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Discreteness effects on the double sine-Gordon kink
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We derive and analyze the exact collective variable equations of motion for the discrete double sine-
Gordon (DSG) equation as a typical example of a discrete Klein-Gordon equation with an internal
mode. In the continuum DSG system, the small-amplitude equations of motion for the center of mass
X(t) and internal mode 8 (t) are uncoupled, but discreteness causes the center of mass mode X(t) and
the internal mode R (t) to be strongly coupled, leading to further qualitative phenomena in addition to
the known discreteness phenomena such as the Peierls-Nabarro potential and effects due to internal
modes. We show that the behavior of large kinks where the distance between subkinks is large com-
pared to the size of the subkink is different from the behavior of small kinks where the distance between
subkinks is smaller than the size of the subkink. In the case of the small kink, we show that there are
two minima per unit cell instead of the usual one minimum and that the discrete DSG kink becomes
temporarily trapped and untrapped due to conversion of center of mass energy to internal mode energy
and back until the kink finally becomes permanently trapped. We show by simulations that the radiation
occurs in bursts and decreases sharply at specific frequencies, which can be straightforwardly explained

by collective variable theory. In addition, the asymmetry of the phonon radiation by the moving DSG
kink is responsible for asymmetries in the subkink-subkink interaction, causing phenomena such as exci-
tation of the internal mode and causing the subkinks to travel sometimes at different speeds. We deter-
mine the exact Peierls-Nabarro and internal mode small oscillation frequencies.

PACS number(s): 03.40.Kf

I. INTRQDUCTIQN

There are several problems in nonlinear Klein-Gordon
and similar systems which are difBcult to understand in
terms of the original field variables P(x, t) [or P(n, t) in
the discrete version] that can be readily understood using
a collective variable (CV) approach. For example, in a
discrete lattice the familiar problem of the Peierls-
Nabarro (PN) potential can be treated as a "point" parti-
cle X(t), which satisfies an ordinary diff'erential equation,
moving in a nonlinear periodic potential where the period
of the potential is the period of the lattice. The radiation
from the kink caused by the discreteness can usually be
treated as a linear radiation field driven by the accelera-
tion of the point particle X(t), which is determined by
the nonlinear periodic force on X(t). The rich spectrum
of radiation by trapped and untrapped kink motion
which expresses the phonon radiation generated by the
nonlinear motion of the center of mass X(t) can be
straightforwardly understood by the CV approach.
Another situation where a CV approach gives useful in-
sight into the behavior of a nonlinear field equation is
that of an internal mode of a kink such as the double
sine-Gordon (DSG) kink [l), where the distance between
the subkinks —which is proportional to the parameter R
which appears in the DSG potential energy [2]—is
represented by a collective variable R (t). The time varia-
tion in R (t) is caused by some perturbation applied to
the DSG kink which causes the distance between the sub-

kinks to vary, e.g. , when two DSG kinks collide [3,4].
One of the main results of this paper is to show that

discretizing the continuum DSG equation generally
causes the separation between subkinks to become time
dependent so that we have R(t)=%+ Y(t), where Y(t)
describes the time variation of R (t) about Jt Furth. er-
more, the discreteness causes X(t) and R (t) to be strong-
ly coupled. We find that the resultant strong coupling be-
tween the center of mass (c.m. ) X(t) and the internal
mode R (t) leads to qualitatively different phenomena
such as temporary trapping and untrapping of the kink.
Some of these phenomena are a consequence of the in-
teraction between X and R causing two potential minima
in a cell in those cases where the distance between the
subkinks is less than the size of a subkink. We also find
different qualitative behavior when the phonons radiated
by one subkink interact with the other subkink introduc-
ing asymmetries in the moving DSG kink as a conse-
quence of the asymmetry of the radiation in the forward
and backward directions of a moving kink. We also ana-
lyze the properties of the radiation leaving the kink in
both the trapped and untrapped cases.

In Sec. II we briefly review the properties and solutions
of the DSG equation. Then we give the exact equations
of motion of the DSG system in terms of the collective
variables. We take as initial conditions the exact static
solution of the discrete DSG equation obtained by the
classical pseudodynamics relaxation process. In Sec. III
we present the derivation of the equations of motion for
the c.m. X(t) and the expression of its frequency of oscil-
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lation in the weakly discrete limit, for the case of con-
stant separation between the subkinks, R (t) =%. We also
derive the equations of motion for the internal mode
R (t), and obtain the lowest-order expression for its fre-
quency of oscillation by keeping the c.m. fixed at a
minimum of the PN potential. The frequencies corre-
sponding to these two modes lie in the gap below the
phonon band. Also we perform the exact determination
of the frequencies of the two modes by numerically
finding the eigenvalues of small oscillations about the ex-
act discrete kink ground state. The exact numerical and
calculated frequencies agree very well for R &R„where
%, is as yet an unknown quantity whose value depends
only upon the importance of the discreteness. The reason
for the deviations for % &%, are explained. In Sec. IV we
present and analyze the simulations of the CV equations
of motion. We first consider DSG kinks where the dis-
tance between the subkinks is large compared with the
size of each subkink. The first simulation considers the
excitation of the internal mode keeping the c.m. fixed at
a minimum of the PN potential. When the internal mode
is excited nonlinearly, it radiates mainly in bursts as har-
monics of the internal mode frequency enters the phonon
band. Next, we start with the internal mode initially
unexcited but with X not at a minimum of the PN poten-
tial. Since the symmetry is broken, the internal mode be-
comes excited and there is a regular exchange of energy
between the center of mass mode and the internal mode.
We consider next the untrapped case with the same ini-
tial conditions as above except with a higher initial veloc-
ity so that the DSG kink is no longer trapped initially.
When we start with the internal mode unexcited initially
it becomes excited. When the untrapped kink moves, it
radiates phonons and its frequency decreases. When the
frequency crosses the lower phonon band edge and goes
into the band gap there is a sharp decrease in the rate of
radiation. Finally, we repeat the above cases for a kink in
which the intersubkink spacing is equal to or less than
the size of the subkinks so that the subkinks have essen-
tially lost their individual identities. For the case of sub-
kinks that are very close to each other we find completely
different qualitative behavior which arises from the fact
that there are now two minima in a unit cell instead of
just the usual simple PN minixnum. Finally in Sec. V we
conclude.

II. COLLECTIVE VARIABLE THEORY

sionless variables are introduced in Eq. (2.1) the La-
grangian becomes

(4 )'L
pa

dg„
dt

—
—,
' X(g.+i —Q. )'

2&

Lo

2

g Vnso(gn ) (2.2)

where Q„—=4rtu„/a, t =(V'p/m )r is the dimensionless
time, Lo =V pa /2W is the dimensionless coupling con-
stant that serves as a measure of the importance of the
force between the particles relative to the force due to the
substrate potential, and hence Lo can serve as a measure
of the importance of discreteness effects.

The substrate potential of the DSG model is doubly
periodic:

4(p)= 1 —cos+ +rI(1 —cosP)
2

(2.3)

where —~ +g++ ~ is an arbitrary parameter. When
rt=0 one obtains a SG potential where —2m ~/~2m.
(modulo 4m), and when rl=+ oo, Eq. (2.3) becomes a SG
potential where ~P—

m (modulo 2n ). Otherwise the
potential (2.3) exhibits a variety of structures depending
on the value of q (see Ref. [2]). For instance, for
—,
' &g&+ Oo, the potential possesses two nondegenerate
minima, and admits only one type of kink solution. In
this region of g, the potential (2.3) can be rewritten in
terms of a new parameter % defined by

g= —'sinh % . (2.4)

The physical meaning of % will be clarified later on. In
terms of R, the potential reads

VDSG ( 0 ) VR (0 )
4 1+ cos

cosh 5 2

+(1—cosg)tanh St . (2.5)

Figures 1(a) and 1(b) show the shape of Vz (P ) for
different values of %.

In the present paper we examine discreteness effects on
a DSG system described by the potential (2.5). The
discrete equation of motion is then given by

L= dun

d7.
—

—,'p g (u„+,—u„)

8 g Voso(4~u„/a),
n

The Lagrangian for the DSG systexn is written

(2.1)

dV~Q„—b,2Q„+coo (Q„)=0,
n

(2.6)

coo ——2m. /I. o . (2.7)

where the second difference 62 is defined as
52h„=h„&+h„+&

—2h„, an overdot indicates
differentiation with respect to the time I;, and

where u„is the position of the nth particle of mass m
measured from the nth lattice site, p is the effective
spring constant between adjacent particles, ~ is the time,
a is the period of the substrate potential V~sz, and W
serves as a measure of its amplitude. The expression of
V~sz will be given explicitly below. When the dimen-

For setting up a collective variable treatment of the dy-
namics we decompose the field Q„in the following way:

(2.8)

where f„is a suitably chosen ansatz function of the col-
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Therefore the parameter R determines the separation be-
tween the two subkinks (in units of 2/cop).

So, for setting up the CV treatment, we choose the an-
satz function to be the continuum solution for the DSG
kink, evaluated at discrete lattice points. That is, we con-
sider the following ansatz function:

f„[X(t),Y(t),Z]=o so[Z jcpp(n X—)+9t+ Y] ]

cr—so[Z[ —cop(n —X)+9t+ YJ ],
(2.12)

FIG. 1. Plot of the DSG potential Vz, Eq. (2.5), for %= (a)
1.2; (b) 1.7; (c) 2.2488; (d) 14.617.

lective coordinates, and q„ is then the remaining field
such that the sum of f„andq„satisfies Eq. (2.8). Before
going through the derivation of the equations of motion
for the collective variables, it is desirable to first address
the problem of choosing an ansatz function that provides
a best representation of the configuration of the discrete
DSG kink. In this respect we recall that in the continu-
um limit the static kink solution for the DSG system is

where we have replaced the continuous position variable
x by the site index n, and introduced another collective
variable Y(t) and a parameter Z. The collective coordi-
nate P describes the variation of the distance between the
subkinks due to any perturbation that changes the dis-
tance from the value of 9t in Eq. (2.10) such as radiation,
discreteness, or kink-kink collisions. The parameter Z is
as yet an unknown quantity whose value will be chosen
depending on the importance of discreteness efFects.
Note that Eq. (2.12) is expressed in such a way that only
collective variables which describe the DSG kink as a
whole collective entity appear explicitly, that is, X and 7;
However, this ansatz can also be rewritten in such a way
that there appear explicitly collective variables which de-
scribe the DSG kink as two bound collective entities
(which are the subkinks), in the following way:

f„(X,Y,Z)=f„(X„X~, Z)

=crso[cppZ(n —X, )]—.
os[o—co+(n —X2)],

(2.13)

where
cr(x, X,9t ) =o so[cop(x —X)+%]

cr so[ —cop—(x X)+9t—],
where

~so[a]—:4tan '[exp(y)],

(2.9)
and

Xi
=X —( 9t + Y) /cop

X~ =X+(9t+ Y)/cop

(2.14a)

(2.14b)

x is a continuous position variable, and X a collective
coordinate that locates the c.m. of the DSG kink. Equa-
tion (2.9) expresses the fact that the static kink solution
for the DSG system can be rigorously expressed in terms
of the single kink solutions of the SG system. Further-
more, Eq. (2.9) can be rewritten in such a way that the
parameters ~o and 8 are given their physical meaning, in
the following way:

o (x,X,9t) =o (x,X„Xz)

=o so[cop(x X& ) ]—crso[ —cop(x —X2 ) ]

(2.10)

where X& =X—8/coo and X2 =X +R/ct)o locate the c.m.
of the two subkinks. Equation (2.10) shows that in the
continuum limit the slope of each subkink is coo, and the
distance that separates the subkinks is

2)p=X2 —Xi =29t/cop .

X2 —X, =2(9t+ Y')/—cpp,

and the slope of each of the subkink is

(2.14c)

(2.14d)

The CV approach that we use in the present paper is
the projection-operator approach [5], which was shown
to make the derivation of the CV equations of motion ex-
tremely simple. According to this approach one needs to
specify four constraints which give the collective vari-
ables X and F their physical meaning, and they are

C&x= &f,xlg &=0 Cpx=&f„,alp. & =0, (2.15)

where the bracket notation means sum over the particle

represent, respectively, the centers of the two subkinks
which make up the DSG kink. The distance between the
two subkinks is then
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index and p„is the momentum conjugate to q„.In these
expressions an index after a comma stands for partial
differentiation with respect to the collective coordinate
denoted by the index. The constraint conditions for Y,
C&~, and C2~ are obtained from the expressions of C&~
and Czx, respectively, in Eq. (2.15), by replacing f„xby
f„y.Substituting Eqs. (2.8) and (2.12) into the equation
of motion (2.6) yields

qn+Xfn, x+X'fn, xx+ Yfn, r+ Y'fn, rr
—( 52f„+b,2q„)+2XYf„xy

de
+coo I Q„=f„+q„]=0 .dg„

Projecting Eq. (2.16) in the directions (f„»land (f„yl,
respectively, yields

&f.,x Iq. &+XM»+X'&f.,x lf.,xx &+ YM»y+ Y'&f.,x lf., yy &+2XY&f.,x lf.,xy &

dV~
&&f.xl ~—d. &+

,
& J'.

, » I ~~a. & &+~a f.xq & &&. =, f.+e. &)
=o,

n

&f., ylq. &+ YMy+ Y'&f.
, ylf. , yy &+XM»r+X'&f. , r If.,xx &+2XY&f., ylf. ,xy &

dV~«f. rl&d&+, &f. 'rl&gs »+,~o f. r~ &L& =f
, +e &)=0

where

M»= &f,xlf, x & Mr = &f., rlf. , r &

Mxy= &f.,xlf., r & .

(2.17)

(2.18)

(2.19)

The terms (f„»lq„&in Eq. (2.17) and (f„ylq„&in Eq. (2.18) are replaced by taking, respectively, the second time
derivative for C,» and C& y, and substituting the resultant equation into (2.17) and (2.18): we obtain

3 iX+BY=K),
BX+A2 Y=E2,

where

Ap =My —&f., yylq. &,

K& =X'( &f.,xx» I q. & &f.,» If.,x» —
& )+ Y'(&f.,xyy Iq. &

—&f.,» If., yy & )

+»&f., »»I q. &+»&f.,xr lq. &+2XY( &f.,xxy Iq. &
—&f.,x If.,xr & )

dV~+«J.,~ lag. &+ &f., x I& ~q. & &
—~o f.xq & &&.=f.+e. &,)

.
n

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Y=(K2A, K,B)/(A, A2 —B) . —

Then solving Eq. (2.16) for q„weobtain

(2.27)

qn
= —Xfn, x+X'fn, xx+ Yfn, r+ Y fn, rr

—( b,g„+b,2q„)+2XYf„xy
dV~

+~0
d I:Q.=f.+q. )dg„ (2.28)

K2 has the same expression as K„butwith X and Y in-
terchanged, as also a/aX and a/aY. Solving Eqs. (2.20)
and (2.21) for X and Ywe obtain

X=(K, A2 K2B)/(A, A~ B),—'—(2.26)

where the values of X and Y obtained from Eqs. (2.26)
and (2.27) are to be substituted into the right-hand side of
Eq. (2.28). Thus, the set of equations (2.26), (2.27), and
(2.28) determine the time evolution of X, Y, and q„,start-
ing from some specified initial conditions, whether the
kink is trapped or untrapped.

For suitably solving the CV equations of motion (2.26),
(2.27), and (2.28), extreme care must be taken in choosing
the initial conditions for the system. In particular, those
initial conditions must be chosen in such a way that the
constraint conditions (2.15) are satisfied at time t =0. To
this end, our initial kink profile Q„(t=0) will always
consist of the exact kink solution of the discrete DSG sys-
tern, obtained via the classical pseudodynamics relaxation
process. Then we obtain the initial conditions for the col-
lective variables by determining the values
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X(t =0), Y(t =0), and Z, for which f„(X,Y, Z) is the
best fit to the initial kink profile Q„(t=0), by minimizing

we obtain from Eq. (2.29). Furthermore, the initial veloc-
ities of the particles will be chosen to be of the form

A= g q„(0)=g [Q„(0)—f„(X,Y,Z)] (2.29) ~x Gy
Q„(0)= f„x+~t f„y, (2.30)

The minimum of A with respect to X and Y yields
BA/OX=0 and BA/BY=0, which correspond in fact to
the first constraint conditions C»=0 and C»=0, re-
spectively. Note also that the minimum of A with
respect to Z corresponds in fact to the first constraint
condition for Z if we were to treat Z as a collective vari-
able. However, in the present paper we do not treat Z as
a collective variable, but rather as a constant whose value

where ht is the molecular dynamics time step and e~ and
ey are small parameters. This expression (for the initial
velocities of the particles) leads to the initial conditions
for the velocities for the CV, X(0) and Y(0), for which
the second constraint conditions C2~ =0 and C2& =0 are
satisfied [6]. Then Eq. (2.30) leads to the following initial
conditions for the collective variables [6]:

[ex+By(Mxy/Mx)](1 by) I [E x+E y( My/ Mxy)](1 bxy)
X(0)=

At ( 1 bx )(1—by ) —I (1 —bxy )— (2.31)

1 [~y+ex(Mxy/My)](1 "x) ~[~y+~x(Mx/Mxy)](1 bxy)
Y(0)=

At ( 1 bx )( 1—by ) I—( 1 b—xy )— (2.32)

with

I =
iv~m~

'

q„(0)=Q„(0)—f„(XD,Ya),

(2.33)

(2.34)

of the lowest-order expressions for the frequencies of the
collective modes X and Y, hereafter denoted as ~x and
co z, respectively.

We determine cox in the small-amplitude limit by set-
ting Y=O, assuming ~0«1, setting q„=Ofor all n, and
neglecting the small terms of order X . We call the ap-
proximation of setting q„=Othe "bare approximation. "
Then Eq. (2.26) becomes

q„(0)= &x
X(0) f x (XD Y0 )

+ —Y(0) f„y(XQ,YD) . (2.35)

dV„[f„($„,9t)]
&f. xi ~/. & ~'0(f.x, d ,)

(3.1)

Thus the benefit of using the CV approach just described
is that the physical meaning of the collective variables ap-
pears clearly, and one has exact explicit equations of
motion for the collective modes for which the collective
variables have been introduced. Moreover, this approach
can allow for one to proceed quite far in some analytical
investigations, as we will show in the following section,
where we apply the CV equations of motion to the deter-
mination of some analytical expressions for the small-
oscillation frequencies for the collective modes of the
discrete DSG kink.

In the limit that ma «1,

d f„ 2 d f„~A=f. +i 2f.+f.+i=, +——d' 4! d4

where we neglect the terms higher than and including the
sixth-derivative term. Then Eq. (3.1) becomes

III. I.OWEST-ORDER FREQUENCIES
FOR THE COLLECTIVE MODES

1 2
&~

&f&,xlf&, xxxx & (3.2)

We now focus on small-amplitude oscillations about
the static DSG kink, and proceed with the determination

In deriving Eq. (3.2) we have made use of the fact that
f„($„,%) is the exact solution of the following equation:
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82f„(g'„,9l) 8 f„($„,9t) 8Vg[f„((„,9t)]
an' ax'

a 291
Mo = 16coo 1+

X smh 2%
(3.7a)

+ g B„sin(2m.nX),
n=0

(3.4)

When we expand a function of the form g„g(n —X) in a
Fourier series we obtain

+ 00 +0e

n = —00 2
g(n —X)= + g A„cos(2mnX. )

n=1

16')o
n nLO c. os(nLo9t )

sinh nnLO/2

2n. sin( nL09t )+
sinh(2% )

(3.7b)

where

A„=2f g (u) cos(2mnu)du,

+ 00

Bn = —2 g u sin 2mnu u, n =0, 1,.. . .

We therefore find

+ 00

M+=MD + g A„cos(2mnX),
n=1

where

(3.5)

(3.6)

+ 00

X= g B„sin(2~nX)
n=1

(3.8)

where we obtain the coefBcients B„after relatively

lengthy calculations:

Note that the dc term for the discrete mass, Mo, is in
X

fact the continuuin mass expression [2], and discreteness
causes oscillation in X about the continuum value. Fur-
thermore, we see in Eq. (3.7b) that the coefficients A„X
decay exponentially as n increases, so that we can keep
only the dc term in Eq. (3.6). Then Eq. (3.2) becomes

B„ 8n +coo4

sinh( n m Lo /2)
nI. o

( L &) zLz+2+12 cosh(2%) +
2
-'"'

sinh (291)

2Losin(nLOR) 6
n I o+3

«nh(2&) tanh (291 )

(3.9)

Equation (3.9) shows that the coefficients B„decayexponentially as n increases, so that one can keep only the n =1
term in Eq. (3.8), which gives us the following equation:

~ ~X=—

where

~x
sin( 2n.X),

27K
(3.10)

COX = 2~' 1

3 sinh(mLo/2) 1+29t/sinh(2%)
I.o 2 cosh(2% )

Lo sinh (29t)

sin(LOS) 2+ 2+ 1—
sinh(2&) L, ', tanh'(2%)

(3.11)

R:—%+X . (3.12)

represents the square of the PN frequency of the DSG
kink, to lowest order.

We now consider the determination of co~, by assum-
ing that the c.m. of the kink is held constant (X=X=0)
at an equilibrium point of the PN potential. Further-
more, in order to facilitate some forthcoming algebraic
manipulations we make use of the variable [1]

1R=

a v„[f„(4,~) ]
0 fn, R (3.13)

where M, = &f„RIf„R) = &f„—y If„,r &.

As we have done previously for calculating co&, we
make again the following approximations:

Then using the bare approximation, the CV equation of
motion (2.27) becomes

dn' 4.'dn4
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+ oo

Mz =Mo + g A „cos(2n.nX) =Mo
n=1

where

(3.14)
h(g +R) +

h( —g +R)

(3.18a)

16 2%

&&&0 sinh(291 )

Then Eq. (3.13) becomes

oo'o "o'f„(i„R)),
Mp ' (jn

BVR[f„(o„,R)]
)n

+
12M .,R

Furthermore, Eq. (3.3) implies that

8 f„(g„,R) &) f„(g„,R)

Bn BX

so that Eq. (3.16) can be rewritten as follows:

(3.16)

I' [f.(k. R)]= 8cosh (R)sech (R)
sinh (R)+cosh (g„)

8sinh (g„)sinh (9t)+
[ sinh (R)+cosh (g„)]

(3.18b)

where the function

1 2 tanh (9t) cosh (R)
tanh (R) cosh (9t)

Performing analytically the summations in the first term
of the right-hand side (RHS) of Eq. (3.17) is rather com-
plicated. However, as we consider a system near the con-
tinuum limit, we can approximate those summations by
an integration over the continuous position variable x;
which leads to the following equation:

g4
1 BV(9t R) + 1 R

Mo ~R 12M "' ~ 4

too~B [fV.x(g R)]
)af„

cosh (R)
cosh (9t)

(3.20)

RVR[f.(4,R)])—f.,z

1 a'.
(3.17)

was first derived in Ref. [1]for the study of the DSG kink
dynamics in the continuum limit. %'hen Lo becomes
suSciently large —that is, in the continuum limit —the
RHS of Eq. (3.19) reduces to the term
(1/Mo )[BV(9t,R)/BR]. It was shown in Ref. [1] that

in the continuum limit the expression of the frequency for
small oscillations about R, to lowest order, is given by

1 8 V(91,R)
M0~

2
Q)p

1 —2%/ sinh(29t )

3 9t /—tanh(9t ) 9t tanh(9t ) —1+
sinh (9t) cosh (9t)

2%

tanh(91) sinh (9t)cosh (9t)
(3.21)

Thus Eq. (3.19) differs from the equation that we would
have obtained if we were to carry out the same calcula-
tions in the continuum limit, by the presence of the term
(f„z~B f„/Bn ) in the RHS of this equation. Note that
this extra term is formally analogous to the term

in the RHS of Eq. (3.2). This is due to the fact that the
c.m. mode of the kink becomes, in the continuum limit,
the Cxoldstone mode (coax;„,h,„„„„„„„.;,=deox c =—0).

Furthermore, as (f„z~B f„/Bn ) is an even and
periodic function in X with period 1, we can expand it in
a Fourier series:

g4
&f x]f xxxx & = (f .x R„). . a, +-f„z 4

= + g D„ocs( n2.n X).
n 2 n=i

(3.22)

in the RHS of Eq. (3.2), whereas the term
(1/Mo )[BV(91,R)/I3R] [in Eq. (3.19)] has no equivalent

After relatively lengthy algebraic manipulations we ob-
tain the following expression for the coefticients D„:
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a'f„D„=2 „z cos 2m.nX X

8630 9
nLp cos(nLpR)

2
2

sinh(nmLp/2) sinh(2R) 2 tanh (2R )

Lpcosh(2R)sin(nLpR) 9+ —3n L — —2
sinh(2R ) sinh (2R)

(3.23)

Keeping only the first two terms of the series in Eq. (3.22) [since the coefficients decay as 1/sinh(n~Lp/2)], and ex-
panding the second term in the RHS of Eq. (3.19) about R, we obtain the correction to tpr c to lowest order, for small-
amplitude oscillations:

2m' cos(2m.X) L p cosh(2% ) 4 18. —cos Lp% 1+
3Lp sinh(mLp/2) 1 —2%/sinh(29t) 2 sinh (2%) L p L p sinh (29t)

11
2

Lpsin(Lp9t )+ 2+ 4—
sinh(29t )

9
tanh'(2%)

(3.24)

Thus the frequency of small oscillations for the internal
mode Y, to lowest order, is given by

coy —coy c+02 = 2 2 (3.25)

8„(X,q, t) =@A,„(X,) exp(

idiot),

—
E' is a small parameter, and X,q ——m +—,', with m integer;
that is, we focus on the case where the c.m. is located
midway between two adjacent lattice sites.

The linearization of the equations of motion about
C&„(X,~ ) yields the following eigenvalue equation:

+DSG~n ~ ~n (3.26)

We should point out that the perturbation theory used
above is only qualitatively correct [7]. The functional
dependence of co& and co& on the parameters is correct
but fails to predict the correct numerical coeKcients.
The reason is that the dressing of the continuum kink
shape due to discreteness contributes to co& and co& to all
orders of perturbation theory. However, we will show in
the forthcoming discussion that u~ and ~z are fortui-
tously very close to the exact values for %)R„where the
meaning of R, will be made more precise later on.

We can check the accuracy of our lowest-order expres-
sions for ~z and co& by performing numerically the exact
determination of the small-oscillation spectrum of the
kink system. To this end one must examine small oscilla-
tions in the system, in the presence of a stable DSG kink,
N„(X,~), located at some equilibrium point X=X,„of
the PN potential. That is, we consider

Q„(t)=C„(X,)+8„(X,, t), .

where

where the linear operator XDso is given by

XDsG=cop cos(@„)tanh (R)—
cos( 0&„/2)

cosh (9t)

(3.27)

(3.28)

where k„is the wave vector associated with the frequen-
cy cok, and two bound states whose eigenvalues, co & ~~,

n

give the exact small-oscillation frequencies for the collec-
tive modes X and Y.

Figures 2 and 3, obtained respectively for I.o =10 and
11, in the parameter range 1.3 ~% ~ 6.5, show the varia-
tions of the frequencies [tp~(9t), tor(%)] (solid line) to-
gether with the exact determination of the frequencies of
X and 1' obtained via the linear operator XDso, hereafter
referred to as "co~,»«" and "~~,»«" respectively. We
have also represented cor c/co+ versus 9t (dotted curves)
in Fig. 3. Note that the parameter regions where m&, mz,

Note that when 9t becomes sufficiently large XDsz be-
comes X;o=top[cos(4„)—bz], that is, the linear opera-
tor for the SG kink [8].

To calculate cp from the Eq. (3.26) we use the atomic
positions in the stable kink state N„(X,q ) (that we obtain
via the classical pseudodynamics relaxation process). For
a given parameter set I Lp, 9t ], the eigenvalue spectrum of
Eq. (3.26) consists of a discrete set of traveling wave
states (phonons) whose eigenvalues are given by the
dispersion law

cpk =-cpg+4sin (k„/2), co =top[2tanh (9t)—1],



p TCHOFO DINDA AND C R WILLIS

L,=1O (a)

0

0.06

0
I I I I I I I

I
I

I I I I
I

I I

Lp
——11

I I
I

I

(b)

0.04—
«g

I I I I I I I I

0.8

0.6

3 0.4

0.2—

0 I

I I I I I I I I

in the norma1ized frequency of small os-I
. mode co&/cog versus, o a'cillations of the c.m. m

= (a) 10; {b) 11. The centers of the diamonds
'

n obtained from the linearrepresent et th exact determination o taine
operator LDs/.

Fi s. 2 and 3 correspondare not represente in ig .Or ~X-exact
uare of the frequency becometo the regions where q

0 corticular, the regions w ere ~x-e»«egative In par icu a ~

uilibi lum positionre ions where t e equi
'

respond to the reg = +—' becomes an un-the kink that we cons
q

1 Further-
onsider X =I

2~
'

m oint of the PN potentia. ur
ve as eneral resu t t a coax,

mOre Or leSS Well With ICOZ, „„„COYexa«e en

co agree surprising y we
f 9t

'
h reafter denotedThis value o is ex- xact Y-exact I

"9t,(Lp ). oNote that 9t, (1
in Fi . 3 that AY c agree alsoFurthermore, we observe in Fig. a

Y-exact — cfor % &%,.

CO nO 1Onger agree With I COX exa«, to Y e»«, Orthat Itox, coYJ no o
h ve found out that inf %. Moreover, we ave

th f th fsome sma g'H re ions of %, above „e
ative, whereas both

'
s co and mY, become nega ive,quencies, cox an

become essentia yt' lly constant. A cleart and ~Y-exact
when

X-exact
earS between ~Y-C an ~Y-exactPy ~ PP-. bhd

3(b). A careful examination of the results or

h' h th di
'

ht into the reasons for w ic emore insigh
of %. in the range R

ata for Figs. 2 and 3 indicate that when S
rs for most values o in

s sufficiently large
co tend asymptotically to t e same

enc off the small-oscillation frequency oprec' yisel the value o t e sm
kink, iven by the linear operator %so.

R fh DSGhen the parameter o eThis means that when p
~% ) the two sub-ufficiently large (Dt, etential becomes s

1 k two isolated SG kinks
DSG kink behave, with regar

p scillations, rather like two iso a
e same discrete attice.

d dtod ib 11e anal tical formula —inten e o
k — st preserve this essen-
f1, .%,.th. .....h...,h.re. In the limit of large, in

311 d(325) btice sites (X =m +—,'), Eqs. 3.11 an
spectively,

~ 0.6

0.4

0 I

2 4 6

the normalized frequency of small os-'
1 mode co&/cog versus so i

3.25), for Lo= {a) 10;
. (3 21). The centers of there resents Mp c(%)/cog iven by Eq.

/M
P

the exact determination, ~&,»«diamonds represent t e exac

to = . 1+ cos(L p I)t )
L 2

3 sinh(~Lp/2)

=coso cos(L p% )

cos(2lp9t ), lp —=Lp/2,+
23 sinh(nip)

(3.29)

to Y=Q =coso cos(LpR), (3.30)

re resents precisely t ee small-where the factor coso rep
nc of the c.m. of the discre et SG kink,

d d h 'bl ler 9 we have intro uceto lowest ord [
just to facilitate comparison with Eq.



51 DISCRETENESS EFFECTS ON THE DOUBLE SINE-GORDON KINK 4967

Lp=Lp —=2m'/R with m integer.
m

(3.31)

In order to understand the physical meaning of the rela-
tion (3.31) it is helpful to invoke Eqs. (2.14a) and (2.14b),
which indicate that when F=O the centers of the sub-
kinks of the static DSG kink are located, respectively, at

Equations (3.29) and (3.3O) show that the 9k dependence
still exists in our expressions of [cod, d'or) in the large-R
limit, owing to the presence of the factor cos(Lp%),

~x-exact and ~F-exact tend asymptotically t
coso. This indicates that the ansatz function f„that we
have used for calculating jcox, d'or] does not lead to the
exact IE'miI; behavior for sufficiently large 8, in a discrete
lattice. Then it becomes clear that for suitably describing
the behavior of the DSG kink, for large R in a discrete
lattice, one can still use the ansatz function that we have
considered, provided that the discreteness parameter Lo
is chosen in such a way that cos(L p%) = 1, that is,

1 I
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LOS
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21T

Lo%
and X~ =X+

2m
(3.32)

Then when one applies the relation (3.31) in Eq. (3.32)
one obtains

FIG. 4. The crosses represents the normalized small-
oscillation frequency coax/cog versus LO=2mm/% (with m in-
teger), obtained from Eq. (3.11). The diamonds represent the
exact determination, co&,„„,/cog. %= (a) 3m/4; (b) m.,

' (c) 2~; (d)
4n..

XI =X—m and X~ =X+m . (3.33)

Equation (3.33) indicates that the distance between the
two subkinks in the static DSG kink is then exactly equal
to an integer number of periods of the lattice, thus irnply-
ing that the two subkinks are located exactly at the same
equilibrium point in the PN potential [we recall in this
respect that the PN potential is a periodic potential,
whose periodicity is equal to (or is twice as big as) [6] the
one of the lattice]. If, in addition, the parameter 9t of the
potential becomes sufficiently large the subkinks will no
longer overlap and will behave like two isolated kinks.
As the square of the PN frequency is closely related to
the curvature of the PN potential at the equilibrium
point of the static kink [8], the subkinks will oscillate
with the same frequency (since they are located exactly at
the same equilibrium point in the PN potential). In this
respect we observe in Figs. 2 and 3 the striking behavior
that for some particular values of %, still above R„anex-
cellent agreement appears again between [co~,cor J and

[co~-,„„„co'-,„„,I. Those values of R correspond precise-
ly to those that satisfy the relation Eq. (3.31).

Figs. 4 and 5, which show the plots of [co+,d'or] versus
Lp —where Lp satisfies the relation Eq. (3.31)—exhibit
two types of behavior: the discrete regime in which the
frequencies vary strongly as a function of the discreteness
parameter Lp, and the continuum limit (which rnanifests
itself when Lp becomes sufficiently large), in which the
frequencies become constant with respect to Lo. We see
in Figs. 4 that in the continuum limit m& is equal to zero
and independent of %; which indicates that the c.m.
mode becomes effectively the Goldstone mode. Further-
rnore, we see in Figs. 4 and 5 that discreteness effects be-
gin to manifest themselves when 10~ Lo ~ 11; which
shows that the values Lo = 10 and 11 that we considered
previously for obtaining the results in Figs. 2 and 3 corre-

spond effectively to the case where discreteness effects are
not too large.

The most striking point which emerges from our re-
sults in Figs. 4 and 5 is that from Lo = 3m —where
discreteness effects begin to become important —up to
the continuum limit our analytical expressions I co+, cor I
agree surprisingly well with [co&-,„„„cor-,„„,I. This ex-
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FIG. 5. The crosses represent the normalized srnall-

oscillation frequency co&/cog versus LO=2mm/R (with m in-
teger), Eq. (3.25). The diamonds represent the exact determina-
tion, mz, »«/ug. R = (a) 3m'/4; (b) m; (c) 2m; (d) 4m.
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cellent agreement is certainly due to the fact that the an-
satz function f„,that we have used for calculating
Icox, cubi ], provides a highly accurate representation of
the shape of the discrete DSG kink when discreteness
effects are not too large. On the other hand, we observe,
as one could expect, a clear discrepancy between

I vox, coi ] and Irox,»«, cur, »«] when discreteness efFects
become too large (Lp « 3m ). Indeed, in the highly
discrete regime, the bare approximation is no longer valid
because the ansatz function f„nolonger represents the
configuration of the discrete kink as well as in the former
case. Consequently, in the highly discrete system, one
needs to perform the static dressing of the kink by taking
into account the q„'s,Eq. (2.8). In the following section
we numerically solve the CV equations of motion (2.26),
(2.27), and (2.28), where the q„'sare fully taken into ac-
count.

IV. NUMERICAL SOLUTIONS
OF THE CV EQUATIONS OF MOTION

Lp=5. 588 %=267r/Lp
I I I I

i
I I I I

i
I I I I

f
I I I I

J
I I I I

l i t i i I & & i i I i i i i I

20 40 60 80 100

FIG. 6. Profile of the discrete DSG kink, centered at
X=50.5 in a 100 particle chain, for L p

=5.588 and
%=26m /Lp.

For performing the numerical computations, the total
number of particles in the chain, X, will be chosen such
that we do not encounter phonons rejected from the ends
of the system. We will always choose the time step ht
and the total time for the dynamics in such a way that
the magnitude of the constraints, Eq. (2.15), never
exceeds 10, and the energy of the system is conserved
to an accuracy better than 0.01%%uo Furthermore,
throughout the present paper, we consider the same
discreteness parameter as in Ref. [10], that is, L p =5.588,
in order to facilitate the comparison between the
behavior of the SG and DSG kink systems (in this
respect, note that the discreteness parameter used in Ref.
[10] is t p

=L p I2, instead of L p, so that our L p
=5.588

corresponds exactly to the value of lo =2.794 used in Ref.
[10]where the authors examined a discrete SG kink}.

For our numerical solutions of the CV equations of
motion, we consider two different kink profiles corre-
sponding to two different values of %; first we consider
the value of % such that the distance between the sub-
kinks'is so large that the subkinks do not overlap, and
second the case where % is so small that the subkinks
overlap and lose their individual identities. In order for
the results to be conveniently displayed we discuss the
two cases separately.

A. Kink dynamics for %=26m /L p = 14.617

The chosen parameter 9t =26m/L p gives rise to a DSG
kink where the centers of the subkinks are separated by
2)=2Jt /cop=26 lattice cells, for I'=0. Thus the separa-
tion between the subkinks is large compared with the size
of each subkink as can be seen in Fig. 6 (obtained via the
relaxation process), which shows the static profile of a
discrete DSG kink located midway between two adjacent
lattice sites. This figure shows effectively that the sub-
kinks do not overlap for the value of R that is considered.
Consequently, one can consider, in some respects, that
each subkink is embedded in a PN potential in the same
manner as is a single kink in the discrete SG system;

which implies that the stable equilibrium point of each
subkink inside its PN potential is located midway be-
tween two adjacent lattice sites, as schematically shown
in Fig. 7(a), where

+]eq mI +
2 +2 +2eq my+ 2

(4.1)

and m I and m2 are integers.
Then Eqs. (2.14) yield the equilibrium values for the

collective modes associated with the whole DSG kink:

+le ++2e m1 ™2x=x = ' '= +-',
eq 2 2 2 (4.2a)

cop(X2gq X]eq } cop( m p m ] )Y=Y eq eq —R.eq 2 2.
(4.2b)

For performing the kink dynamics, one must erst obtain
an initial kink profile Q„(t=0) (via the relaxation pro-
cess) in which at least one of the subkinks is away from
its equilibrium point in the PN potential, that is,

X)(t =0)=m, +g), X2(t =0)=m2+g2, (4.3)

X,(t =0)+X,(t =0) g, +g, —1
X(t =0)= =X,q+

(4 4)

where 0 & g, & 1, 0 &
g2 & 1, but with g, A —,

' or $2% —,'. The
parameters g, and $2 therefore locate, respectively, the
positions of the two subkinks inside their PN potentials.
The initial conditions for X and Y are then written, re-
spectively,
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coP[X2(t =0)—XI(t =0)]
Y(t =0)=

2
—R

~P kZ
—

kI
cq (4.5)

Thus a set of gI and g'2 values, associated with the initial
velocities for the CV, or equivalently the initial velocities
on the particles, make up a type of initial conditions for
the dynamics. Figures 7(b) —7(d) show schematically the
di6'erent types of initial topological conditions that we
will consider later on. Figure 7(b) corresponds to a case
where the subkinks are initially deviated by the same am-
plitude in opposite directions, from their stable equilibri-
um points in their respective PN potentials; which corre-
sponds to an initial excitation of the internal mode Y
keeping the c.m. at equilibrium [X(t =0)=X, ]. In Fig.

7(c) the two subkinks are deviated by the same amplitude
in the same direction, from their stable equilibrium points
in the PN potential; which corresponds to an excitation
of the c.m. X whereas Y(t =0)=Y,q. Figure 7(d) corre-
sponds to a case where the two collective modes X and Y
are initially excited.

For each of these initial topological configurations, it
remains to choose the initial velocities in order to com-
pletely determine the type of initial conditions for the
specific type of dynamics that one desires (trapped or un-
trapped regime). We discuss separately the trapped or
untrapped regimes of the kink.

The trapped regime for R =26m'IL0

We first examine the trapped regime of the kink by
choosing the initial velocities on the particle to be zero,
that is, Q„(t=0)=0; which corresponds, for the CV
theory, to e~ =e~ =0, or equivalently,

X(r =0)=0, Y(t =0)=0 . (4.6)

m~ m) +1/2 m) + t

I

lattice sites
X Ieq

m~1 m~ ~ I/2 m~ ~ I

lattice sites
X I(t:=0) X geq

2 m2 1/2 m2+ 1

I

I

X2eq

(b)

m2 m2+f/2 I m2+1

x2( t.=o)

X (tI=0)=1487.0179604=XI, —0.48204,

X2(t =0)=1513.98204=X2, +0.48204;

which corresponds, for the whole system, to

X(i =0)=1500.5=X, , Y(i =0)=0.54201

(4.7a)

(Y, =0) .

(4.7b)

a. Eink dynamics corresponding to the initial excitation
of Y. Figure 8 shows the results obtained for a 3000-
particle chain, where the subkinks were initially deviated
from their stable equilibrium positions, as schematically
shown in Fig. 7(b), precisely in the following way:

ITl
)

~ ITl1 +I /2 ITl) m2 I m2+1/2 m2 ~ 1

I I I I

I
I I I I

I
I I I I

I
I I I I I I I I
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FIG. 7. Schematic representation of some possible positions
of the subkinks inside their individual PN potentials, when the
parameter % becomes sufficiently large. I

&
and m2 are integers

which designate, respectively, the lattice sites situated near the
subkinks. (a) corresponds to the equilibrium state of the DSG
kink, whereas (b) and (c) correspond to various excited states.
Note, however, that the shape of the PN potential experienced
by each subkink is very close but not exactly identical to the one
of a single SG kink because the subkinks in the DSG system are
always bound via the parameter 8, even when the separation
between the subkinks becomes sufficiently large.
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FIG. 8. Kink dynamics for an initial excitation of the inter-
nal mode Y, that leads to the trapped regime, for Lo =5.588 and
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lation parameters are e& =e&=0, At =m/114. 7, and X =3000.
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Equation (2.29) yields Z = 1.033 52.
As a general result we find that the centers of the two

subkinks vibrate with the same amplitude of oscillations
but with opposite velocities, so that the c.m. of the whole
DSG kink remains at equilibrium during the dynamics:
X(t)=X(t =0)=X,q. Consequently, only one of the two
collective modes of the system is excited during the dy-
namics and vibrates with frequency cur(t) =co» (t)
=co» (t). Figures 8(a) and 8(b) show that as soon as the

2

dynamics begins the amplitude of oscillation for each
subkink decreases monotonically and smoothly, thus im-
plying that the subkink is loosing energy via the phonons
radiation process, up to t =643 where a drop occurs in
the amplitude of oscillation. This drop is a clear and
strong manifestation of the general process that involves
the spontaneous emission of phonon radiation, reported
in Ref. [10]. This process involves a coupling of the non-
linear collective mode to the phonon modes. The non-
linear collective mode possesses a fundamental frequency
which lies generally below the lower phonon band edge.
This fundamental frequency increases in time (due to the
loss of energy of the collective mode), and so do its har-
monics, so that when a harmonic that was initially below
the lower phonon band edge crosses up into the phonon
band it resonates with phonon modes and then the kink
emits a burst of phonon radiation. Since the kink loses
energy through radiation of phonons the amplitude of the
oscillations decreases and the frequency of the oscilla-
tions increases. In the beginning of the motion, from
t =0 up to t =643, the kink radiates away phonons ow-
ing to higher harmonics of the frequency cuz=coz =co&

1 2

which enter the phonon band, but the individual effect of
each of those harmonics is not yet suf5ciently strong to
manifest itself clearly. Qn the other hand, at t =643, the
individual effect of a harmonic become clearly apprecia-
ble, as shown in Fig. 8(d), where the frequency

jumps suddenly from ~~=0.281=cog/4
to about co&=0.31; which indicates that the drop in the
amplitude of oscillation of each subkink is due the fourth
harmonic of mz=cuz =co that crosses up into the pho-X2

non band. The behavior just described corresponds pre-
cisely to the same general features as those reported in
Ref. [10] for a discrete SG kink. There exist, however,
some qualitatively different features between a subkink of
the DSG system and a single SG kink, that we now point
out.

A careful examination of our Figs. 8(a) and 8(b) reveals
a slight difFerence with respect to the result in Fig. 3(a) in
Ref. [10],after the drop in the amplitude of oscillation of
each subkink. Indeed we observe in Figs. 8(a) and 8(b)
that after the drop the amplitude of oscillation of each
subkink increases very slightly for a few oscillations be-
fore decreasing monotonically. This slight increase in the
amplitude of oscillation indicates that each subkink ab-
sorbs and reemits a relatively important packet of energy
just after the emission of the burst of phonon radiation.
Such a phenomenon, which does not occur in the SG
kink system [10], is due to the configuration of the DSG
kink; indeed, as each subkink always radiates away pho-
nons in both directions (in the positive and negative x
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FIG. 9. Kink dynamics for an initial excitation of the c.m.
mode X, that leads to the trapped regime, for L0=5.588 and
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X„q= 1500.5. Simulation Parameters are E~ =Ey =0,
At =m. /114. 7, and N =3000.

directions) it is clear that a relatively important part of
the energy radiated by each subkink must pass through
the other subkink before being radiated away from the
two subkinks; hence the slight increase in the amplitude
of each subkink after the drop at t =643.

It is interesting to mention that one can also analyze
the behavior just described by simply regarding the DSCr
kink as a whole collective entity described solely by the
internal mode (IM) Y. In this context, the drop at t =643
in the amplitude of oscillation of Y in Fig. 8(c), followed
by the slight increase, indicates that a packet of the ener-
gy of the Y mode is transferred to the phonon modes as
the fourth harmonic of co~ enters the phonon band, and,
just after, a part of the energy lost by Y is transferred
back to Y before being ultimately radiated away from the
kink. Consequently, this behavior can well be regarded
as a sort of energy-exchange process that temporarily
occurs between the IM Y and the phonon modes when a
burst of phonons is emitted by the kink.

b. Kink dynamics corresponding to the initial excitation
of the c.m. X. Figure 9 shows the results obtained for a
3000 particle chain, where the subkinks are initially devi-
ated in the same direction from their stable equilibrium
positions [as schematically shown in Fig. 7(c)], precisely
in the following way:
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Xi ( t =0)= 1487.984 036= Xi, +0.484 036,

X2 ( t =0 ) = 1513.984 036=X2, +0.484 036;
which corresponds to

X(t =0)=1500.984036=X, +0.484036,

Y(t =0)=0=Y,

(4.8a)

(4.8b)

Equation (2.29) yields Z =1.033 809 3. Furthermore, we
recall that the initial velocities on the particles are chosen
to be zero.

Figures 9(a) and 9(b) show that a significant drop ap-
pears in the amplitude of oscillation of each subkink, ow-
ing to the fourth harmonic of the frequency of oscillation
of the center of each subkink, that enters the phonon
band. This shows that the phonon-radiation. process still
plays an important role in the dynamics. However, the
kink dynamics now differ qualitatively from the previous
case owing to the fact that although the IM Y is not ini-
tially excited, this mode ends up by moving from its equi-
librium position, and executes, later on, a relatively
large-amplitude motion, as shown in Fig. 9(e). So there
exists a fundamental difference between the previous case
(Sec. IV A 1 a) where the c.m. mode remains at equilibri-
um throughout the dynamics when only the IM Y is ini-
tially excited, and the present case where the IM Y ends
up by moving from equilibrium when only the c.m. mode
X is initially excited. Indeed the initial excitation of Y
[Fig. 7(b)] preserves the symmetry of the system with
respect to the c.m. of the system, so that during the dy-
namics the phonons are radiated away from the kink ex-
actly in the same manner in the positive and negative x
directions. In this case the phonons cannot act as a
source of excitation of the c.m. On the other hand, the
initial excitation of X [Fig. 7(c)] breaks down the symme-
try of the system with respect to the positive and negative
x directions, and in consequence, the phonons are no
longer radiated away from the kink exactly in the same
manner in the two directions. The phonons emitted by
the kinks therefore act a source of excitation which ends
up by setting progressively the internal mode in motion
at t = 100 [Fig. 9(e)].

Furthermore, we observe in Figs. 9(d) and 9(e) that X
and Y always evolve in time in a cooperative way in the
sense that the amplitudes of oscillation of X and Y always
vary inversely, so that each mode attains its maxima pre-
cisely as the other mode attains its minima, and vice ver-
sa. This cooperative motion indicates in fact that when X
and Y are both excited, an energy-exchange process
occurs permanently between these two modes in the
discrete DSG kink. During this energy-exchange pro-
cess, it sometimes happens that one mode loses almost all
its energy during a short lapse of time; which leads to a
significant drop in its frequency of oscillation. This
behavior is indicated by down arrows in Figs. 9(d) —9(f).

On the other hand, by carefully looking into Figs.
9(c)—9(e), we have found that as long as co» (t)%to» (t)

1 2

an energy transfer occurs between X and Y, and each
time that co» (t) becomes equal to co» (t), X and Y attain

1 2

their extrema; that is, the transfer of energy from one

mode to the other stops and begins again, but in the op-
posite direction.

The following point should also be mentioned: since
each subkink radiates a part of its energy in the direction
of the other subkink, we would expect there to be a slight
increase in the amplitude of oscillation of each subkink,
immediately after the drop due to the emission of a burst
of phonons, in a similar way as in the case of Figs. 8(a)
and 8(b). On the other hand, we do efFectively observe
some slight increases after the drop in the amplitudes of
Xi and Xz in Figs. 9(a) and 9(b), but they appear later
than in the case of Figs. 8(a) and 8(b). We attribute this
slight difference to the fact that the dynamics, in the case
of Figs. 9(a) and 9(b), are no longer governed solely by the
phonon-radiation process, but also by the energy-
exchange process between X and Y. So all phonons emit-
ted by each subkink are not radiated directly from the
DSG kink; some of them interfere with the energy-
exchange process between X and Y, before being ulti-
mately radiated away later on.

c. Initial excitation of X and Y. We have performed
the kink dynamics in the case where the subkinks are ini-
tially deviated in the same direction, but with different
amplitudes, from their stable equilibrium positions [in a
similar way as in Fig. 7(d)]. We have found that both X
and Y begin to move as soon as the dynamics begin, but
the important point that we have noticed is that the kink
dynamics are still governed by the same physical process-
es already described previously in the case of Fig. 9,
namely, the phonon-radiation process and the energy-
exchange process between X and Y. Since this behavior
has already been discussed in detail in the previous sub-
section, we do not show the figures in the present subsec-
tion. We now turn to the untrapped regime of the kink.

2. The untrapped regime for %=26m IL0

We consider again a DSG kink where the subkinks are
initially deviated from their stable equilibrium positions
exactly in the same way as in Sec. IV A 1 b, but in a 2000
particle chain. For obtaining the untrapped regime we
put an initial velocity on the c.m. X of the whole DSG
kink, by choosing

e~ = —0.005 25, e y
=0,

which corresponds to

X(t =0)= V» (t =0)=—X,(t =0)
1

= V» (t =0)=—X2(t =0)
2

(4.9a)

= —0. 191 151 395 .

(4.9b)

Figure 10(a) shows that the discrete DSCx kink exhibits
all regimes of a discrete kink motion: the untrapped re-
gime in which the kink ballistically propagates in the lat-
tice while emitting radiation, and the trapped regime
which occurs when the kink has lost enough energy. We
see in Fig. 10(b) that, although the Y mode is not initially
excited, this mode becomes excited at about t =60, owing
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FIG. 10. Kink dynamics for an initial excitation of the c.m. mode X, that leads to the untrapped regime, for LO=5. 588 and
%=26m/Lo. (a) X(t); (b) F(t); (c) X&(t); (d) V& (t); (e) X2(t); (f) V~ (t). Simulation parameters are e&= —0.00525, @~=0,
bt =m/114. 7, and N =2000.

to the phonons emitted which act as a source of excita-
tion. So from t =0 up to t =60 the DSG kink behaves
exactly like a train of two subkinks which are tightly
bound, which travel through the lattice in the negative x
direction with essentially the same velocity. The subkink
at the front of the train, located by X„Fig.10(c), will be
hereafter referred to as the "forward subkink, " whereas
the subkink in the rear of the train, located by X2, Fig.
10(e), will be referred to as the "backward subkink. "
Furthermore, we see in Fig. 10(b) that in the beginning
of the Y mode motion its amplitude decreases continually
up to t =375, thus indicating that the backward subkink
is moving faster than the forward subkink, since the sepa-
ration between the subkinks, Eq. (2.14c), is closely related
to Y. Then from t =375 onwards Y increases until the
kink becomes trapped. After the transition to the
trapped regime, the Y mode oscillates about
( Y(t)) = —1.7.

Thus we find the surprising result that the dynamics in
the untrapped regime ends up by modifying permanently
the distance between the subkinks of the DSG system. In
the beginning of the dynamics, Y[0~t ~60]=0, so that
the distance between the subkinks is

2)(t =0)=2—9tlco0=26 lattice cells .

But after the transition to the trapped regime the mean
value of the distance between the subkinks becomes

2)s„,i= (2)(t) ) =2[9t+ ( Y(t) ) ]/coo

=2(9t —1.7)/coo=23 lattice cells .

This permanent modification of the kink profile is one of
the most outstanding effects of the phonon-radiation pro-
cess on the behavior of the discrete DSG kink. In this
respect it should be mentioned that the phonon-radiation
process, in the untrapped regime, manifests itself in a
somewhat different way than in the trapped regime.

Indeed, one of the main results of previous work
[10,11] on discreteness effects in kink-bearing systems is
that the ballistic propagation of the kink give rise to a
periodic excitation of the lattice, whose fundamental fre-
quency corresponds to the frequency with which the kink
passes the sites of the lattice; that is,

Q =2+X,
or equivalently

Q) =2~X), Q2=2~X2,

(4.10)

when one considers rather the frequency with which each
subkink passes the sites of the lattice. The phonon radia-
tion in the untrapped regime is due to the presence of 0,
or any of its harmonics, in the phonon band. During the
untrapped regime the kink velocity decreases in time, and
so do Q and its harmonics, and when a harmonic that
was initially inside the phonon band pass out through the
bottom of the phonon band this harmonic becomes incap-
able of producing radiation. This physical process leads
to knees in the curves of the kink's velocity versus time
[11],which appear at critical velocities, at which the radi-
ation rate drops significantly. One of these velocities is
clearly visible in Figs. 10(d) and 10(f) at t =375, where
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p'» = V» = —0.0447=-,'(co /2m)

indicates that the fourth harmonics of 0, and 02 are
leaving the phonon band. It is precisely at t =375 that Y,
in Fig. 10(b), stops decreasing and begins to increase.

We also observe in Figs. 10(d) and 10(f) that the veloci-
ties of the forward and backward subkinks are slightly
different in the untrapped regime. This is due to the fact
that the phonons are not radiated away from the kink ex-
actly in the same manner in the backward and forward
directions of the moving kink. In this respect we recall
that in the phonon-radiation process each subkink emits
a part of phonons in the direction of the other subkink.
The phonons emitted by the forward subkink (Xi ) in the
direction of the backward subkink (Xz) quickly arrive
within the backward subkink (X2 ), and pass through this
subkink while the system is still in the untrapped regime,
before being radiated away from the DSG kink. On the
other hand, the phonons emitted by the backward sub-
kink (X2) in the direction of the forward subkink (Xi)
move in the same direction as the whole kink and there-
fore those phonons must cover a much larger distance be-
fore attaining the forward subkink (X, ). Those phonons
begin to pass through the forward subkink (Xi ) when the
system has already made a transition to the trapped re-
gime. Thus the slight difference observed between the ve-
locities of the two subkinks in the untrapped regime is
due to the effects of the phonons which are passing
through the subkink (X2).

for %=4m. /Lo, that the subkinks have actually lost their
individual identities.

Before performing the kink dynamics, it is interesting
to first examine the shape of the PN potential in the
present case, in order to facilitate our understanding of
the dynamics later on. In this respect we recall that in
the case considered previously, that is,
%=26m/La=14. 617, the subkinks do not overlap and
each subkink is embedded in a PN well whose minimum
is located midway between two adjacent lattice sites. On
the other hand, we observe in Fig. 12(a), which shows one
period of the PN potential of the DSG kink for
%=4m!Lo, the striking behavior that each period of the
PN potential now possesses two wells in each lattice cell,
whose minima are located, respectively, at X=m and
X=m+ —,'[m =0 in the case of Fig. 12(a)]. Note that
this behavior is in marked contrast with the behavior
found in most of the discretized field theories [12—14],
where each period of the PN potential possesses only a
single well. However, such discreteness effects may well
be generic features in the sense that they were already
mentioned in previous work for some other deformable
substrate potentials [15,6].

We must also stress the following point: we have
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When the parameter % becomes suKciently small, the
subkinks of the DSG kink overlap. The DSG kink
should therefore be treated as a single collective entity
described by the collective variables X and Y. For in-
stance, in the case that we now consider, that is,
%=4m /Lo =2.2488, the quantity 2) =X& —Xi
=2(9t+ Y)/coo (that we used previously for evaluating
the separation between the subkinks) reduces to only four
lattice cells when Y=O. Moreover, we observe in Fig.
11, which shows the static pro61e of a discrete DSG kink
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FIG. 11. Profile of the discrete DSCs kink centered at

X =50.5 in a 100 particle chain, for Lo =5.588 and R =4~/Lo.

FICx. 12. Plot of the normalized discrete kink's energy for
La =5.588. (a) shows the shape of the PN potential within a lat-
tice cell for %=4m /Lo. (b) shows the kink's energy versus % for
a kink centered on a particle of the chain, X =m (solid curve),
and for a kink centered midway between two adjacent lattice
sites, X =m + —' (dotted curve). Note for (a) that for obtaining

the kink energy one needs first to obtain the static kink profile
for each X. For performing the relaxation of the kink for
XXm, m + 1/2, that is, away from its equilibrium positions, one
must let the system relax subject to an external force, otherwise
the kink will relax at one of its two equilibrium positions, X =m
or X =m +1/2.
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found that the shape of the PN potential depends strong-
ly on %, so that there exist in the system some other types
of behavior than the one shown in Fig. 12(a). For in-
stance, Fig. 12(b) shows the plot of the normalized energy
of the discrete DSG kink, Ex(X)/Ez, versus, or
X =m (solid curve) and X =m + —,

' (dotted curved).
EK ——M0 is the continuum kink rest energy given by
E . (3.15). Figure 12(b) exhibits three types of behavior.q. . . i

'X=m+ —'(i) In some parameter regions, Ex 'X =m
(E (X =m)' which corresponds to the same case as theK
one shown in Fig. 12(a), where the deepest well of the PN
potential is located midway between two adjacent lattice
sites.

(ii) In some other parameter regions, however,
E (X =m +—') )Ez(X =m); which corresponds to a—Pl

~ ~

case where the deepest well of the PN potential is located
exactly on each lattice site.

(iii) For some values of 9t, Ez (X =m + —,
'

)

=E~(X = m ); thus implying that the two minima of the
PN potential become degenerate.

In the forthcoming discussions we focus on the case (i)
and examine the dynamics for %=4m/Lo. For pe. rform-
ing the dynamics, we will always consider a kink which is
initially at rest in the bottom of the PN well with the
smallest depth, that is, a kink centered at

X(t =0)=1001,
in a 2000 particle chain. The shape of the PN potential
in Fig. 12(a) then allows us to foresee that one can obtain
three types of regimes for the kink dynamics depending
upon the magnitude of the initial velocity of the c.m.
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FIG. 13. Kink dynamics for La=5.588 and % =4~/Lo. (a)
X(t); (b) Y(t). The simulation parameter are e& = —0.0004 and
ay=0, ht =m/113. 5, and N =2000.

= —0 001 e =0 [X(t =0)= —0.035 947,&x= E'y—
Y(t =0)=0]. As expected, the amplitudes of oscillation
for X and Y, in Figs. 14(a) and 14(b) are much larger than
for the case of Fig. 13 (where the kink is trapped in the
shallow well). Moreover, the kink now radiates away en-
ergy more strongly, as illustrated in Fig. 14(d), which

1. Trapped regime in the mell with the smallest depth,
for %=4m /Lo

Figures 13(a) and 13(b), obtained for Ex= 0.0004,
or =0 [which corresponds to X(t =0)= —0.014 38,
Y(t =0)=0], show that when the initial velocity is
su cien y smaffi

'
tl small but nonzero the kink moves off its equi-

librium position (in the well with the smallest dept an
attempts to proceed to the deepest well of the PN poten-
tial, but finds that it cannot do so because its kinetic ener-
gy is not sufficient for crossing the intervening PN bar-
rier. The kink is therefore definitively trapped in this
shallow well during the ensuing motion. Furthermore,
we see in Figs. 13(a) and 13(b) that during this motion the
amplitudes of oscillation of X and F remain essentially
constant; which indicates that the radiation emitted by
the kink is negligible.

2. Trapped regime in the deepest well of the PN potential,
for %=4m/Lo

When one increases the initial velocity (compared to
the case of Fig. 13) one attains a small region of X(t =0),
given by 0.0005 ~

I ez I

~ 0.001, in which the initial kinet-
ic energy becomes just enough to permit the kink to cross
the first intervening PN barrier. The kink then moves up
to the deepest PN well before undergoing the trapping in
this well. Figure 14 shows the results obtained for
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FIG. 14. Kink dynamics for L0=5.588 and %=4m/Lo. (a)
X(t); (b) Y(t); (c) co~(t)/cog (dotted curve) and co~(t)/co~ (so isolid
curve) (d) instantaneous Poynting's flux evaluated at the lattice
site no. 976. The simulation parameters are e&= —0.001 and

=0 At =~/227, and N =2000. In (c), we have drawn a hor-
izontal dotted line at 0.25 in order to indicate that the fourth
harmonic of cux resonates with the phonon modes during the
motion.
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FIG. 15. Kink dynamics for Lo =5.588 and %=4m/Lo. (a)
X( t); (b) Y(t); (c) instantaneous Poynting's Aux evaluated at the
lattice site no. 976; (d) co&(t)/cog. The simulation parameters
are ez= —0.00525 and e&=0,ht =m/454, and N=2000. In
(d), we have drawn a horizontal dotted line at 0.25 in order to
indicate that the fourth harmonic of co& resonates with the pho-
non modes during the motion.

X I Q„+I(t)—Q„(t)],Q„(t)=f„+q„
where no designates the lattice site where one evaluates
the flux. In the case of Figs. 14(d), no =976.

Figure 14(c), which shows the time evolution of the fre-
quencies for X and Y, reveals that the fourth harmonic of
cox enters the phonon band at about t =70(to+=cog/4),
which leads to the emission of a burst of phonons from
the kink. Then those phonons travel through 25 lattice
sites before attaining the site no. 976 (where we evaluate
the flux). The peaks which appear in Fig. 14(d}, for
t )70, are due to those phonons passing through the lat-
tice site no. 976.

3. Untrapped regime for %=4' IL0

When the magnitude of the initial velocity begins to
become important, the kinetic energy of the kink be-
comes sufficient to permit the kink to overcome the inter-
vening PN barriers. The kink therefore goes through the
untrapped regime in the beginning of its motion. Figures
15(a)—15(d), which show the results obtained for
e~ = —0.005 25, er =0 [X(t =0)= —0. 188 72428,
Y(t =0)=0], reveal some major differences with respect

shows the time evolution of the Poynting's Aux of the
phonon radiation evaluated 25 lattice sites away from the
center of the kink. The discrete definition of the
Poynting's flux S is [10]

Q„(t+Et) —Q„(t)
S(no, t)=—

to the case considered in Fig. 10 (where 9t is relatively
large). Indeed, we observe in Fig. 10(a) that the kink
travels through 53 lattice celIs, at one go, before undergo-
ing the transition to the trapped regime. On the other
hand, we find in Fig. 15(a) that in the untrapped regime
the kink undergoes several temporary trappings in some
lattice cells, and also some rejections back with respect to
the direction of the initial velocity, and finally finds itself
definitively trapped between the lattice cells no. . 1000 and
no. 1001, that is, precisely inside its initial PN well.

Moreover, a careful examination of Figs. 15(a) and
15(b) shows that as soon as the dynamics begin the kink
travels through the lattice in the negative x direction up
the lattice cell no. 999, where the first temporary trap-
ping occurs. Figure 15(b) shows that this temporary
trapping occurs precisely as the amplitude of oscillation
of Y attains its maximum; which indicates that the tem-
porary trapping occurs precisely when a relatively large
packet of energy that was initially stored in the c.m.
mode is transferred to the internal mode. Then, after a
while, the energy lost by the c.m. mode is at least in part
restored while the kink is moving in the positive x direc-
tion. The kink therefore begins again to cross the PN
wells and travels in the positive x direction up to the lat-
tice cell no. 1002, where the second temporary trapping
occurs. This behavior illustrates once more the effects of
the energy-exchange process between the c.m. mode and
the internal mode on the motion of the discrete DSG
kink. A similar behavior was already observed for a de-
formable double well substrate potential [6]. Thus, when
one compares the behavior in Figs. 10(a) and 15(a), it ap-
pears that the temporary-trapping phenomenon occurs in
the DSG system when the parameter % becomes
sufFiciently small; which corresponds to the case where X
and Y interact strongly.

Furthermore, we see in Fig. 15(c) that the Poynting's
flux exhibits several peaks, and Fig. 15(d} shows that dur-
ing the untrapped regime the frequency of oscillation of
Y oscillates about to /4. Those oscillations in the time
evolution of co~, which are due to the interactions be-
tween X and Y, indicate that the fourth harmonic of co~
often enters the phonon band but goes out after a while.
Each time that the fourth harmonic of co ~ enters the pho-
non band the kink emits a burst of phonons; hence the
peaks observed in Fig. 15(c).

In the following section we conclude the present work.

V. CONCLUSION

Collective variable theories have been successful in
treating internal modes such as those that appear in the
DSG equation and other Klein-Gordon equations. They
have also been effective qualitatively and quantitatively in
describing discreteness effects such as the PN potential
and the radiation by untrapped kinks at the frequency
Q=2n.X and trapped kinks at the harmonics of the PN
frequency. In the case of internal modes the radiation
occurs at harmonics of the internal mode oscillation fre-
quency. In this paper we have found the separate
discrete and internal mode effects for the DSG kink.
Here we summarize only the qualitatively different phe-
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nomena that result from the occurrence of both discrete-
ness and internal modes.

The dimensionless parameter that measures discrete-
ness in the DSG system is (2m/Lo). When this parame-
ter is small (2'/Lo) ((1, or equivalently Lc))2', we
have the continuum limit and when the parameter is
greater than 1 we have a very discrete system. The
second important dimensionless parameter is the ratio of
the distance 2)o between the subkinks, Eq. (2.11), to the
size of the subkink Lo, i.e., 2)o/Lo=9tlm W. hen 9t))~,
Fig. 6, the subkinks are far apart and we can think of
them roughly as SG kinks although the distance between
them is still determined by %. In the case %(~, Fig. 11,
the subkinks no longer have separate identities. In the
large-kink limit (9t ))w) we find when the trapped kink is
excited initially such that R (t =0)=9t, that is, Y(t)=0,
Fig. 7(c), that, as a consequence of asymmetry in the for-
ward and backward directions of radiation from a mov-
ing kink at the harmonics of co~, the distance between the
subkinks is changed and thus the internal mode is excit-
ed. Thus in the DSG system the efII'ect of phonon radia-
tion on the difFerent subkinks is responsible for the exci-
tation of the internal mode. In the untrapped large-kink
case, when the kink is set in motion with the internal
mode unexcited initially, we again find that as a result of
asymmetric phonon radiation the internal mode is excit-
ed. We also find that the two subkinks travel at slightly
difFerent velocities due to the asymmetry of the radiation
of phonons in the forward and backward directions.
When the untrapped kink eventually becomes trapped
the R mode oscillates not about 9t but about a value
smaller than %. We also observe the usual result in the
untrapped case that as the kink radiates its velocity de-
creases and so does the Doppler frequency 2+X, and its
harmonics which were initially inside the phonon band
pass out through the bottom of the band and are no
longer able to radiate. The condition for the nth harmon-
ic to become nonradiating is n (2m.X ) =cps.

For the small kink, there is a richer spectra of behavior
than there is for the large-kink case. Most of the richness
comes from the fact [Fig. 12(a)j, that there are two mini-
ma per unit cell located at X =no and X =m+ —,'. There
are three cases where Ex (X =m + —,

'
) is greater than, less

than, or equal to Ez(X =m). It is sufficient to discuss a
single case Ex (X =m +—,

'
) )Ex (X =m ). When a kink

starts out in the lesser depth well with a kinetic energy
less than that required to leave the shallower well it is

trapped and since the frequency scales with the depth of
the well the frequency of oscillation is small compared
with the band edge frequency. Consequently, the radia-
tion is weak because such a high harmonic of the fre-
quency is required in order to be resonant with the pho-
non band.

In the untrapped small-kink case we find the greatest
qualitative difI'erence from previously treated cases. We
find that the DSG kink undergoes several temporary
trappings before finally radiating sufFicient energy to be
trapped. The reason for the temporary trapping is that
energy from the c.m. X is converted into internal mode
energy and the kink becomes temporarily trapped due to
the loss of c.m. energy. However, the internal mode
transfers an appreciable part of its energy back to the
c.m. which then causes the DSG kink to become un-
trapped. All during this process the kink is radiating en-
ergy in both the X(t) and R (r)= Y(t)+9t modes and so
eventually the kink becomes permanently trapped. We
see in Figs. 14(c) and 15(d), and in the plots of the
Poynting's Aux, the bursts of radiation when the harmon-
ics of co+ or co~ enters the phonon band as well as the in-
tervals of decreased radiation when Inodes exit the pho-
non band.

In conclusion, we have seen how the lowest-order ap-
proximation to the exact CV theory, which consists of
the ordinary diff'erential equations for the collective vari-
ables X ( t ) and R ( t ) coupled to the linearized equations
of motion for the phonons, can explain qualitatively (and
semiquantitatively) the behavior of the discrete DSG sys-
tem. It would be extremely dificult to extract compara-
ble information from P(n, t) by any perturbation theory
that did not introduce collective variables. For example,
we can explain the phonon radiation by taking the
lowest-order perturbation approximation of our exact CV
equations. Another example, the exchange of energy be-
tween X(t) and R (t), would be extremely difficult to de-
scribe from P(n, t) without collective variables. We con-
clude with the observation that other discrete nonlinear
Klein-Gordon systems with internal modes, such as P,
can be treated by the same approach that we used for the
DSG equation in this paper.
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