tetramers the configuration at the end of the averaging period
is not too Hattened, the statistics are not too badly contam-
inated by chains that have reached substrate. Displacements
are averaged only for z ( 4, that is, in the lower three layers.
(b) Displacement parallel to the substrate, averaged as in (a).

lowed to evolve for 700m . In order to identify whether the
way chains move during the spreading process is qualita-
tively dependent on chain length (i.e. , whether the degree
of entanglement between chains changes the dynamics of
spreading), we ran such simulations for droplets made of
chains with K, = 16 and N, = 4. Figure 6(a) shows
that the chains drift downwards uniformly throughout
the lower part of a spreading droplet. Closer to the edge
of the droplet (increasing r —r~M), one finds a larger
proportion of the chains close to the substrate (for such
chains dz/dt is 0 on average), and a smaller absolute
number of chains. Thus, on average, near the edge of the
droplet dz/dt is noisy and close to 0.

Figure 6(b) shows that chains at the bottom of the
droplet spread more quickly than those at the top, with
the smaller number of chains undergoing a weaker mean
motion at the top of the droplet explaining the small
mean and large variance of the motion there. The ap-
parently surprising result that the mean radial motion of
short chains, which one might expect to be more mobile,
is slower than that of long chains is due to there being a
larger fraction of short chains in the center of the droplet
undergoing little or no radial motion.

This characterization of the motion of individual
chains is not in agreement with the recent model of
de Gennes and Cazabat [6] for the dynamics of spread-
ing droplets. They model droplets of simple liquids as
discrete layers of incompressible Quid with transport be-
tween layers occurring only near the edges of each layer.
The width ( of the region in which interlayer transport
is expected scales as the square root of the reciprocal of
the difFusion coefFicient times viscosity. It is not a priori
apparent how ( will change in going &om a simple liquid
to a polymer liquid. . If simple liquid droplets spread in a
markedly diferent way &om polymer droplets, however,
one would expect to see some crossover behavior as chain
length shortened. We see no such behavior. Also, even in
the volatile simple liquid simulations of Yang et al. [12],
atoms drift downward in the center of a large droplet.
The other possibility for reconciling the predictions of [9]
with our results is that ( B, the droplet radius. Inter-
preting ( as a healing length, this seems unlikely, since
for tetraxner chains the healing length would need to be
much larger than the chains themselves.

To conclude, we have studied the static and dynamic
behavior of droplets composed of chain molecules with
N = 16 and 4 at temperatures where the droplets are
liquid but nonvolatile. We find the familiar phenomenon
of layering in our droplets, and we find that chains near
the top and bottom of the droplet are anisotropic. We
find that the motion of individual chains in our (small)
spreading droplets disagrees qualitatively with the pre-
diction of a model for simple liquids based on interactions
between incompressible Quid layers.

I have benefited &om numerous discussions with
Charles Ebner, ONR Grant No. N00014-92-J-1271, NSF
Grants No. DMR-90154679 and No. DMR-9406936, and
the use of the University of Minnesota Supercomputer
Center's XMol computer program to generate several fig-
ures.
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